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Abstract  
It is known that Fourier’s heat equation, which is parabolic, implies an infi-
nite velocity propagation, or, in other words, that the mechanism of heat 
conduction is established instantaneously under all conditions. This is unac-
ceptable on physical grounds in spite of the fact that Fourier’s law agrees well 
with experiment. However, discrepancies are likely to occur when extremely 
short distances or extremely short time intervals are considered, as they must 
in some modern problems of aero-thermodynamics. Cattaneo and indepen-
dently Vernotte proved that such process can be described by Heaviside’s tele-
graph equation. This paper shows that this fact can be derived using calculus of 
variations, by application of the Euler-Lagrange equation. So, we proved that 
the equation of heat conduction with finite velocity propagation of the thermal 
disturbance can be obtained as a solution to one variational problem. 
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1. Introduction 

Partial differential equations play an important role in various branches of mathe-
matics, and mathematical physics as well as in a large number of engineering ap-
plications. Differential equations describe various physical phenomena whose so-
lutions are often quite complex and difficult to apply in practice. Practical prob-
lems, which are mostly obtained experimentally or by measurement at an indus-
trial plant, require the simplest possible solutions that satisfy the set conditions. 

Heat conduction in solid environments (solid materials) is widely used in vari-
ous branches of process engineering and thermotechnics. The equations that de-
scribe heat conduction are partial differential equations. The Fourier’s heat equa-
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tion, proposed by Joseph Fourier in 1822 for the purpose of modeling how heat 
diffuses through a given region, describes well the phenomenon of heat conduc-
tion in solids for most practical problems [1] [2] [3] [4] [5]. 

It predicts an infinite rate of expansion of the thermal disturbance, which is 
physically unacceptable and contradicts the existing recent theories that treat the 
phenomenon of heat transfer [6]-[11]. Very fast material heating processes, e.g. 
during the absorption of energy coming from ultra-short laser pulses, cannot be 
satisfactorily explained by the Fourier’s heat equation [12] [13]. The proposed 
theory includes a time delay (relaxation time) and introduces the temperature 
gradient rate as an additional term in the classical heat conduction equation. 

Cattaneo [14] [15] and independently Vernotte [16] proved that such process 
can be described by Heaviside’s telegraph equation. This equation comes from 
Oliver Heaviside who, in 1876, developed the transmission line model, which 
demonstrates that the electromagnetic waves can be reflected on the wire, and 
that wave patterns can form along the line. Based on these assumptions, ther-
mal disturbance in a solid medium behaves like a wave (the so-called “second 
sound”). 

In this paper, it has been shown that this fact can be derived using calculus of 
variations, by application of the Euler-Lagrange equation. So, we proved that the 
equation of heat conduction with finite velocity propagation of the thermal dis-
turbance can be obtained as a solution to one variational problem. 

Further, the characteristic equation of the telegraph equation will be derived. 
In general, information about the speed of physical quantities ( ),T x τ , which is 
the subject of the telegraphic equation, extends along the characteristics, i.e. 
along characteristic lines. Will be shown that the rate of disturbance can be de-
termined using the expression v C A=  ( 0A ≠ , ,A C -same sign) where A and 
C are coefficients in the telegraph equation: 

2 2

2 22 .T T TA B C
xττ

∂ ∂ ∂
+ =

∂∂ ∂
 

The paper describes an expression for the approximate solution of the tele-
graph equation using calculus of variations. It shows that in limit, when the re-
laxation time is obtained, an approximate solution of the classical (Fourier) equa-
tion of heat conduction is obtained. 

2. Mathematical Formulation 
2.1. The Telegraph Equation 

Let’s consider the partial differential equation: 

 ( )
2 2

2 22 , , .T T TA B C A B C R
xττ

∂ ∂ ∂
+ = ∈

∂∂ ∂
 (1) 

If in the set of real numbers: 
1) 0AC∆ = > , we say that Equation (1) is of hyperbolic type; 
2) 0AC∆ = = , we say that Equation (1) is of parabolic type; 
3) 0AC∆ = < , we say that Equation (1) is of elliptic type. 
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Mathematical expression AC∆ =  can vary from point to point in a given area 
and therefore the type of Equation (1) can vary. The telegraph Equation (1) is of 
hyperbolic type, which means that in the given area it is 0AC∆ = > . 

Dividing Equation (1) by 2B, 0B ≠  Equation (1) is equivalent to the equa-
tion: 

2 2

2 2 .
2 2
A T T C T
B B xττ
∂ ∂ ∂

+ =
∂∂ ∂

                     (2) 

The differential Equation (1), i.e. (2) can be obtained as the Euler-Lagrange 
equation from the Lagrangrian: 

 
2 2

2, , , , e .
2 2

A BT T A T C TL x T
x B B x

τ

ς
τ τ

 ∂ ∂ ∂ ∂     = −      ∂ ∂ ∂ ∂       
 (3) 

Euler-Lagrange equation for a function of two variables ( ),T x τ  is given by 
the expression [17]: 

 0.
x

L L L
T x T Tττ

   ∂ ∂ ∂ ∂ ∂
− − =   ∂ ∂ ∂ ∂ ∂   

 (4) 

From Equation (3), we get: 

2 20, e , e .
2 2

A B A B

x

L L C T L A T
T T B x T B

τ τ

τ τ
∂ ∂ ∂ ∂ ∂

= = − ⋅ ⋅ = ⋅ ⋅
∂ ∂ ∂ ∂ ∂

 

By changing the value , ,
x

L L L
T T Tτ

∂ ∂ ∂
∂ ∂ ∂

 into Equation (4) and after simple cal-

culations, we come to the equation: 
2 2

2 2 0,
2 2
A T T C T
B B xττ
∂ ∂ ∂

− − + =
∂∂ ∂  

whence follows: 
2 2

2 22 ,T T TA B C
xττ

∂ ∂ ∂
+ =

∂∂ ∂
 

which had to be proved. 
Same vice-versa—Equation (1), i.e. (2) represents the variational task of find-

ing the stationary value of the integral: 

 
0 0

d d ,
L

F L x
τ

τ= ∫ ∫  (5) 

where L is the Lagrangian given at (3). 

Determining the Characteristics of the Telegraph Equation 
Equation (1) can be written in the form: 

2 2

2 2 2 .T T TC A B
x ττ

∂ ∂ ∂
− =

∂∂ ∂
                     (6) 

The characteristic equations will be determined if the equations of total dif-
ferentials for partial derivatives are added to equation xT  and Tτ  like: 
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 ( )d d d ,x xx xT T x T τ τ= +  (7) 

 ( )d d d .xT T x Tτ τ ττ τ= +  (8) 

In matrix form, the system of Equations (6)-(8) can be written as: 

 ( )
( )

0 2
d d 0 d .
0 d d d

xx

x x

C A T BT
x T T

x T T

τ

τ

ττ τ

τ
τ

 −   
    ⋅ =    

          

 (9) 

Equation (9) has infinitely many solutions or no solution if the determinant of 
the system is equal to zero. From this condition, the characteristics of Equation 
(6) are provided in the form: 

 ( )d , 0, ,
d

x C A A C
Aτ

= ± ≠  of the same sign. (10) 

Integrating the last equation, the characteristics of equations are: 

 1,Cx c
A

τ− ⋅ =  (11) 

 2 .Cx c
A

τ+ ⋅ =  (12) 

The characteristics of Equation (6) are two systems of parallel directions 

1x C A cτ− ⋅ =  and 2x C A cτ+ ⋅ =  where 1c  and 2c  are arbitrary con-
stants. Through every point of the plane xOτ  passes one characteristic from 
the mentioned system. Therefore, the general integral of the partial Equation (1) 
is: 

 ( ) ( ) ( ), ,T x f x C A g x C Aτ τ τ= − ⋅ + + ⋅  (13) 

where are they f and g are arbitrary functions. 
The physical meaning of the telegraph Equation (1) is that the size ( ),T x τ  

extends (transports) along the characteristic curve. Velocity of disturbance (trans-
port) of magnitude ( ),T x τ  is given by expression (10), i.e.: 

( )d , 0, , same symbol
d

x Cv A A C
Aτ

= = ≠ − . 

2.2. Telegraph Equation and Heat Equation 

For 0A =  because of 0∆ = , the telegraph Equation (1) becomes a parabolic 
equation in the considered area: 

 
2

2 .
2

T C T
B xτ

∂ ∂
=

∂ ∂
 (14) 

Equation (14) is equivalent to the classic one-dimensional heat equation: 

 
2

2 ,T Ta
xτ

∂ ∂
=

∂ ∂
 (15) 

where 2a C B=  is thermal diffusivity of solid material. 
According to (10), the rate of thermal disturbance in a solid material is infi-
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nitely high v = ∞ , which is physically inadmissible and this result is in accor-
dance with data from the literature [6]-[11]. The characteristics’ equations of 
Equation (15) based on (10) are d 0τ =  that is .c constτ = =  Equation (14) or 
Equation (15) has a system of parallel lines as a feature in the plane xOτ . It can 
be demonstrated that Equation (15) does not have an exact Lagrange function 
and cannot be formulated as a variational problem. By shift *2A B τ=  and 

2C B a=  in Equation (2), Equation (2) becomes: 

 
2 2

2 2 ,T T Ta
x

τ
ττ

∗ ∂ ∂ ∂
+ =
∂∂ ∂

 (16) 

where *τ  is relaxation time and ( )pa cλ ρ= ⋅  thermal (heat) diffusivity of solid 
material, , , pcλ ρ  heat conduction coefficient, density and specific heat capacity 
of solid material. The relaxation time is the time required to establish the sta-
tionary temperature state of the volume element of the solid material due to the 
effect of the temperature gradient. 

Equation (16) represents the generalized heat conduction equation. In Refer-
ence [14], the generalized heat conduction equation was derived for the first 
time. It is a hyperbolic partial differential equation that can be derived as shown 
by the application of the calculus of variations and predicts the wave nature of 
heat conduction with a finite rate of thermal disturbance *v a τ= . When 

* 0τ → , Equation (16) turns into the classic heat conduction equation (Equation 
(15)). The physical difference between Equation (15) and Equation (16) is that 
the rate of thermal disturbance according to Equation (15) is infinitely large, 
while the rate of thermal disturbance according to Equation (16) is finite. 

2.2.1. Determining the Exact Solution of the Telegraph Equation 
In References [18] [19], there are certain analytical methods for solving hyper-
bolic partial differential equations, and solving hyperbolic equations dates back 
to B.Rimann. In recent times, in engineering practice, the Laplace transform is 
used more and more when solving partial differential equations. Difficulties can 
arise when determining the inverse Laplace transform, so more and more au-
thors [20] [21] use approximate numerical methods for determining the inverse 
Laplace transform. In this paper, the Fourier method of separation of variables 
will be used to solve the considered partial differential equation. 

Now, let’s solve the differential Equation (1), i.e. the equation: 

 
2 2

*
2 2 ,T T Ta

x
τ

ττ
∂ ∂ ∂

+ =
∂∂ ∂

 (17) 

where *2A B τ=  and 2C B a= . The solution will be sought for the case when 
the initial condition has the form: 

 ( ) ( ) ( ) ( ),0 , ,0 0, 0 , 0,T x f x x L x T x x Lτ τ= = ⋅ − = ≤ ≤ >  (18) 

and the boundary condition reads: 

 ( ) ( )0, , 0.T T Lτ τ= =  (19) 

We will look for a non-trivial solution to problems (17)-(19) in the form: 
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 ( ) ( ) ( ), 0, 0 , 0.T x X x Y x Lτ τ τ= ⋅ ≠ ≤ ≤ >  (20) 

Equation (17) becomes: 

( ) ( ) ( ) ( ) ( ) ( )* ,X x Y X x Y aX x Yτ τ τ τ′′ ′ ′′⋅ + ⋅ =  
i.e.: 

 ( )
( )

( )
( )

( )
( )

* 1 , ,
X x Y Y

K K const
X x a Y a Y

τ ττ
τ τ

′′ ′′ ′
= ⋅ + ⋅ = − =  (21) 

in which the variables x and τ  are separated. Equation (21) now breaks down 
into a system of equations: 

 ( ) ( ) 0,X x K X x′′ + ⋅ =  (22) 

 * *

1 0.K aY Y Y
τ τ

⋅′′ ′+ ⋅ + ⋅ =  (23) 

Boundary condition (19) reduces to: 

 ( ) ( )0 0, 0.X X L= =  (24) 

The solution of Equation (22) has the form: 

 ( ) ( ) ( )1 2cos sin .X x C K x C K x= ⋅ + ⋅  (25) 

It follows from the boundary conditions (24): 

 ( ) ( )
2 2

1 2 20, sin 0, , 1, 2, .n
nC C K L K n

L
= =

π
= ⋅ =   (26) 

Now, the solution of Equation (22) based on (26) can be written in the form: 

 ( ) ( )2 sin , 1, 2, .n
nX x C x n
L

 = ⋅ = 


π


  (27) 

The solution of Equation (23) has the form: 

 ( ) 1, 2,e e ,n nr r
n n nY A Bτ ττ ⋅ ⋅= ⋅ + ⋅  (28) 

where: 

 
* *

1, 2,* *

1 1 4 1 1 4
, ,

2 2
n n

n n

K a K a
r r

τ τ
τ τ

− + − − − −
= =  (29) 

and the relaxation time belongs to the interval ( ]* 1 40, nK aτ ∈ . 
From (27) and (28), a particular solution is reached: 

 ( ) ( ) ( ) ( )1, 2,
2, sin e e ,n nr r

n n n n n
nT x X x Y C x A B
L

τ ττ τ ⋅ ⋅ = ⋅ = ⋅ ⋅ ⋅ + ⋅ 
 

π  (30) 

so the initial conditions entail 1,

2,

n
n n

n

r
B A

r
= − ⋅ . 

Now, the particular solution is: 

 ( ) ( )1, 2,
2, 1,e e ,n nr r

n n n nY C r rτ ττ ⋅ ⋅= ⋅ ⋅ − ⋅  (31) 

where it is ( )
2,

, 1, 2,n
n

n

A
C n

r
= =  . 
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Now, based on (20) functions: 

 ( ) ( ) ( ) ( )1, 2,
2, 1,, e e sin .n nr r

n n n n n n
nT x X x Y D r r x
L

τ ττ τ ⋅ ⋅  = ⋅ = ⋅ ⋅ − ⋅
π

⋅ ⋅  
 

 (32) 

It satisfies Equation (17) and conditions (18) and (19) and based on the prin-
ciple of linear superposition and functions, ( ),T x τ  defined by: 

 ( ) ( )1, 2,
2, 1,

1
, e e sin .n nr r

n n n
n

nT x D r r x
L

τ ττ
∞

⋅ ⋅

=

 = ⋅ ⋅ − ⋅ ⋅ ⋅ 
 

π∑  (33) 

It represents the solution to problems (17)-(19). 
A constant nD  is determined from the conditions ( ) ( ),0T x f x= , i.e.: 

 ( ) ( ) ( )2, 1,
1

,0 sin .n n n
n

nT x D r r x f x
L

∞

=

 = ⋅ − ⋅ ⋅ = 


π


∑  (34) 

If it is stated that: 

 ( )2, 1, ,n n n nD r r E⋅ − =  (35) 

then it is: 

 
( ) ( )

( )
( )

0 0
2

3 3

2 2sin d sin d

8 , 1,2,
2 1

L L

n
n nE f x x x x L x x x

L L L L

L n
n

   = ⋅ ⋅ = ⋅ − ⋅  
π π


   

= =
π−

∫ ∫



 (36) 

so the solution to the considered problem is (17)-(19): 

 ( ) ( )1, 2,
2, 1,

1 2, 1,

, e e sin ,n nr rn
n n

n n n

E nT x r r x
r r L

τ ττ
∞

⋅ ⋅

=

 = ⋅ ⋅ − ⋅ ⋅ ⋅
π

 −  
∑  (37) 

and based on (36), the solution to problems (17)-(19) is given by: 

 ( )
( ) ( )

( )1,2 1 2,2 12
2,2 1 1,2 1

3 3
1 2,2 1 1,2 1

e e 2 18, sin .
2 1

n nr r
n n

n n n

r r nLT x x
Ln r r

τ τ

τ
− −⋅ ⋅∞

− −

= − −

⋅ − ⋅ − 
= ⋅ ⋅

π

π


− ⋅ −  
∑  (38) 

2.2.2. Determining the Approximate Solution of the Telegraph Equation 
Now, let’s find an approximate solution to the equation: 

 
2 2

*
2 2 .T T Ta

x
τ

ττ
∂ ∂ ∂

+ =
∂∂ ∂

 (39) 

An approximate solution to the problem will be assumed in the form: 

 ( ) ( ) ( ), ,T x x L x fτ τ= − ⋅  (40) 

where ( )f τ  is an unknown function that satisfies the initial condition: 

 ( )0 1.f =  (41) 

If we start from the functional: 

 

( )( ) ( )( )

*
2 2*

0 0

, , , , , , d d

e d d ,
2 2

x
D

L

T x F x T x T T x

T a T x
x

τ

ττ
τ

τ τ τ τ

τ τ
τ

′ ′=

 ∂ ∂   = − ⋅    ∂ ∂     

∫∫

∫ ∫

F

 (42) 
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and by inserting the trial solution (40) into Equation (42), we get: 

 ( ) ( ) *
* 5 3

2 2

0

e d .
60 6
L aLf f

τ
τ ττ τ τ τ

 
′= ⋅ − ⋅ ⋅ 

 
∫F  (43) 

If we now introduce the Lagrangian function: 

 ( ) ( ) ( ) *
* 5 3

2 2, e ,
60 6
L aLL f f f f τ ττ τ τ

 
′ ′= ⋅ − ⋅ ⋅ 

 
 (44) 

and using the Euler-Lagrange equation: 

 0,L L
f fττ

 ∂ ∂ ∂
− = ∂ ∂ ∂ 

 (45) 

and dividing with ( )*exp τ τ  the following differential equation is obtained: 

 ( ) ( ) ( )
* 5 5 3

0.
30 30 3
L L aLf f fτ τ τ τ′′ ′⋅ + ⋅ + ⋅ =  (46) 

After a short calculation, the solution to Equation (46) is arrived: 

 

( )
( )

( )

2 4 * 2

1 * 2

2 4 * 2

2 * 2

40
exp

2

40
exp

2

L L a L
f C

L

L L a L
C

L

τ τ
τ

τ

τ τ

τ

 − + − ⋅ = ⋅  
 
 
 − − − ⋅ + ⋅  
 
 

 (47) 

at which they are 1C  and 2C  constants that are determined from condition (41) 
and from the condition that ( ),0 0T xτ = . 

The first condition gives: 

 1 2 1,C C+ =  (48) 

and the second condition gives: 

 

2 4 * 2

* 2

2 4 * 2

* 2

40
2 4 * 2

2
1 * 2

40
2 4 * 2

2
2 * 2

40e
2

40e 0.
2

L L a L

L

L L a L

L

L L a LC
L

L L a LC
L

τ τ

τ

τ τ

τ

τ
τ

τ
τ

 − + − ⋅ 
 

 − − − ⋅ 
 

− + −
⋅ ⋅

− − −
+ ⋅ ⋅ =

 (49) 

The constants are determined from the system of Equations (48) and (49). 1C  
and 2C : 

 
2

1 4 * 2

1 1 ,
2 40

LC
L a Lτ

 
= ⋅ +  − 

 (50) 

 
2

2 4 * 2

1 1 .
2 40

LC
L a Lτ

 
= ⋅ −  − 

 (51) 

Now, the final solution of Equation (47) is: 
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( )

2 4 * 2

* 2

2 4 * 2

* 2

40
2

2
4 * 2

40
2

2
4 * 2

1 1 e
2 40

1 1 e ,
2 40

L L a L

L

L L a L

L

Lf
L a L

L

L a L

τ τ

τ

τ τ

τ

τ
τ

τ

 − + − ⋅ 
 

 − − − ⋅ 
 

 
= ⋅ + ⋅  − 

 
+ ⋅ − ⋅  − 

 (52) 

so the approximate solution of Equation (39) based on (40) is given by: 

 

( ) ( )

2 *

*

2 *

*

40

2
2 *

40

2
2 *

, 1 e
2 40

1 e ,
40

L L a

L

L L a

L

x LT x L x
L a

L

L a

τ τ

τ

τ τ

τ

τ
τ

τ

 − + − ⋅ 
 

 − − − ⋅ 
 


 

= ⋅ − ⋅ + ⋅  − 



  

+ − ⋅   −  


 (53) 

where the relaxation time belongs to the interval ( )* 20, 40L aτ ∈ . 
By shift * 2A Bτ =  and 2 , 0a C B B= ≠  the solution (53) is also the solu-

tion of the telegraph Equation (1). If the boundary condition * 0τ →  is applied 
to Equations (38) and (53), the exact and approximate solution of the classic heat 
conduction equation (Equation (15)) is obtained, which is given:  

 ( )
( )

( ) ( )2 2
2

2 2 1

3 3
1

2 18 1, e sin ,
2 1

a n
L

n

nLT x x
Ln

τ

τ
π∞ − ⋅ − ⋅

=

−
=
π

⋅ ⋅
π

⋅
−

∑  (54) 

 ( ) ( ) 2
10

, e .
a

LT x x L x
τ

τ
−

= ⋅ − ⋅  (55) 

3. Numerical Example 

In the previous section, the analytical and approximate solution of the telegraph 
equation was presented. When relaxation time tends to zero, an approximate 
solution of the classical (Fourier) heat conduction equation is obtained. In order 
to show the relevant physical effects of the obtained results, numerical results 
will be presented. 

As an example, let us consider heat propagation through an aluminum rod of 
limited length 0 10 cmx≤ ≤ . In order for the temperature at all points of the 
cross-section of the rod to be the same, it will be assumed that the rod is suffi-
ciently narrow and adiabatically insulated so that heat spreads only along x axis. 
The temperature field is then described by the telegraph Equation (17). The 
thermal diffusivity of aluminum is 2 10.8418 cm sa −= ⋅  [22] and relaxation time 

* 910 sτ −=  [23] [24]. Table 1 shows the comparative results of non-stationary 
heat conduction calculations using Equation (38) and Equation (53) with the same 
initial and boundary conditions. Obviously, these two solutions agree well. Tak-
ing more terms in Equation (38) would give better results. 

The behavior of the temperature field in the considered aluminum rod is 
shown in Figure 1 and Figure 2. It can be observed that the temperature field 
gradually decreases as the heat in the rod decreases over time. During engineering  
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Table 1. Comparison of the calculation results of the determination of the temperature field ( ),T x τ  using the exact solution 

(Equation (38)) and the approximate solution of heat conduction obtained by variational calculus (Equation (53)) ( 10 cmL = , 
2 10.8418 cm sa −= ⋅ , * 910 sτ −= ). 

( )sτ
 

( )cmx
 

1 10 20 50 

( ),T x τ
 

(˚C) 
Correct 
solution 
Equation 

(38) 

( ),T x τ
 

(˚C) 
Approximate 

solution 
Equation 

(53) 

( ),T x τ
 

(˚C) 
Correct 
solution 
Equation 

(38) 

( ),T x τ
 

(˚C) 
Approximate 

solution 
Equation 

(53) 

( ),T x τ
 

(˚C) 
Correct 
solution 
Equation 

(38) 

( ),T x τ
 

(˚C) 
Approximate 

solution 
Equation 

(53) 

( ),T x τ
 

(˚C) 
Correct 
solution 
Equation 

(38) 

( ),T x τ
 

(˚C) 
Approximate 

solution 
Equation 

(53) 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.0 13.97 14.71 6.62 6.89 2.89 2.97 0.24 0.24 

4.0 22.61 22.06 10.71 10.34 4.67 4.46 0.34 0.36 

6.0 22.62 22.06 10.72 10.34 4.67 4.46 0.39 0.36 

8.0 14.00 14.71 6.63 6.89 2.89 2.97 0.24 0.24 

10.0 0.04 0.00 0.02 0.00 0.01 0.00 0.00 0.00 

 

 
Figure 1. Temperature field of heat conduction in an aluminum rod depending on the 
depth of the rod x at a fixed time τ . 

 
calculations of heat conduction through solid materials (aluminum rod), the prac-
tical question of determining time τ  arises, whereas the entire rod will cool down 
to a certain temperature *τ . The hottest spot is obviously on the spot L/2, so 
time τ  is determined based on the equation ( ) *2,T L Tτ = . 

For the considered example, the time required for the aluminium rod to cool, 
for example, to 1˚C, requires solving the equation ( )5, 1T τ =  and based on Equa-
tion (38) or Equation (53) 38.23 sτ ≈  is obtained. 

Figure 3 shows the temporal behavior of the temperature field depending on 
the fixed relaxation time τ ∗ . It is observed that the temperature field decreases 
slightly as the relaxation time τ ∗  decreases. 
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Figure 2. Temperature field of heat conduction in an aluminum rod depending on the 
weather τ  at fixed depths x. 

 

 
Figure 3. Distribution of the temperature field of heat conduction in an aluminum rod 
depending on the weather τ  and fixed relaxation time τ ∗  at depth 5 cmx = . 

 
Figure 4 shows the two-dimensional temperature field in the aluminum rod. 

It can be seen that the diagrams shown in Figure 1 and Figure 2 are obtained by 
sections of the surface ( ),T x τ  with planes const.x =  and const.τ =  

4. Conclusions 
The telegraph equation was considered in the paper  

( )
2 2

2 22 , ,T T TA B C A B C R
xττ

∂ ∂ ∂
+ = ∈

∂∂ ∂
 and it was equivalent to the heat conduc-

tion equation. The conditions for switching to the classic heat conduction equa-

tion (parabolic equation) 
2

2

T Ta
xτ

∂ ∂
=

∂ ∂
 are shown and the generalized heat 

conduction equation (hyperbolic equation) 
2 2

*
2 2

T T Ta
x

τ
ττ

∂ ∂ ∂
+ =
∂∂ ∂

. 
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Figure 4. Two-dimensional temperature field of an aluminum rod. 

 
It is demonstrated that the considered telegraph equation can be obtained by 

applying the Euler-Lagrange equation from the given Lagrangian (Equation (3)). 
In the paper, the propagation speed of disturbances (thermal disturbance 

( ),T x τ ) d
d

x Cv
Aτ

= = , ( 0A ≠ , ,A C -same symbol) using the characteristic 

equations of the telegraph equation is determined. 
An exact solution of the telegraph equation was found using the Fourier method 

of separation of variables (Equation (38)) and an approximate solution using cal-
culus of variations (Equation (53)). A numerical example showed the effective-
ness of the proposed method (exact and approximate solution). It can be seen 
that the exact solution of the telegraph equation agrees well with the approximate 
solution involving the same initial and boundary conditions. 

The diagrams in Figure 1 and Figure 2 show that the temperature field in the 
aluminum rod gradually decreases as the heat in the rod decreases over time, so 
the speed of heat propagation is higher for a smaller τ. Finally, the effect of the 
relaxation time *τ  at a fixed length of aluminum rod of 10 cm is shown in Fig-
ure 3. It is observed that the temperature field changes very little as the relaxa-
tion time *τ  becomes smaller. 

In addition, it should be noted that the proposed approximate solution (Equa-
tion (53) and (55)) of heat conduction, which is used very easily and flexibly, is 
much simpler than the solutions offered in the cited literature. 

The results obtained in this work also provide a theoretical basis for further 
analysis of heat conduction, especially for the further study of laser heating, and 
are comparable to the results in the cited literature. For engineering practice, the 
approximate solutions of the hyperbolic equation (Equation (53)) and parabolic 
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equation (Equation (55)) are of special interest due to their simplicity, in contrast 
to the exact solutions and some approximate solutions that are not simple and 
describe heat transport. 

Finally, the main results presented in this paper can be summarized as: 
• It has been proven that the heat conduction equation (telegraph Equation (1)) 

can be obtained as a solution to a variational problem; 
• It has been proven that the speed of propagation of thermal disturbances 

*v C A a τ= = , ( 0A ≠ , ,A C -same sign) is final and that it is in agree-
ment with the data in the cited literature; 

• An approximate solution to the telegraph equation (Equation (53)) was deter-
mined using calculus of variations; 

• An approximate solution of the classical parabolic equation (Equation (55)) 
was determined as the limiting case of Equation (53) when the relaxation time 

* 0τ → ; 
• The performed numerical example of heat conduction through a 10 cm alu-

minum rod shows a good agreement between the results using the exact solu-
tion (Equation (38)) and the approximate solution (Equation (53)) using the 
calculus of variations. It should be emphasized that by taking more terms in 
Equation (38), better results would be obtained. 

Therefore, this research provides some new possibilities for applying the cal-
culus of variations to the equation of heat conduction and applying it in practice. 
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Nomenclatures 

A: coefficient in the telegraph equation 
a: thermal diffusivity of the material (cm2/s) 
B: coefficient in the telegraph equation 
C: coefficient in the telegraphic equation 
cp: specific heat capacity of the material (kJ/kg∙K) 
F: functional 
L: length (cm) 
L: Lagrangian 
T: temperature (˚C) 
v: velocity (m/s) 
x: length (cm) 
τ: time (s) 
τ*: relaxation time (s) 
ρ: material density (kg/m3) 
λ: coefficient of thermal conductivity of the material (W/m∙K) 
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