
Journal of Applied Mathematics and Physics, 2024, 12, 256-267 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2024.121020  Jna. 31, 2024 256 Journal of Applied Mathematics and Physics 
 

 
 
 

Modeling and Characterization of Fine 
Particulate Matter Dynamics in Bujumbura 
Using Low-Cost Sensors 

Egide Ndamuzi1,2, Rachel Akimana2, Paterne Gahungu3, Elie Bimenyimana4 

1Doctorate School of the University of Burundi, Bujumbura, Burundi 
2Department of Physics, University of Burundi, Bujumbura, Burundi 
3Department of Mathematics, Imperial College London, London, UK 
4Climate and Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus 

 
 
 

Abstract 
Air pollution is a result of multiple sources including both natural and anthro-
pogenic activities. The rapid urbanization of the cities such as Bujumbura, 
economic capital of Burundi, is one of these factors. The very first characte-
rization of the spatio-temporal variability of PM2.5 in Bujumbura and the 
forecasting of PM2.5 concentration have been conducted in this paper using 
data collected during a year, from August 2022 to August 2023, by low-cost 
sensors installed in Bujumbura city. For each commune, an hourly, daily 
and seasonal analysis was carried out and the results showed that the mass 
concentrations of PM2.5 in the three municipalities differ from one commune 
to another. The average hourly and annual PM2.5 concentrations exceed the 
World Health Organization standards. The range is between 28.3 and 35.0 
μg/m3. In order to make a prediction of PM2.5 concentration, an investigation 
of Recurrent Neural Networks with Long Short-Term Memory has been un-
dertaken. 
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1. Introduction 

Air pollution remains one of the high threats to global health and environment. 
Household combustion, motor vehicles, industrial facilities, waste burning and 
forest fires are common sources of air pollution. PM2.5 can enter the bloodstream, 
primarily resulting in cardiovascular and respiratory diseases [1]-[7]. According 
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to the WHO, there are 4.2 million premature deaths every year as a result of ex-
posure to ambient (outdoor) air pollution and 3.8 million for household (indoor) 
exposure, primarily related to smoke from cooking and heating. Approximately 
90% of these deaths are estimated to occur in low- and middle-income countries, 
particularly in Sub-Saharan Africa. The estimates from WHO show that 80% of 
people living in urban areas are exposed to air pollution, threatening lives, prod-
uctivity and economies. Efforts to reduce air pollution across the East African 
region have been undermined by the lack of air quality oversight in key areas. A 
few reference monitors are deployed in some parts of Sub-Saharan Africa. Air 
quality monitoring is currently guided by the use of low-cost sensors in many 
regions [3] [8]. Low-cost particulate matter sensors are becoming more widely 
available and are being increasingly deployed in ambient and indoor environments 
because of their low cost and ability to provide high spatial and temporal resolu-
tion PM information [9]. 

2. Materials and Methods 
2.1. Study Area 

This study was carried out in Bujumbura (3˚21'40.536''S, 29˚20'52.4976''E; 774 m 
asl), the largest and economic capital city of Burundi, located on the coast of 
Lake Tanganyika (Figure 1(a)). The city of Bujumbura is characterized by rather 
stable temperatures throughout the year ranging from 19˚C to 29˚C and about 
835mm of rainfall annually [10] [11]. An annual rainfall peak is found in the two 
months of April and May, where rainfall often reaches or exceeds 90 mm per 
month, and a minimum from June to August, where rainfall is rare and sporadic 
[11]. Four seasons characterize Bujumbura city: the long dry season (June-August), 
Short wet season (September-December), Short dry season (mid January-mid Feb-
ruary), and long wet season (February-May). Slight seasonal variations throughout 
the year characterize the average hourly wind speed in Bujumbura city: the win-
diest part of the year (April-October) and the calmest wind period of the year 
(October-April). As for wind direction, a predominant hourly average varies 
throughout the year in Bujumbura most often, on one hand from the south 
(January-February; June-September) and on the other hand most from the east 
(February-June; September-January) [12]. 

Bujumbura is one of the most densely populated cities in Burundi with 11,668 
inhabitants per km2. The city’s rapid urbanization has shifted disproportionately 
between the growth of population and urbanized area [13], which is associated 
with increase in air pollution levels due to anthropogenic activities. 

Three low-cost sensors have been installed in Bujumbura at different locations 
within the city. These three sites were selected to represent the main sources of 
air pollution in the city of Bujumbura, such as residential areas, industrial zones 
and business centres. The LCSs were installed in the urban commune of Mukaza 
(3˚19'12''S, 29˚22'19.2''E), in Ntahangwa (3˚20'57.768''S, 29˚21'0''E) and in Muha 
(3˚26'24''S, 29˚22'19.2''E) (Figure 1(b)). 
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Figure 1. The map of Burundi showing the location of the city of Bujumbura in Burundi (a) and PM measurement sites 
in Bujumbura (b). 
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2.2. Instrumentation 

Particulate matter measurements were conducted for a complete year (August 
2022 to August 2023) in order to capture seasonal variability of PM concentra-
tions in Bujumbura. PM concentrations were monitored by PurpleAir air quality 
sensors (PA-II-FLEX) [14]. Plantower PMS 5003 optical sensors and a Bosch 
BME280 sensor are used to estimate PM2.5 mass concentrations and tempera-
ture, relative humidity, and pressure respectively [2] [15]. The functionality of 
these devices allows transmission of data via wireless connectivity in real time 
and recorded to an on-board micro SD card. The devices measure sensor read-
ings in six size bins ranging from 300 nm to 10 μm at approximately a 60-s in-
terval. A proprietary algorithm, sometimes CF = ATM algorithm, converts raw 
sensor measurements to PM mass using assumptions about particle shape and 
density [2]. 

2.3. Data Correction 

Despite the availability of low-cost particle sensors, their limited accuracy means 
that the data can not be used reliably without correction. The common method 
used for data correction (calibration) is to co-locate the LCSs with reference mon-
itors [16]. Due to absence of reference instruments, we opted to use a transparent 
and reproducible alternative method ALT CF3 of calculating PM2.5 from the 
number of particles in three size categories. Note that this approach was applied 
successfully in a couple of studies [17] [18]. Basically, the PM concentrations data 
collected by PurpleAir low-cost sensors is corrected using the particle concen-
trations in three size bins as expressed in Equation (1): 

( )2.5PM 3 ,X Y Zα β γ= + +                    (1) 

where the number 3 is the Calibration Factor (CF) [17]. X, Y and Z are particle 
numbers per deciliter in three size categories, i.e. X = 0.3 μm - 0.5 μm, Y = 0.5 
μm - 1.0 μm and Z = 1.0 μm - 2.5 μm, given directly by the PurpleAir LCSs. The 
estimate mass concentration in each size category, ,α β  and γ  respectively is  

given as a product of water density (1 g/cm3), the particle volume ( 34
3

V r= π ) 

and the number of particle (N); 
2
dr =  with d the geometric mean of each size 

boundaries. It can also be approximated by the midpoint. Hence, 0.00030418α = , 
0.0018512β =  and 0.02069706γ = . 

2.4. Mathematical Modeling 

Linear models, sometimes are not sufficient to capture the real-world phenome-
na, thus nonlinear models are necessary [19]. The Artificial Neural Networks 
(ANNs) are among of nonlinear models used for nonlinear regression and clas-
sification tasks. Neural networks architectures have been widely used to perform 
forecasting tasks. In some cases, Neural Networks are viable competitors for 
various traditional time series models [3] [20] [21]. A recurrent neural network 
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is adapted to work for time series data or data that involves sequences. RNNs 
have the concept of memory that helps them store the states or information of 
previous inputs to generate the next output of the sequence, i.e. in RNN, the in-
formation cycles through the loop in the hidden layer such that the information 
derived from earlier inputs remains in the network [22]. The input layer at time 
step t, tx ∈  such that we can extend it to d-dimensional feature vector. Then, 

tx  processes the initial input and passes it to the middle layer th  which con-
sists of multiple hidden layers, each with its activation functions, weights, and 
biases. In simplest terms, Equations (2) and (3) define how an RNN evolves over 
time. The output y at time t is computed as: 

( ) ( ),t t y y t yy f h w f w h b= = ⋅ +                   (2) 

where ⋅  is the dot product, m
yw ∈  are weights associated with hidden to 

output units with m number of hidden layers, and yb ∈  is the bias associated 
with the feedforward layer. The RNN can remember its past by allowing past 
computations 1th −  to influence the present computations th . 

( ) ( )1 1, , , , ,t t t x h h x t h t hh g x h w w b g w x w h b− −= = + +            (3) 

where m
xw ∈  are weights associated with inputs in recurrent layer and 

m
hb ∈  is the bias associated with the recurrent layer. f and g are activation 

functions. In the recurrent neural network, any activation function we like in t 
time can be used. Long Short-Term Memory (LSTM) are a special kind of RNN, 
capable to overcome the vanishing/exploding gradient problem, so RNNs can 
safely be applied to extremely long sequences. The accuracy of the model is based 
on the metrics such as Root Mean Square Error (RMSE): 

( )2

1

1 ˆRMSE
n

i i
i

y y
n =

= −∑                     (4) 

and Absolute Mean Error (AME): 

1

1 ˆMAE
n

i i
i

y y
n =

= −∑                       (5) 

where n denotes the total number of observations, iy  denotes the observed val-
ues, and ˆiy  denotes the predicted values. 

In this work, we have used the “mean-squared-error” loss function in tensor-
flow, “Adam” optimizer and “sigmoid” activation function. We have split the data 
with 80% for training and 20% for validation. 

3. Results and Discussions 

The first-ever characterization of the spatio-temporal variability of PM2.5 in Bu-
jumbura using low-cost sensors between August 2022 to August 2023 revealed 
that PM2.5 mass concentrations in the municipalities of Bujumbura differ from 
one commune to another. A very high PM2.5 annually mean concentration was 
observed in Muha (35.0 μg/m3), and the lowest in Ntahangwa (28.3 μg/m3). For 
Mukaza, 32.8 μg/m3 PM2.5 annually mean concentration was observed. 
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3.1. Comparison between CF1 and ALT CF3 Algorithms 

Plantower algorithm (CF1) was compared with the ALT CF3 approach for the 
three sites (Ntahangwa, Muha and Mukaza) and the corresponding results are 
shown in Figure 2. Overall good agreement between the two algorithms was ob-
served in terms of temporal trends as demonstrated by strong correlations be-
tween the two methods. However, higher concentrations were observed for CF1 
compared to ALT CF3 (almost two times higher). This is in accordance with 
what is reported in previous studies where an overestimate of PM2.5 concentra-
tions of approximately 40% were found for the PurpleAir LCSs compared to the 
reference instruments [16] [17] [23]. In fact, estimates provided by Plantower 
[24], the manufacturer of the sensors used in PurpleAir monitors using the (CF1 
or CF-ATM) method was inferior in several respects [4] [9] (lower precision, high-
er detection limit, less improved size distribution), PM2.5 concentrations overes-
timation compared to this alternative. Hence, the precision of LCSs is still not 
comparable to reference-grade measurements [25]. 

3.2. Diurnal Variability of PM2.5 

Diurnal cycles of PM2.5 concentrations across the three sites are shown in Figure 
3 where the error bars represent the standard deviation. Mean hourly PM2.5 mass 
concentrations of 32.9 μg/m3, 24.2 μg/m3 and 31.4 μg/m3 have been observed in 
Mukaza, Ntahangwa and Muha respectively. 

As shown in Figure 3, two peaks of PM2.5 were observed at the three sites in 
the morning and evening. In general, the city of Bujumbura has traffic in the 
form of a transport network oriented towards the city center which is partic-
ularly noticeable during rush hours. For the Muha and Ntahangwa, a PM2.5 
morning peak can generally be due to the road traffic. The population of these 
two municipalities often goes at time to the city center, i.e. towards Mukaza, a 
center considered as of business, commerce and administration. For the Muka-
za, the PM2.5 morning peak can also be associated with the road traffic, i.e. the 
arrival of those who come from these two other municipalities. According to the  

 

 
Figure 2. ALT CF3 algorithm vs CF1 Plantower algorithm. 
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Figure 3. Hourly mean value of PM2.5 mass concentrations in Bujumbura. 

 
study carried out by JICA (Japanese International Cooperation Agency) [26], 
80% of vehicles leave the outskirts every morning heading towards the Bujum-
bura city center. 

After the morning peaks, the concentration of PM2.5 decreases. The other peak 
is observed towards the evening which can also be associated with traffic, the re-
turn of those who have been at work and domestic activities such as cooking. 
Weather conditions such as wind direction could also explain the observed PM2.5 
diurnal variation given that Bujumbura is a coastal city and is likely to be affected 
by sea breeze and land breeze phenomena. 

3.3. Seasonal Variability of PM2.5 

The seasonal variability of PM2.5 mass concentrations is shown in Figure 4. It is 
shown that the PM2.5 mass concentrations increased significantly during the dry 
season and decreased during the rainy season. Several factors may explain this 
phenomenon. During the dry season, there is an increase in re-suspended dust 
as a result of dry surface and higher wind speed, as well as other human activities 
such as bush fires that are likely to occur during dry period. The slight increase 
in PM2.5 mass concentrations observed around February-March is probably due 
to burning of agricultural residues since at that time people are preparing their 
fields for the main growing season. 

3.4. Daily Mean PM2.5 Concentrations 

As shown in Figure 5, the mean daily mass concentrations of PM2.5 indicate that 
WHO guidelines of 25 μg/m3 as a 24-hour mean was exceeded in all municipali-
ties of Bujumbura during the dry seasonal. Considering the PM2.5 annually mean 
mass concentrations, it is shown also that air PM pollution is higher in Muha  
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Figure 4. Seasonal variability of PM2.5 mass concentrations in Bujumbura. 

 

 
Figure 5. Daily variability of PM2.5 mass concentrations in Bujumbura. 

 
than in Mukaza and Ntahangwa municipalities. 

The higher PM2.5 concentrations in Muha compared to other municipalities 
can be explained by several factors. In Mukaza and part of Ntahangwa, there are 
public trash cans in some places for better waste management, which is not the 
case for Muha and that causes waste burning in this locality. Mukaza is largely 
commercial, part of Ntahangwa is industrial, while Muha is largely residential 
where wood or charcoal is largely fuel used for cooking. Furthermore, road dust 
re-suspension can be very important in Muha compared to the other sites given 
the lower quality of roads networks in this locality. In addition, the Muha com-
mune is bordered with the crop fields of non-urban communes such as Kanyo-
sha and Kabezi, which contributes to air pollution with field waste fires. The 
time series of the three sites were also compared between them using Pearson 
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correlation as shown in Figure 6. Overall, weak to moderate correlation was ob-
served suggesting that those sites are affected by different sources. Mukaza was 
the least correlated with other sites indicating different more localized emission 
sources in that municipality. 

3.5. Forecasting PM2.5 Concentrations Using Long Short-Term 
Memory Model 

Forecasting air pollution in Bujumbura with Long Short-Term Memory Model 
has been carried out and results are given in Figure 7. PM2.5 hourly mean con-
centrations are used to train the model. Model evaluation is given at each site by 
root mean square error and absolute mean error. The RMSE is in range of 8.2 
μg/m3 to 12.8 μg/m3 and the MAE is in range of 5.3 μg/m3 to 6.8 μg/m3. This 
shows that the recurrent neural network method is a potential forecasting model 
in Bujumbura for PM2.5 time series data. A good correlation is obtained with r2, 
in the range of 0.7 to 0.8. 

4. Conclusion 

The very first characterization of spatio-temporal variability of PM2.5 in Bujum-
bura has been explored. Hourly, daily and seasonal analysis was carried out on 
the three communes of Bujumbura. The analysis has shown that the PM2.5 con-
centration is location-dependent in the study area and time of the day. The study 
has given qualitative indications about potential main sources in Bujumbura such 
as the transport and cooking activities. The use of electric vehicles and clean 
cooking energy could reduce significantly the levels of pollution in Bujumbura. An 
investigation of Recurrent Neural Networks—Long Short-Term Memory has 
given good performance as a potential forecasting model in Bujumbura. Future  

 

 
Figure 6. Correlation of PM2.5 mass concentrations in Bujumbura municipalities. 
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Figure 7. Bujumbura PM2.5 forecasting. (a) Mukaza PM2.5 forecasting; (b) Muha PM2.5 forecasting; (c) Ntahangwa PM2.5 fore-
casting. 
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work will explore the impact of air pollution exposure on health in Bujumbura. 
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