Global Existence of the Solution for a Reduced Model of the Vectorial Quantum Zakharov System

Guiyu Yang ${ }^{1,2}$
${ }^{1}$ College of Mathematical Science, Zhejiang Normal University, Jinhua, China
${ }^{2}$ College of Data Science, Jiaxing University, Jiaxing, China
Email: 15637225464@163.com

How to cite this paper: Yang, G.Y. (2024) Global Existence of the Solution for a Reduced Model of the Vectorial Quantum Zakharov System. Journal of Applied Mathematics and Physics, 12, 533-542. https://doi.org/10.4236/jamp.2024.122035

Received: January 9, 2024
Accepted: February 26, 2024
Published: February 29, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.

Keywords

Quantum Zakharov System, Global Existence, Logarithmic Sobolev Inequality

1. Introduction

In this paper, we consider the vectorial quantum Zakharov system

$$
\left\{\begin{array}{l}
\mathrm{i} E_{t}-\alpha \nabla \times(\nabla \times E)+\nabla(\nabla \cdot E)-\Gamma \nabla(\Delta(\nabla \cdot E))=n E \tag{1}\\
\lambda^{-2} n_{t t}-\Delta n+\Gamma \Delta^{2} n=\Delta|E|^{2} \\
E(x, 0)=E_{0}(x), n(x, 0)=n_{0}(x), n_{t}(x, 0)=n_{1}(x)
\end{array}\right.
$$

where $E: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{C}^{2}$ is the slowly varying envelope of the rapidly oscillating electric field, and $n: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ is the deviation of the ion density from its mean value. $\lambda \in[1, \infty)$ denotes the ionic speed of sound, the parameter α defined as the square ratio of the light speed and the electron Fermi velocity is usually large, and the coefficient Γ that measures the influence of quantum effects is usually very small. This model describes the nonlinear interaction between high-frequency quantum Langmuir waves and low-frequency quantum
ion-acoustic waves, we refer to [1] for more physical background.
Most of the known results are concerned on the scalar quantum Zakharov system which reads

$$
\left\{\begin{array}{l}
\mathrm{i} E_{t}+\Delta E-\Gamma \Delta^{2} E=n E, \tag{2}\\
\lambda^{-2} n_{t t}-\Delta n+\Gamma \Delta^{2} n=\Delta|E|^{2}
\end{array}\right.
$$

For example, the references [2] [3] proved the local or global well-posedness results for (2), and for scattering results, we refer to [4] [5]. When $\Gamma=0$, we can obtain the classical Zakharov system ([6])

$$
\left\{\begin{array}{l}
\mathrm{i} E_{t}+\Delta E=n E, \tag{3}\\
\lambda^{-2} n_{t t}-\Delta n=\Delta|E|^{2}
\end{array}\right.
$$

which has been extensively studied for the local and global well-posedness [7]-[15].

By isolating the light dispersive term and the quantum dispersive term for E, the linear part of the first equation of (1) can be transformed into the form

$$
\left\{\begin{array}{l}
\mathrm{i} F_{1 t}+\alpha \Delta F_{1}=0 \tag{4}\\
\mathrm{iF}_{2 t}+\Delta F_{2}-\Gamma \Delta^{2} F_{2}=0
\end{array}\right.
$$

The detailed computations are given in the appendix. Then we are interested in the following reduced model of the vectorial quantum Zakharov system

$$
\left\{\begin{array}{l}
\mathrm{i} F_{1 t}+\Delta F_{1}=n F_{1}, \tag{5}\\
\mathrm{i} F_{2 t}+\Delta F_{2}-\Delta^{2} F_{2}=n F_{2} \\
n_{t t}-\Delta n+\Delta^{2} n=\Delta|F|^{2} \\
F_{1}(0)=F_{1,0}, F_{2}(0)=F_{2,0} \\
n(0)=n_{0}, n_{t}(0)=n_{1}
\end{array}\right.
$$

Here, we have set $\alpha=\Gamma=\lambda=1$ for simplicity. Yang-Zhang-Jiang [16] proved local existence of the solution and the limit behavior for this system. In this work, our aim is to show the global existence of (5) in a two-dimensional case.

Before stating the main result, we first introduce some notations that will be used in the paper. For $m \in \mathbb{Z}^{+}$, we denote $H^{m}\left(\mathbb{R}^{2}\right)$ the usual inhomogeneous Sobolev space. If $u \in W^{m, p}\left(\mathbb{R}^{2}\right)$, we define its norm to be

$$
\|u\|_{W^{m, p}}=\left(\sum_{|\alpha| \leq m} \int_{\mathbb{R}^{2}}\left|D^{\alpha} u\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}(1 \leq p<\infty)
$$

or

$$
\|u\|_{W^{m, \infty}}=\sum_{|\alpha| \leq m} \operatorname{esssup}\left|D^{\alpha} u\right|
$$

where ess sup $f(x)$ denotes the essential supremum of a set of functions.
The homogeneous Sobolev space $\dot{H}^{-1}\left(\mathbb{R}^{2}\right)$ is defined as

$$
\dot{H}^{-1}\left(\mathbb{R}^{2}\right)=\left\{u ;(-\Delta)^{-\frac{1}{2}} u \in L^{2}\left(\mathbb{R}^{2}\right)\right\}
$$

with norm

$$
\|u\|_{\dot{H}^{-1}}\left(\mathbb{R}^{2}\right)=\left\|(-\Delta)^{-\frac{1}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=\left\||\xi|^{-1} \hat{u}(\xi)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

where \hat{u} is the Fourier transform of u.
We denote the product space X_{M} as

$$
X_{M}:=H^{M-1}\left(\mathbb{R}^{2}\right) \times H^{M}\left(\mathbb{R}^{2}\right) \times H^{M-1}\left(\mathbb{R}^{2}\right) \times\left(H^{M-3}\left(\mathbb{R}^{2}\right) \cap \dot{H}^{-1}\left(\mathbb{R}^{2}\right)\right)
$$

and

$$
\left\|\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right\|_{X_{M}}:=\left\|u_{1}\right\|_{H^{M-1}\left(\mathbb{R}^{2}\right)}+\left\|u_{2}\right\|_{H^{M}\left(\mathbb{R}^{2}\right)}+\left\|u_{3}\right\|_{H^{M-1}\left(\mathbb{R}^{2}\right)}+\left\|u_{4}\right\|_{H^{M-3}\left(\mathbb{R}^{2}\right) \cap \dot{H}^{-1}\left(\mathbb{R}^{2}\right)}
$$

The main result is stated in the following theorem.
Theorem 1 Let $\left(F_{1,0}, F_{2,0}, n_{0}, n_{1}\right) \in X_{M}$ and $M \geq 4$ is a positive integer. Then, the system (5) has a unique global solution $\left(F_{1}, F_{2}, n, n_{t}\right)$ satisfying

$$
\left(F_{1}, F_{2}, n, n_{t}\right) \in C\left(\mathbb{R}^{+} ; X_{M}\right)
$$

Theorem 1 gives the global existence result without any size restriction under the quantum effect. This is quite different from the classical Zakharov system where a global solution exists with small initial data.

2. Preliminaries

In this section, we give the conserved quantities and a basic L^{∞} type estimate.
Lemma 2 (Young inequality) [16] Let $1 \leq p, q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Lemma 3 (Hölder inequality) [16] Let $1 \leq p, q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, if there has $u \in L^{p}(U), \quad v \in L^{q}(U)$, then

$$
\int_{U}|u v| \mathrm{d} x \leq\|u\|_{L^{p}}\|v\|_{L^{q}} .
$$

Lemma 4 (Gagliardo-Nirenberg inequality) [16] Let $u \in L^{q}\left(\mathbb{R}^{n}\right)$, $D^{m} u \in L^{r}\left(\mathbb{R}^{n}\right), 1 \leq p, r \leq \infty, 0 \leq j \leq m$, Then, there are $C>0$, satisfying

$$
\left\|D^{j} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|D^{m} u\right\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{\alpha}\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{1-\alpha}
$$

with $0 \leq \frac{j}{m} \leq \alpha \leq 1$,

$$
\frac{1}{p}=\frac{j}{n}+\alpha\left(\frac{1}{r}-\frac{m}{n}\right)+(1-\alpha) \frac{1}{q}
$$

Lemma 5 Let $u \in W^{k, p}\left(\mathbb{R}^{d}\right) \cap W^{s, q}\left(\mathbb{R}^{d}\right), \quad k, s>0, \quad p>1, \quad q \geq 1$, $k p=d<s q$, Then, there holds

$$
\|u\|_{L^{\infty}} \leq C\|u\|_{W^{k, p}}\left(1+\ln \left(\frac{\|u\|_{W^{s, q}}}{\|u\|_{W^{k, p}}}\right)\right)^{1-\frac{1}{p}}
$$

with C depending on k, s, p, q, d.
The proof of this lemma can be found in [17] [18]. When $d=2, k=1$, $s=2, p=q=2$, we have

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C\left(1+\ln \left(1+\|u\|_{H^{2}}\right)\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

for $u \in H^{2}\left(\mathbb{R}^{2}\right)$ and $\|u\|_{H^{1}} \leq K$, where C is a constant depending only on K.
Proposition 6 For smooth solutions of (5), there hold two conserved quantities:

$$
\|F\|_{L^{2}}=\left\|F_{0}\right\|_{L^{2}}, \mathcal{H}(t)=\mathcal{H}(0)
$$

where $F=\left(F_{1}, F_{2}\right)$ and $\mathcal{H}(t)=\mathcal{H}\left(F_{1}(t), F_{2}(t), n(t), n_{t}(t)\right)$ with

$$
\begin{align*}
& \mathcal{H}\left(F_{1}, F_{2}, n, n_{t}\right) \\
& :=\left\|\nabla F_{1}\right\|_{L^{2}}^{2}+\left\|\nabla F_{2}\right\|_{L^{2}}^{2}+\left\|\Delta F_{2}\right\|_{L^{2}}^{2}+\frac{1}{2}\left(\left\|n_{t}\right\|_{\dot{H}^{-1}}^{2}+\|n\|_{L^{2}}^{2}+\|\nabla n\|_{L^{2}}^{2}\right)+\int_{\mathbb{R}^{2}} n|F|^{2} \mathrm{~d} x . \tag{7}
\end{align*}
$$

Proof. We first derive the L^{2} bound of F_{1}. Taking the imaginary part of the inner product in L^{2} between the first equation of (5) and F_{1}, we have $\frac{\mathrm{d}}{\mathrm{d} t}\left\|F_{1}\right\|_{L^{2}}^{2}=0$. Therefore,

$$
\left\|F_{1}(t)\right\|_{L^{2}}^{2}=\left\|F_{1,0}\right\|_{L^{2}}^{2} .
$$

Similarly, we have

$$
\left\|F_{2}(t)\right\|_{L^{2}}^{2}=\left\|F_{2,0}\right\|_{L^{2}}^{2} .
$$

Thus, we get

$$
\|F(t)\|_{L^{2}}=\|F(0)\|_{L^{2}}
$$

Next, we multiply the first equation of (5) by $\overline{F_{1 t}}$ and consider the real part. This leads to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\nabla F_{1}\right\|_{L^{2}}^{2}=-\int_{\mathbb{R}^{2}} n \partial_{t}\left|F_{1}\right|^{2} \mathrm{~d} x \tag{8}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla F_{2}\right\|_{L^{2}}^{2}+\left\|\Delta F_{2}\right\|_{L^{2}}^{2}\right)=-\int_{\mathbb{R}^{2}} n \partial_{t}\left|F_{2}\right|^{2} \mathrm{~d} x \tag{9}
\end{equation*}
$$

On the other hand, we take the inner product of the third equation of (5) with $(-\Delta)^{-1} n_{t}$, then we can obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\left\|n_{t}\right\|_{\dot{H}^{-1}}^{2}+\|n\|_{L^{2}}^{2}+\|\nabla n\|_{L^{2}}^{2}\right)=-\int_{\mathbb{R}^{2}} \partial_{t} n|F|^{2} \mathrm{~d} x . \tag{10}
\end{equation*}
$$

From (8)-(10), we obtain

$$
\mathcal{H}(t)=\mathcal{H}(0)
$$

3. Proof of Theorem 1

Now we are going to prove Theorem 1.
Proof of Theorem 1. According to the local existence theory, it is sufficient to show the a-priori bound of the solution. From Proposition 6, we know

$$
\mathcal{H}(F, n)(t)=\mathcal{H}(F, n)(0) \text { which implies }
$$

$$
\begin{align*}
& \left\|\nabla F_{1}\right\|_{L^{2}}^{2}+\left\|\nabla F_{2}\right\|_{L^{2}}^{2}+\left\|\Delta F_{2}\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|n_{t}\right\|_{\dot{H}^{-1}}^{2}+\frac{1}{2}\|n\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla n\|_{L^{2}}^{2} \\
& \leq C+\left.\left|\int_{\mathbb{R}^{2}} n\right| F\right|^{2} \mathrm{~d} x \mid \tag{11}\\
& \leq C+\frac{1}{4}\|\nabla n\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla F\|_{L^{2}}^{2} \\
& \leq C
\end{align*}
$$

Here, for the nonlinear integral term, we have used the Gagliardo-Nirenberg inequality and Young's inequality to obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} n|F|^{2} \mathrm{~d} x \leq C\|n\|_{L^{6}}\|F\|_{L^{\frac{12}{5}}}^{2} \leq \frac{1}{4}\|\nabla n\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla F\|_{L^{2}}^{2}+C . \tag{12}
\end{equation*}
$$

Therefore, we get

$$
\begin{equation*}
\left\|F_{1}\right\|_{H^{1}}+\left\|F_{2}\right\|_{H^{2}}+\left\|n_{t}\right\|_{\dot{H}^{-1}}+\|n\|_{H^{1}} \leq C, \forall t>0 \tag{13}
\end{equation*}
$$

and the inequality (6) implies

$$
\begin{align*}
& \left\|F_{1}\right\|_{L^{\infty}} \leq C\left(1+\ln \left(1+\left\|\Delta F_{1}\right\|_{L^{2}}\right)\right)^{\frac{1}{2}} \\
& \|n\|_{L^{\infty}} \leq C\left(1+\ln \left(1+\|\Delta n\|_{L^{2}}\right)\right)^{\frac{1}{2}} \tag{14}\\
& \left\|\nabla F_{2}\right\|_{L^{\infty}} \leq C\left(1+\ln \left(1+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}\right)\right)^{\frac{1}{2}}
\end{align*}
$$

Next, we estimate the higher-order norms for F_{1}, F_{2} and n. We perform \dot{H}^{2} energy estimate for F_{1}, we get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\Delta F_{1}\right\|_{L^{2}}^{2}=-2 \operatorname{Re} \int_{\mathbb{R}^{2}} \nabla\left(n F_{1}\right) \nabla \overline{F_{1 t}} \mathrm{~d} x \tag{15}
\end{equation*}
$$

Recalling (5), we see $F_{1 t}=\mathrm{i} \Delta F_{1}-\mathrm{i} n F_{1}$. Hence, we deduce

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\Delta F_{1}\right\|_{L^{2}}^{2} & =-2 \operatorname{Im} \int_{\mathbb{R}^{2}} \nabla\left(n F_{1}\right) \nabla \Delta \overline{F_{1}} \mathrm{~d} x \\
& =2 \operatorname{Im} \int_{\mathbb{R}^{2}} \Delta\left(n F_{1}\right) \Delta \overline{F_{1}} \mathrm{~d} x \tag{16}\\
& \leq C\left\|\Delta F_{1}\right\|_{L^{2}}\|\Delta n\|_{L^{2}}\left\|F_{1}\right\|_{L^{\infty}}+C\left\|\Delta F_{1}\right\|_{L^{2}}^{2}\|n\|_{L^{\infty}}
\end{align*}
$$

Similarly, we can obtain

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\Delta F_{2}\right\|_{L^{2}}^{2}+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2}\right) & =-2 \operatorname{Re} \int_{\mathbb{R}^{2}} \nabla\left(n F_{2}\right) \nabla \overline{F_{2 t}} \mathrm{~d} x \\
& =-2 \operatorname{Im} \int_{\mathbb{R}^{2}} \nabla\left(n F_{2}\right) \nabla \Delta \overline{F_{2}} \mathrm{~d} x+2 \operatorname{Im} \int_{\mathbb{R}^{2}} \nabla\left(n F_{2}\right) \nabla \Delta^{2} \overline{F_{2}} \mathrm{~d} x \\
& :=I_{21}+I_{22} . \tag{17}
\end{align*}
$$

For I_{21}, it is easy to see (by (13))

$$
\begin{align*}
I_{21} & =-2 \operatorname{Im} \int_{\mathbb{R}^{2}} \nabla\left(n F_{2}\right) \nabla \Delta \overline{F_{2}} \mathrm{~d} x \\
& =2 \operatorname{Im} \int_{\mathbb{R}^{2}} \Delta\left(n F_{2}\right) \Delta \overline{F_{2}} \mathrm{~d} x \tag{18}\\
& \leq C\left(1+\|n\|_{H^{2}}^{2}\right) .
\end{align*}
$$

As to I_{22}, we have

$$
\begin{align*}
I_{22}= & -2 \operatorname{Im} \int_{\mathbb{R}^{2}} \Delta n F_{2} \Delta^{2} \overline{F_{2}} \mathrm{~d} x-4 \operatorname{Im} \int_{\mathbb{R}^{2}} \nabla n \nabla F_{2} \Delta^{2} \overline{F_{2}} \mathrm{~d} x \\
& -\operatorname{Im} \int_{\mathbb{R}^{2}} n \Delta F_{2} \Delta^{2} \overline{F_{2}} \mathrm{~d} x-\operatorname{Im} \int_{\mathbb{R}^{2}} n \Delta F_{2} \Delta^{2} \overline{F_{2}} \mathrm{~d} x \\
\leq & -2 \operatorname{Im} \int_{\mathbb{R}^{2}} \Delta n F_{2} \Delta^{2} \overline{F_{2}} \mathrm{~d} x+C\left\|\nabla \Delta F_{2}\right\|_{L^{2}}\|\Delta n\|_{L^{2}}\left\|\nabla F_{2}\right\|_{L^{\infty}} \tag{19}\\
& +C\left(\|\Delta n\|_{L^{2}}^{2}+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2}\right)+C\|n\|_{L^{\infty}}\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2} .
\end{align*}
$$

Taking inner product of both sides of the third equation of (5) with n_{t}, there is

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2}\left\|n_{t}\right\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla n\|_{L^{2}}^{2}+\frac{1}{2}\|\Delta n\|_{L^{2}}^{2}\right) \\
& =\int_{\mathbb{R}^{2}} \Delta|F|^{2} n_{t} \mathrm{~d} x=-\int_{\mathbb{R}^{2}} \nabla|F|^{2} \nabla n_{t} \mathrm{~d} x \\
& =-\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathbb{R}^{2}} \nabla|F|^{2} \nabla n \mathrm{~d} x+\int_{\mathbb{R}^{2}} \nabla|F|_{t}^{2} \nabla n \mathrm{~d} x .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2}\left\|n_{t}\right\|_{L^{2}}^{2}+\left.\frac{1}{2}\left|\nabla n\left\|_{L^{2}}^{2}+\frac{1}{2}\right\| \Delta n \|_{L^{2}}^{2}+\int_{\mathbb{R}^{2}} \nabla\right| F\right|^{2} \nabla n \mathrm{~d} x\right)=\int_{\mathbb{R}^{2}} \nabla|F|_{t}^{2} \nabla n \mathrm{~d} x . \tag{20}
\end{equation*}
$$

The Equation (5) indicates that

$$
\begin{gather*}
\left|F_{1}\right|_{t}^{2}=-2 \operatorname{Im}\left(\Delta F_{1} \overline{F_{1}}\right) \tag{21}\\
\left|F_{2}\right|_{t}^{2}=-2 \operatorname{Im}\left(\Delta F_{2} \overline{F_{2}}\right)+2 \operatorname{Im}\left(\Delta^{2} F_{2} \overline{F_{2}}\right) \tag{22}
\end{gather*}
$$

Now using (21)-(22), the integral term $\int_{\mathbb{R}^{2}} \nabla|F|_{t}^{2} \nabla n \mathrm{~d} x \quad$ can be estimated as

$$
\begin{align*}
& \int_{\mathbb{R}^{2}} \nabla|F|_{t}^{2} \nabla n \mathrm{~d} x \\
& =-2 \operatorname{Im} \int_{\mathbb{R}^{2}} \nabla\left(\Delta F_{1} \overline{F_{1}}+\Delta F_{2} \overline{F_{2}}\right) \nabla n \mathrm{~d} x+2 \operatorname{Im} \int_{\mathbb{R}^{2}} \nabla\left(\Delta^{2} F_{2} \overline{F_{2}}\right) \nabla n \mathrm{~d} x \tag{23}\\
& :=I_{31}+I_{32} .
\end{align*}
$$

For I_{31}, it can be estimated by

$$
\begin{align*}
I_{31} & =2 \operatorname{Im} \int_{\mathbb{R}^{2}}\left(\Delta F_{1} \overline{F_{1}}+\Delta F_{2} \overline{F_{2}}\right) \Delta n \mathrm{~d} x \tag{24}\\
& \leq C\|\Delta n\|_{L^{2}}\left\|\Delta F_{1}\right\|_{L^{2}}\left\|F_{1}\right\|_{L^{\infty}}+C\|\Delta n\|_{L^{2}} .
\end{align*}
$$

For I_{32}, we have

$$
\begin{equation*}
I_{32}=-2 \operatorname{Im} \int_{\mathbb{R}^{2}} \Delta^{2} F_{2} \overline{F_{2}} \Delta n \mathrm{~d} x \tag{25}
\end{equation*}
$$

Then it follows from (20) and (23)-(25) that

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2}\|n\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla n\|_{L^{2}}^{2}+\frac{1}{2}\|\Delta n\|_{L^{2}}^{2}+\int_{\mathbb{R}^{2}} \nabla|F|^{2} \nabla n \mathrm{~d} x\right) \tag{26}\\
& \leq C\|\Delta n\|_{L^{2}}\left\|\Delta F_{1}\right\|_{L^{2}}\left\|F_{1}\right\|_{L^{\infty}}+C\|\Delta n\|_{L^{2}}-2 \operatorname{Im} \int_{\mathbb{R}^{2}} \Delta^{2} F_{2} \overline{F_{2}} \Delta n \mathrm{~d} x .
\end{align*}
$$

Now, collecting the estimates (16)-(19) and (26) yield

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\Delta F_{1}\right\|_{L^{2}}^{2}+\left\|\Delta F_{2}\right\|_{L^{2}}^{2}+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|n_{t}\right\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla n\|_{L^{2}}^{2}+\frac{1}{2}\|\Delta n\|_{L^{2}}^{2}+\int_{\mathbb{R}^{2}} \nabla|F|^{2} \nabla n \mathrm{~d} x\right) \\
& \leq C\left\|\Delta F_{1}\right\|_{L^{2}}\|\Delta n\|_{L^{2}}\left\|F_{1}\right\|_{L^{\infty}}+C\left\|\Delta F_{1}\right\|_{L^{2}}^{2}\|n\|_{L^{\infty}}+C\left(1+\|\Delta n\|_{L^{2}}^{2}+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2}\right) \\
& \quad+C\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2}\|n\|_{L^{\infty}}+C\left\|\nabla \Delta F_{2}\right\|_{L^{2}}\|\Delta n\|_{L^{2}}\left\|\nabla F_{2}\right\|_{L^{\infty}} . \tag{27}
\end{align*}
$$

The nonlinear part in the left-hand side of (27) can be estimated by

$$
\begin{equation*}
\left.\left|\int_{\mathbb{R}^{2}} \nabla\right| F\right|^{2} \nabla n \mathrm{~d} x\left|=\left|\int_{\mathbb{R}^{2}}\right| F\right|^{2} \Delta n \mathrm{~d} x\left|\leq \frac{1}{4}\|\Delta n\|_{L^{2}}^{2}+\left\||F|^{2}\right\|_{L^{2}}^{2} .\right. \tag{28}
\end{equation*}
$$

And using inequality (21)-(22), we get

$$
\begin{align*}
\left\||F|^{2}\right\|_{L^{2}}^{2} & =2 \int_{0}^{t} \int_{\mathbb{R}^{2}}\left(|F|^{2}\right)\left(|F|_{t}^{2}\right) \mathrm{d} x \mathrm{~d} s \tag{29}\\
& \leq C \int_{0}^{t}\left(1+\left\|\Delta F_{1}\right\|_{L^{2}}^{2}+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2}\right) \mathrm{ds} .
\end{align*}
$$

For $t \in[0, T]$, we define

$$
\psi(t):=1+\left\|\Delta F_{1}\right\|_{L^{2}}^{2}+\left\|\Delta F_{2}\right\|_{L^{2}}^{2}+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}^{2}+\left\|n_{t}\right\|_{L^{2}}^{2}+\|\nabla n\|_{L^{2}}^{2}+\|\Delta n\|_{L^{2}}^{2},
$$

then the estimates (27)-(29) give

$$
\begin{aligned}
\psi(t) & \leq C \int_{0}^{t} \psi(s)\left(1+\left\|F_{1}\right\|_{L^{\infty}}^{2}+\left\|\nabla F_{2}\right\|_{L^{\infty}}^{2}+\|n\|_{L^{\infty}}^{2}\right) \mathrm{d} s \\
& \leq C \int_{0}^{t} \psi(s)\left(1+\ln \left(1+\left\|\Delta F_{1}\right\|_{L^{2}}\right)+\ln \left(1+\left\|\nabla \Delta F_{2}\right\|_{L^{2}}\right)+\ln \left(1+\|\Delta n\|_{L^{2}}\right)\right) \mathrm{d} s \\
& \leq C \int_{0}^{t} \psi(s)(1+\ln \psi(s)) \mathrm{d} s .
\end{aligned}
$$

By Gronwall's inequality and (13), one deduces from the above inequality that

$$
\left\|F_{1}\right\|_{H^{2}}+\left\|F_{2}\right\|_{H^{3}}+\left\|n_{t}\right\|_{L^{2}}+\|n\|_{H^{2}} \leq C
$$

for any $t \in[0, T]$. Following the same argument as above, we can obtain

$$
\left\|F_{1}\right\|_{H^{M-1}}+\left\|F_{2}\right\|_{H^{M}}+\|n\|_{H^{M-1}}+\left\|n_{t}\right\|_{H^{M-3}} \leq C, \forall t \in[0, T] .
$$

Since the proof is similar, we omit further details. The proof of Theorem 1 is then completed.

4. Appendix

According to the equality $\nabla \times(\nabla \times E)=\nabla(\nabla \cdot E)-\Delta E$, the linear system (1) is equivalent to

$$
\begin{equation*}
\mathrm{i} E_{t}+(1-\alpha) \nabla(\nabla \cdot E)+\alpha \Delta E-\Gamma \nabla(\Delta(\nabla \cdot E))=0 \tag{30}
\end{equation*}
$$

we take the Fourier transform for (30) to obtain

$$
\begin{equation*}
\mathrm{i} \hat{E}_{t}+(1-\alpha)(\mathrm{i} \xi)(\mathrm{i} \xi \cdot \hat{E})-\alpha|\xi|^{2} \hat{E}-\Gamma(\mathrm{i} \xi)\left(-|\xi|^{2}\right)((\mathrm{i} \xi) \cdot \hat{E})=0 \tag{31}
\end{equation*}
$$

(31) can be rewritten as in the matrix form

$$
\mathrm{i}\binom{\hat{E}_{1}}{\hat{E}_{2}}_{t}-\left(\begin{array}{cc}
\beta \xi_{1}^{2}+\alpha|\xi|^{2} & \beta \xi_{1} \xi_{2} \\
\beta \xi_{1} \xi_{2} & \beta \xi_{2}^{2}+\alpha|\xi|^{2}
\end{array}\right)\binom{\hat{E}_{1}}{\hat{E}_{2}}=0
$$

where $\beta=(1-\alpha)+\Gamma|\xi|^{2}$.
Let

$$
A=\left(\begin{array}{cc}
\beta \xi_{1}^{2}+\alpha|\xi|^{2} & \beta \xi_{1} \xi_{2} \\
\beta \xi_{1} \xi_{2} & \beta \xi_{2}^{2}+\alpha|\xi|^{2}
\end{array}\right)
$$

then there is

$$
\begin{align*}
|\lambda E-A| & =\left|\begin{array}{cc}
\lambda-\beta \xi_{1}^{2}-\alpha|\xi|^{2} & -\beta \xi_{1} \xi_{2} \\
-\beta \xi_{1} \xi_{2} & \lambda-\beta \xi_{2}^{2}-\alpha|\xi|^{2}
\end{array}\right| \tag{32}\\
& =\left(\lambda-\alpha|\xi|^{2}\right)\left(\lambda-|\xi|^{2}\left(1+\Gamma|\xi|^{2}\right)\right) .
\end{align*}
$$

Therefore, the determinant (32) implies

$$
\lambda_{1}=\alpha|\xi|^{2}, \lambda_{2}=|\xi|^{2}\left(1+\Gamma|\xi|^{2}\right)
$$

For $\lambda_{1}=\alpha|\xi|^{2}$, the corresponding eigenvector is

$$
x_{1}=\left(-\xi_{2}, \xi_{1}\right)^{\mathrm{T}}
$$

For $\lambda_{2}=|\xi|^{2}\left(1+\Gamma|\xi|^{2}\right)$, the corresponding eigenvector is

$$
x_{2}=\left(\xi_{1}, \xi_{2}\right)^{\mathrm{T}}
$$

After unitization, we attain

$$
\left\{\begin{array}{l}
\eta_{1}=\left(-\frac{\xi_{2}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}}, \frac{\xi_{1}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}}\right)^{\mathrm{T}} \tag{33}\\
\eta_{2}=\left(\frac{\xi_{1}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}}, \frac{\xi_{2}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}}\right)^{\mathrm{T}}
\end{array}\right.
$$

Then from (33), we can obtain the orthogonal matrix

$$
Q=\left(\begin{array}{cc}
-\frac{\xi_{2}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}} & \frac{\xi_{1}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}} \\
\frac{\xi_{1}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}} & \frac{\xi_{2}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}}
\end{array}\right)
$$

Since Q satisfies $Q^{\mathrm{T}} Q=E$ and

$$
Q^{\mathrm{T}} A Q=\left(\begin{array}{cc}
\alpha|\xi|^{2} & 0 \\
0 & |\xi|^{2}\left(1+\Gamma|\xi|^{2}\right)
\end{array}\right)
$$

If we set

$$
Q^{\mathrm{T}}\binom{\hat{E}_{1}}{\hat{E}_{2}}=\binom{\hat{F}_{1}}{\hat{F}_{2}}
$$

then

$$
\mathrm{i}\binom{\hat{F}_{1}}{\hat{F}_{2}}_{t}-\left(\begin{array}{cc}
\alpha|\xi|^{2} & 0 \tag{34}\\
0 & |\xi|^{2}\left(1+\Gamma|\xi|^{2}\right)
\end{array}\right)\binom{\hat{F}_{1}}{\hat{F}_{2}}=0
$$

Now we take the inverse Fourier transform for (34) to derive an equivalent form of the linear part of (1)

$$
\left\{\begin{array}{l}
\mathrm{i} F_{1 t}+\alpha \Delta F_{1}=0 \tag{35}\\
\mathrm{i} F_{2 t}+\Delta F_{2}-\Gamma \Delta^{2} F_{2}=0
\end{array}\right.
$$

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Kambe, T., Haas, F. and Shukla, P.K. (2009) Quantum and Classical Dynamics of Langmuir Wave Packets. Physical Review E, 79, Article 066402.
https://doi.org/10.1103/physreve.79.066402
[2] Chen, T.-J., Fang, Y.-F. and Wang, K.-H. (2017) Low Regularity Global Well-Posedness for the Quantum Zakharov System in 1D. Taiwanese Journal of Mathematics, 21, 341-361. https://doi.org/10.11650/tjm/7806
[3] Guo, Y., Zhang, J. and Guo, B. (2013) Global Well-Posedness and the Classical Limit of the Solution for the Quantum Zakharov System. Zeitschrift für angewandte Mathematik und Physik, 64, 53-68. https://doi.org/10.1007/s00033-012-0215-y
[4] Fang, Y.-F. and Nakanishi, K. (2019) Global Well-Posedness and Scattering for the Quantum Zakharov System in L2. Proceedings of the American Mathematical Society Series B, 6, 21-32. https://doi.org/10.1090/bproc/42
[5] Huang, C., Guo, B. and Heng, Y. (2020) Scattering for 3D Quantum Zakharov System in L². Communications in Mathematical Sciences, 19, 383-404.
[6] Zakharov, V.E. (1972) Collapse of Langmuir Waves. Journal of Experimental and Theoretical Physics, 35, 908-914.
[7] Bourgain, J. and Colliander, J. (1996) On wellposedness of the Zakharov system. International Mathematics Research Notices, 11, 514-546. https://doi.org/10.1155/S1073792896000359
[8] Bejenaru, I., Herr, S., Holmer, J. and Tataru, D. (2009) On the 2D Zakharov System with L^{2} Schrödinger Data. Nonlinearity, 22, 1063-1089.
https://doi.org/10.1088/0951-7715/22/5/007
[9] Bejenaru, I. and Herr, S. (2011). Convolutions of Singular Measures and Applications to the Zakharov System. Journal of Functional Analysis, 261, 478-506. https://doi.org/10.1016/j.jfa.2011.03.015
[10] Colliander, J., Holmer, J. and Tzirakis, N. (2008) Low Regularity Global Well-Posedness for the Zakharov and Klein-Gordon-Schrödinger Systems. Transactions of the AMS, 360, 4619-4638.
https://www.ams.org/journals/tran/2008-360-09/S0002-9947-08-04295-5/S0002-994 7-08-04295-5.pdf
[11] Ginibre, J., Tsutsumi, Y. and Velo, G. (1997) On the Cauchy Problem for the Zakharov System. Journal of Functional Analysis, 151, 384-436.
https://doi.org/10.1006/jfan.1997.3148
[12] Kishimoto, N. (2013) Local Well-Posedness for the Zakharov System on the Multidimensional Torus. Communications on Pure and Applied Mathematics, 119, 213-253. https://doi.org/10.1007/s11854-013-0007-0
[13] Kenig, C. and Ponce, G. (1995) On the Zakharov and Zakharov-Schulman Systems. Journal of Functional Analysis, 127, 204-234. https://doi.org/10.1006/jfan.1995.1009
[14] Ozawa, T. and Tsutsumi, Y. (1992) Existence and Smoothing Effect of Solutions for the Zakharov Equations. Publications of the Research Institute, 28, 329-361. https://doi.org/10.2977/prims/1195168430
[15] Schochet, S.H. and Weinstein M.I. (1986) The Nonlinear Schrödinger Limit of the

Zakharov Equations Governing Langmuir Turbulence. Communications in Mathematical Physics, 106, 569-580. https://doi.org/10.1007/bf01463396
[16] Lawrence, E.C. (2002) Partial Differential Equations. The American Mathematical Society, 19, 622-625.
[17] Brezis, H and Gallouet, T. (1980) Nonlinear Schrödinger Evolution Equations. Nonlinear Analysis. Theory, Methods \& Applications, 4, 677-681. https://doi.org/10.1016/0362-546X(80)90068-1
[18] Brezis, H. and Wainger, S. (1980) A Note on Limiting Cases of Sobolev Embeddings and Convolution Inequalities. Communications in Partial Differential Equations, 5, 773-789. https://doi.org/10.1080/03605308008820154

