
Journal of Applied Mathematics and Physics, 2024, 12, 147-167 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2024.121012  Jan. 26, 2024 147 Journal of Applied Mathematics and Physics 
 

 
 
 

Modelling Foot and Mouth Disease in the 
Context of Active Immigrants 

Issa Shabani Mfinanga1,2*, Nyimvua Shaban1, Theresia Marijani1 

1Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania 
2Department of Mathematics and Statistics, Sokoine University of Agriculture, Morogoro, Tanzania 

 
 
 

Abstract 
This study employs mathematical modeling to analyze the impact of active 
immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We 
calculate the reproduction number ( 0 ) using the next-generation matrix 
approach. Applying the Routh-Hurwitz Criterion, we establish that the Dis-
ease-Free Equilibrium (DFE) point achieves local asymptotic stability when 

0 1<  and instability otherwise. Employing the quadratic Lyapunov function, 
we confirm the global asymptotic stability of the DFE. Numerical simulations 
were conducted using MATLAB software. The results indicate that infectious 
immigrants ( 1α  and 2α ) are closely associated with reduced susceptibility 
in animal populations, underscoring the link between immigrants and sus-
ceptibility. Furthermore, our findings emphasize the interplay of disease in-
troduction with population response and adaptation, particularly involving 
incoming infectious immigrants. Swift interventions are vital due to the 
limited potential for disease establishment and rapid susceptibility decline. 
This study offers crucial insights into the complexities of FMD transmis-
sion with active immigrants, informing effective disease management strate-
gies. 
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1. Introduction 

In our interconnected world, the intersection of global health concerns and hu-
man mobility has captured the attention of researchers, policymakers, and pub-
lic health experts [1]. The complex patterns of infectious disease transmission, 
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particularly in the context of active immigrants, present intricate challenges de-
manding deep comprehension and innovative solutions [2]. Foot and Mouth Dis-
ease (FMD) serves as a prime example, a highly contagious viral infection bear-
ing substantial economic consequences for livestock industries [3] [4]. Simulta-
neously, the mobility of active immigrants seeking improved lives abroad further 
complicates disease spread [5]. This introduction explores the interplay of FMD, 
active immigrants, and the potent role of mathematical modeling in bridging gaps 
and shaping effective disease management strategies. 

Foot and Mouth Disease (FMD) serves as a vivid illustration of the intricate 
links between animal well-being, economic strength, and global disease propaga-
tion [6] [7]. Affecting cloven-hoofed animals like cattle, pigs, sheep, and goats, 
FMD causes mouth and hoof blisters, inflicting both substantial suffering and 
economic setbacks [8] [9]. Rapid action is essential due to its rapid transmission, 
often involving large-scale culling to contain the outbreak [10] [11]. Notably, the 
impact of animal mobility, especially among active immigrants, in amplifying dis-
ease transmission has gained significant research attention. 

Immigrants seeking improved lives and economic prospects can uninten-
tionally facilitate the spread of diseases due to their close community ties and 
cross-border mobility [12] [13]. Recognizing their role is crucial for developing 
effective strategies to prevent and control diseases like FMD. 

Mathematical modeling provides an advanced method to understand how 
diseases spread with active immigrants [14]. These models quantify interactions 
between populations, movement, and disease, revealing outbreak possibilities, 
high-risk areas, and intervention effects [15] [16]. They also fill research gaps 
by evaluating strategies like vaccination, culling, quarantine, treatment, surveil-
lance, and border controls. 

However, despite mathematical modeling’s potential, significant research gaps 
remain regarding the interplay between FMD and active immigrants. These gaps 
encompass more precise human movement data, inclusion of socio-cultural in-
fluences on transmission, and adaptable models for changing disease dynamics 
[17]. Addressing these requires teamwork among epidemiologists, mathematicians, 
social scientists, and policymakers to create comprehensive prevention and con-
trol strategies [18]. 

In our study of Foot and Mouth Disease, active immigrants, and mathemat-
ical modeling, we aim to enhance our grasp of disease transmission dynamics. 
Through addressing research gaps and using mathematical models, we intend 
to offer valuable insights into global health security complexities, presenting 
creative strategies to reduce the impact of infectious diseases on animals and 
humans. 

2. Materials and Methods 
2.1. Model Formulation 

In this section, we outline the mathematical representation of the FMD com-
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partmental model using a system of differential equations. The model captures 
FMD transmission dynamics, categorized into five compartments: Susceptible 
( )S t , Exposed ( )E t , Asymptomatic ( )A t , Symptomatic ( )I t  and Recover 
( )R t . So, ( ) ( ) ( ) ( ) ( ) ( )N t S t E t A t I t R t= + + + + . The corresponding flow di-

agram is depicted in Figure 1 and the corresponding model system of differen-
tial equations is presented in (1). 

2.2. Model Diagram 

From Figure 1, the transition between compartments can now be expressed into 
five non-linear differential equations defined as follows: 

 

( )

( )

( )

( )

( )

1

2

d ,
d
d ,
d
d ,
d
d ,
d
d .
d

S R S
t
E S E
t
A E A
t
I E I
t
R I A R
t

π η λ µ

λ σ ρ µ

ρ α κ µ

σ α δ µ ν

ν κ η µ

 = + − +

 = − + +


= + − +



= + − + +

 = + − +

 (1) 

where 
( )A I

N
β φ

λ
+

=  is the force of infection. 

• Animals are recruited at a constant rate π  and are assumed to be suscepti-
ble to infection. Animals in all compartments suffer natural mortality at rate 
µ  and δ  is a disease induced dearth rate. 

 

 
Figure 1. Model flow chart for the dynamics of Foot and Mouth disease with active im-
migrants. 
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• λ  stands for force of infection, where β  is the effective contact rate and 
φ  is a modification parameter. 

• σ  and ρ  represent progression rates from exposed to symptomatic and 
asymptomatic classes respectively. 

• ν  and κ  are recovery rates for symptomatic and asymptomatic animals, 
leading to temporary immunity. 

• 1α  and 2α  are varying influx rates for asymptomatic and symptomatic ani-
mals from other regions, with 1 20 , 1α α≤ ≤  and 1 2α α> . 

The state variables and model parameters for the given model system are pre-
sented in Table 1 and Table 2 respectively. 

 
Table 1. The model variables and their representations 

Variables Description 

S Susceptible population. 

E Exposed population. 

A Asymptomatic population. 

I Infected population. 

R Recovered population. 

N Total population. 

 
Table 2. Parameters and their descriptions. 

Parameter Description Values (day−1) Source 

µ  Natural death rate 0.02 [19] 

δ  Disease-induced death rate 0 (0.0 - 0.8) [19] 

β  Effective contact rate (0.3 - 0.99) [20] 

κ  Recovery rate of asymptomatic infected (0.45 - 0.85) [20] 

ν  Recovery rate of symptomatic infected (0.45 - 0.85) [20] 

σ  Exit rate from exposed class 6 [20] 

π  
Recruitment rate in Susceptible cattle 

population 
100 [21] 

ρ  
Proportion of exposed individuals to become 

asymptomatic infected 
(0.15 - 0.5) [21] 

φ  
Modification parameter to reduce 

infectiousness of asymptomatic individual 
0.4 [22] 

η  
Rate at which recovery individual lose 

immunity 
(0.01 - 0.05) [22] 

1α  
Immigration rate of asymptomatic 

individuals 
0.64 Estimated 

2α  
Immigration rate of symptomatic 

individuals 
0.32 Estimated 
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2.3. Model Analysis 
Non-Negativity and Boundness of Model System (1) 
Theorem 1. For the model system (1), there exists a unique solution in ( )0,∞ , 
however, the solution is always positive for all value of 0t ≥  and remains in 

5R+ . 
Proof. From the first equation of the model equations, we have  

( ) ( )d
d
S R S S
t

π η λ µ λ µ= + − + ≥ − + , integrating with initial condition  

( )0S S=  yields: 

 ( ) ( ) ( )( )0
0 exp d 0.

t
S t S tλ µ≥ − + ≥∫  (2) 

From the second equation of the model equations, we have: 

( )d
d
E S E
t

λ σ ρ µ= − + +
, 

integrating again with initial condition ( )0E E=  yields: 

 ( ) ( ) ( )( )0 exp 0.E t E tσ ρ µ≥ − + + ≥  (3) 

In a similar way, the rest of the equations of the model Equation (1) with ini-
tial conditions, ( )0A A= , ( )I I t= , and ( )0R R=  gives: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 exp 0,

0 exp 0,

0 exp 0.

A t A t

I t I t

R t R t

κ µ

δ ν µ

η µ

≥ − + ≥  
≥ − + + ≥  
≥ − + ≥  

 (4) 

Hence, all the solutions of model Equation (1) are non negative for all 0t ≥ . 
 

Theorem 2. Let ( ) ( )t N tΦ =  be the unique solution of the model system (1) 
for all 0t ≥ , then the solution ( )tΦ  is bounded above, that is, ( )tΦ ∈Ω  where 
Ω is the feasible region defined as: 

( ) ( ){ }5 0 NN t N t C+Ω = ∈ ≤ ≤

 
which is interior denoted by int(Ω) and given by: 

( ) ( ) ( ){ }5int 0 NN t N t C+Ω = ∈ ≤ ≤

 
Proof. Here, we prove that the solutions of model system (1) are bounded for 

all 0t ≥ . Biologically, the lowest possible value of each states of the model sys-
tem (1) is zero. Next we determine the upper-bound of states. Given that,  

( ) ( ) ( ) ( ) ( ) ( )N t S t E t A t I t R t= + + + + : 

( ) ( ) ( ) ( ) ( ) ( )d d d d d d
d d d d d d

N t S t E t A t I t R t
t t t t t t

⇒ = + + + +
 

substitute the values of differential equations from the model system (1), simpli-
fication gives: 

( )
1 2

d
,

d
N t

S E A I R I
t

π α α µ µ µ µ µ δ= + + − − − − − −
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( )
1 2 1 2

d
.

d
N t

I N N
t

π α α δ µ π α α µ= + + − − ≤ + + −
 

 
( )

1 2

d
.

d
N t

N
t

µ π α α+ ≤ + +  (5) 

By integration gives: 

 ( ) ( )1 2 0 e tN t N µπ α α π
µ µ

−+ +  
≤ + − 

 
 (6) 

Since the total population ( )N t  is positive for all 0t ≥ . It is well defined 
that: 

( ) 1 2limsup
t

N t π α α
µ→∞

+ +
≤

 
Therefore, 

( ) 1 20 N t π α α
µ

+ +
≤ ≤ , for all 0t > . 

This proves that all solutions of the FMD model with initial conditions in Ω 
remain in Ω for all 0t > . 

2.4. Disease-Free Equilibrium Point (DFE) 

In this section, we present the disease-free equilibrium point of the model sys-
tem (1). We first set the right-hand side of the model system (1) equal to zero as 
follows: 

 

( )
( )

( )
( )
( )

1

2

0,
0,
0,

0,
0.

R S
S E
E A
E I
I A R

π η λ µ
λ σ ρ µ
ρ α κ µ
σ α δ µ ν
ν κ η µ

 + − + =
 − + + = + − + =
 + − + + =

+ − + =

 (7) 

In the absence of disease in the population, we have  

( ) ( ) ( ) ( ) 0E t I t A t R t= = = =  and the model (7) admits a trivial equilibrium 
point commonly known as the disease-free equilibrium point. Thus, the model 
(7) has a disease-free equilibrium E0 given by: 

 ( )0 0 0 0 0
0 , , , , ,0,0,0,0 .E S E A I R π

µ
 

= =  
 

 (8) 

The disease-free equilibrium point in disease modeling is important as it is 
used when computing the basic reproduction number 0 . 

2.5. Basic Reproduction Number ( 0 ) 

Following the next generation matrix approach as used by [23] [24] [25], the 
non-negative matrix   that denotes the generation of new infection in the pop-
ulation and non-singular matrix   that denotes the disease transfer of infected 
compartments evaluated at the disease-free E0 are given as follows: 
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0 0 0

, 0
0 0 0

0
0 0 0

βπ βφπ
σ ρ µ

µ µ
ρ κ µ
σ δ µ ν

  + +  
  = = − +    − + +   

 

   (9) 

Thus, using the next-generation matrix approach in (9), it can easily be veri-
fied that the model system (1) has basic reproduction number 0  given by: 

 
( )

( )( )( )0 .
β δρ κσφ µρ µσφ νρ
κ µ δ µ ν µ ρ σ

+ + + +
=

+ + + + +
  (10) 

The threshold value 0  is an important epidemiological quantity in disease 
modeling. It determines the strength of transmission potential of a disease to 
invade the community. It has been scientifically demonstrated that when 0 1<  
the disease dies out in the population. However, the disease persist when 

0 1> . 

2.6. Local Stability of Disease-Free Equilibrium (DFE) 

Here, we establish the local stability of disease-free equilibrium using trace and 
determinant method and Routh Hurwitz’s stability criterion. 

Theorem 3. The DFE of the model system (1) at DFE (E0) is locally asymp-
totically stable if 0 1<  and unstable 0 1> . 

Proof. In proving this theorem, the Jacobian matrix of model system (1) at 
DFE (E0) is given as: 

( )
( )

( )
( )

( )

0

0
0 0
0 0 0 .
0 0 0
0 0

J E

µ β βφ η
σ ρ µ β βφ

ρ κ µ
σ δ ν µ

κ ν η µ

− − − 
 − + + 
 − +=
 

− + + 
 − +   

We have µ− , ( )η µ− +  negative, while the other three eigenvalues can be 
computed through the following cubic equations. The remaining eigenvalues are 
obtained from: 

1

2

3

0
0

a
G a

a

β βφ
ρ
σ

− 
 = − 
 −   

where 1a µ ρ σ= + + , 2a κ µ= +  and 3a δ µ ν= + + . The characteristic poly-
nomial for matrix G is given by ( ) 3 2 1

3 2 1 0G d d d dλ λ λ λ= + + + , Whereby; 

3 1d = , 2 1 2 3d a a a= + + , 1 1 2 1 3 2 3d a a a a a a βρ βσφ= + + − − ,  

0 3 2 1 3 2d a a a a aβρ βσφ= − − + . 
Here, we used Routh-Hurwitz criterion, the Routh-Hurwitz Criterion is a 

mathematical tool used to assess the stability of equilibrium points in a dynami-
cal system, particularly in the context of linear time-invariant systems. In the 
context of epidemiological models, if all the coefficients in the first column of 
the Routh array have the same sign, and that sign is positive, then the system is 
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locally asymptotically stable. Conversely, if there is at least one sign change in 
the first column, the system is locally unstable. A polynomial ( )G λ  has roots 
with a negative real part if it satisfies the following necessary and sufficient con-
ditions: 

1) 3 0d > , 2) 2 0d > , 3) 1 2 0 3 0d d d d− >  and 4) 0 0d > . 
Then, 3 1 0d = > , 3 0d > . Again, 2 1 2 3 0d a a a= + + > , 2 0d > . 
It can be shown that: 

( ) ( )( )(
( )( ) ( )( ))

( ) ( ) ( )( )( )

1 2 0 3 3

0.

d d d d δ κ µ ν ρ σ βρ βσφ κ µ δ µ ν

δ µ ν µ ρ σ κ µ µ ρ σ

βρ δ µ ν βσφ κ µ κ µ δ µ ν µ ρ σ

− = + + + + + + + + + +

+ + + + + + + + +

+ + + + + + + + + + +

>  

The value of 0d  is given by: 

( )( )( )( )0 01 .d µ ρ σ κ µ δ µ ν= + + + + + −  

Thus, the condition 0 0d >  holds if 0 1< . Therefore, it implies that DFE 
(E0) is locally asymptotically stable when 0 1<  and unstable otherwise. 

2.7. Global Stability of DFE 

Analysis of the global stability of the disease-free equilibrium solution of the 
model system (1) is done by using the approach by Castillo-Chavez et al. (2002). 
The model system can be written as: 

 
( )

( ) ( )

d ,
d

d , , ,0 0
d

U F U I
t

I B U I B U
t

 =

 = =


 (11) 

From Equation (11), ( ),U S R=  and ( ), ,I E A I=  indicates the number of 
uninfected and infected cattle respectively. F and B represent the functions of 
infected and uninfected individuals respectively. The disease-free equilibrium 
solutions is denoted by ( )*

0 ,0E U= : 

( )0 *,0 ,0 .E U π
µ

 
= =  

   
For DFE to be globally asymptotically stable, the following conditions must be 

satisfied simultaneously: 

( ) ( )

( ) ( ) ( ) ( )

*d1. For ,0 , is globally asymptotically stable g.a.s ,      (12)
d

ˆ ˆ2. , , , , 0 For , .                      (13)

U F U U
t

B U I AI B U I B U I U I

 =

 = − ≥ ∈Ω

 

For which, the Jacobian matrix A is a Metzler matrix and Ω is the region 
where the model system yields a biologically meaningful. Now, if the model sys-
tem (11) satisfies the above conditions, then Theorem 4 holds. 

Theorem 4. For ( ]0,1θ ∈ , the disease-free equilibrium point E0 of model 
system (7) is globally asymptotically stable whenever 0 1< . 
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Proof. Condition 1 in (12) is proved as follows: 

( )

( )

d
d

A I
R S SU N

t
I A R

β φ
π η µ

ν κ η µ

 + 
+ − −  

=   
 + − +   

At DFE, ( )*
0 ,0E U=  gives: 

( )d ,0 .
0d

SU F U
t

π µ− 
= =  

   

( ) ( )0 e tS t S µπ π
µ µ

− 
= + − 

   

It is clear that the solutions ( )S t π
µ

→ , and ( ) 0R t =  as t →∞  regardless 

of the value of ( )0S  and ( )R t . Implying that E0 is global asymptotically stable. 

Condition 2 in (12) is proved as follows: 

( ) ( )
( )

1

2

( )
,

S E
B U I E A

E I

λ σ ρ µ
ρ α κ µ

σ α δ µ ν

− + + 
 = + − + 
 + − + +   

At DFE ( )0 * ,0E U=  gives: 

( )

( )
( )

0 0

0 0

.0
0

S S
N NA

β βφσ ρ µ

ρ µ κ
σ δ ν µ

 
− + + 
 =

− + 
 − + +   

It is clear that matrix A is Metzler matrix. Then, 

( ) ( )ˆ , ,B U I AI B U I= −  

( )
( )

( )
( )

( )
( )

0 0

0 0

1

2

ˆ , 0
0

( )

S S E
N NB U I A

I

S E
E A

E I

β βφσ ρ µ

ρ µ κ
σ δ ν µ

λ σ ρ µ
ρ α κ µ

σ α δ µ ν

 
− + +   

  =  − +    − + + 
− + + 

 − + − + 
 + − + +   

⇒  

( )
( )

0

0
ˆ ,

0
0

S SA I
NN

B U I
β φ
  

+ −  
  =  

  
   

Since 0S S> , it is clear that ( )ˆ , 0B U I ≥ . 
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Hence, 0E  is globally asymptotically stable. 

2.8. Endemic Equilibrium Point 

Endemic equilibrium point denoted by *E  is obtained by solving for  

( )* * * * * *, , , , ,S V E A I R  from the model system (14): 

 

*
*

*

* *
*

*
* 1

*
* 2

* *
*

,

,

,

,

.

RS

SE

EA

EI

I AR

π η
λ µ
λ

σ ρ µ
α ρ
κ µ

σ α
δ µ ν
ν κ
η µ

 +
= +


=

+ +
 + =

+
 +
 =

+ +
 + =
 +

 (14) 

whereby 

( )* *
*

A I

N

β φ
λ

+
=

 

2.8.1. Bifurcation Analysis. 
Bifurcation analysis was done by using Center Manifold theory, let 1x S= , 

2x E= , 3x A= , 4x I= , 5x R=  and 5x R= , by using vector notation 
( )T

1 2 3 4 5, , , ,x x x x x x=  (where T denotes the transpose). Then, the model system  

(1) can be written in the form ( )d
d
x f x
t
= , with  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 5 6, , , , ,f x f x f x f x f x f x f x= . Then, 

 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

3 41
1 5 1

3 42
2 1 2

3
3 2 1 3

4
4 2 2 4

5
5 4 3 5

d
,

d

d
,

d
d

,
d
d

,
d

d
.

d

x xx f x x x
t X

x xx f x x x
t X

x
f x x x

t
x f x x x
t

x
f x x x x

t

φ
π η β µ

φ
β σ ρ µ

ρ α κ µ

σ α δ µ ν

ν κ η µ

  −  = = + − +   
  

 −  = = − + +   

 = = + − +


 = = + − + +


 = = + − +


 (15) 

Choose β  as a bifurcation parameter. Consider when 0 1= , then solving 
for *β  using *β β=  gives: 

( )( )( )* .
κ µ δ µ ν µ ρ σ

β
δρ κσφ µρ µσφ νρ
+ + + + +

=
+ + + +

 

The Jacobian matrix at DFE (E0) and bifurcation parameter *β  is given by: 
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1 2

3 1 2
*

4

5

6

0
0 0
0 0 0 .
0 0 0
0 0

a a
a a a

J a
a

a

β

µ η

ρ
σ

κ ν

− − − 
 − 
 = −
 

− 
 −   

where *
1a β= , *

2a β φ= , 3a σ ρ µ= + + , 4a κ µ= + , 5a δ ν µ= + +  and 

6a η µ= + . 
The right eigenvector associated with the zero eigenvalue of the Jacobian ma-

trix *Jβ , [ ]T1 2 3 4 5 6, , , , ,w w w w w w w=  is defined such that ( )0 0J E w⋅ =  at  

*β β=  given by; ( ) ( )6 1 5 2 5 5 4
1 2

4 5 6

a a a a a a a
w w

a a a
σ ηρ σ+ + +

= − , 2 2w w= ,  

3 2
4

w w
a
ρ

= , 4 2
5

w w
a
σ

= , and 4 5
5 2

4 5 6

a a
w w

a a a
σ ρ+

= . 

The left eigenvector [ ]1 2 3 4 5 6, , , , ,v v v v v v v=  such that * 0v Jβ⋅ =  yields: 

1 2
1 2 2 3 2 4 2

5 5

0, , ,
a av v v v v v v
a a

= = = =  and 5 0v = . 

Theorem 5. Consider the general system of ordinary differential equations 
with a parameter β  such that: 

 ( ) ( )2d , , : and ,
d

n n nx f x f f
t

β= × → ∈ ×       (16) 

such that ( )0, 0f β ≡ , whereby 0 is an equilibrium point of the system with the 
following conditions: 

1) ( ) ( )0,0 0,0i
x

j

f
M B f

x
 ∂

= =   ∂ 
 is the linearization matrix of the system 

(3.33) around the equilibrium 0 with β  evaluated at 0. 

2) Zero is a simple eigenvalue of M, and the rest eigenvalue of M have nega-
tive real parts. 

3) Matrix M has a right eigenvector w and a left eigenvector v corresponding 
to the zero eigenvalue. 

Let kf  be the kth component of f and 

 
( )

( )

2

, , 1

2

, 1

0,0 ,

0,0 .

n
k

k i j
i j k i j

n
k

k i
i k i

f
a v w w

x x

f
b v w

x β

=

=

∂
=

∂ ∂

∂
=

∂ ∂

∑

∑
 (17) 

The local dynamics of (3.33) around 0 are totally determined by a and b. 
1) 0a > , 0b > . When 0β <  with 1β  , 0 is locally asymptotically sta-

ble, and there exists a positive unstable equilibrium; when 0 1β<  , 0 is unst-
able and there exists a negative and locally asymptotically stable equilibrium. 

2) 0a < , 0b < . When 0β <  with 1β  , 0 is unstable; when 0 1β<  , 
0 is locally asymptotically stable, and there exists a positive unstable equilibrium. 

3) 0a > , 0b < . When 0β <  with 1β  , 0 is unstable, and there exists a 
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locally asymptotically stable negative equilibrium; when 0 1β<  , 0 is stable, 
and a positive unstable equilibrium appears. 

4) 0a < , 0b > . When β  changes from negative to positive, 0 changes its 
stability from stable to unstable. Correspondingly a negative unstable equilibrium 
becomes positive and locally asymptotically stable. 

2.8.2. Bifurcation Coefficients 
It is clear that 1 5 0v v= =  so, the consideration is on 2 3,v v  and 4v . 

Hence, the second order partial derivatives at disease-free equilibrium and at 
*β  are given by: 

( ) ( )
22 *

* *32
0 0

2 3 3 2

, ,
ff E E

x x x x
β µβ β
π

∂∂
= = −

∂ ∂ ∂ ∂
, 

( ) ( )
2 2 *

* *2 4
0 0

2 4 4 2

, ,
f fE E

x x x x
β µφβ β
π

∂ ∂
= =

∂ ∂ ∂ ∂
, 

( ) ( )
2 2 * *

* *3 4
0 0

3 4 4 3

, ,
f fE E

x x x x
β µφ β µβ β
π π

∂ ∂
= = −

∂ ∂ ∂ ∂
, 

( ) ( )
2 2 *

* *3 5
0 0

3 5 5 3

, ,
f f

E E
x x x x

β µβ β
π

∂ ∂
= = −

∂ ∂ ∂ ∂
, 

( )
2 *

*3
0

3 3

2,
f

E
x x

β µβ
π

∂
= −

∂ ∂
, ( )

2 *
*4

0
4 4

2,
f E

x x
β µφβ
π

∂
=

∂ ∂
, 

( )
2

*2
0*

3

, 1
f E

x
β

β
∂

=
∂ ∂

, ( )
2

*2
0*

4

,
f E

x
β φ

β
∂

=
∂ ∂

. 

Then, 

( ) ( )

( )( )( )

*

2 2 4 3 3 3 4 2 3 4 5

4 5 5 4 2 3 4 5 4

2

1

0.

a v w w w v w w w w w w

w v w v w w w w w

µβ φ φ
π

φ φ φ φ φ

= − + + + + + +

+ + + + + + − 
<  

Hence, 0a < . 
Also, for the sign of b given as: 

2 2
2 2

2 3 2 4* *
3 4

,f fb v w v w
x xβ β
∂ ∂

= +
∂ ∂ ∂ ∂  

 2 2
4 5

0.b v w
a a
ρ σφ 

= + > 
 

 (18) 

Therefore, 0a <  and 0b > , hence the model system exhibit a forward bi-
furcation. 

2.8.3. Global Stability of Endemic Equilibrium Point 
To prove the global stability of EEP, we used quadratic Lyapunov function. The 
endemic equilibrium point is said to be globally asymptotically stable if its deriva-
tive is less than 0. 

Theorem 6. The FMD has a unique endemic equilibrium point *E  for 
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model system (1) that is globally asymptotically stable if 0 1>  otherwise un-
stable. 

Proof. Now, consider the quadratic Lyapunov function, 

( )
2*

1
1

1, , ,
2

n

n i i
i

V x x x x
=

 = − ∑

 
where ix  is the cattle population and *

ix  is the endemic equilibrium point. 
Then, 

 ( ) ( ) ( ) ( ) ( ) 2* * * * *1 .
2

V S S E E A A I I R R = − + − + − + − + −   (19) 

Clearly, 6:V + →   is a continuous and differentiable function. We have: 

( ) ( ) ( ) ( ) ( ) [ ]* * * * *d d .
d d
V S S E E A A I I R R S E A I R
t t

 = − + − + − + − + − + + + +   

( ) [ ]* * * * *d d .
d d
V S E A I R S E A I R S E A I R
t t

 = + + + + − + + + + + + + +   
But, 

 ( ) ( )1 2
d .
d

S E A I R N t I
t

π α α µ δ+ + + + = + + − −  (20) 

And 

* *
1 2 0N Iπ α α µ δ+ + − − = ⇒

* * * * * *
1 2 0I S E A I Rπ α α δ µ  + + − − + + + + =   

 
*

* * * * * 1 2 IS E A I R π α α δ
µ

+ + −
+ + + + =  (21) 

Substitute (20) and (21) into 
d
d
V
t

 gives: 

( ) ( )
*

1 2
1 2

d ,
d

IV N t I N t
t

π α α δ
π α α δ µ

µ
 + + −

= − + + − −    
   

( ) ( )
*

1 2 1 2d ,
d

I IV N t N t
t

π α α δ π α α δ
µ

µ µ
  + + − + + − 

= − − −    
      

( ) ( )
*

1 2 1 2d ,
d
V I IN t N t
t

π α α π α αδ δµ
µ µ µ µ

 + + + + 
= − − + − +   

    

⇒
( ) ( )

*
1 2 1 2d

d
V I IN t N t
t

π α α π α αδ δµ
µ µ µ µ

 + + + + 
= − − + − +   

    

( ) ( )1 2 1 2d ,
d
V N t N t
t

π α α π α α
µ

µ µ
+ + + +   

≤ − − −   
     

That is, 

 ( )
2

1 2d 0.
d
V N t
t

π α α
µ

µ
+ + 

≤ − − < 
 

 (22) 

Therefore, it is clear that 
d 0
d
V
t
<  which implies that the Endemic Equilibrium 

Point ( *E ) is globally asymptotically stable. 
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2.9. Numerical Simulations of the Model 

This section uses accessible parameter values from the literature as well as esti-
mated ones to simulate the model system (1) numerically. Unless otherwise spe-
cified, simulation results will be based on parameter values from Table 2. The 
fourth-order Runge-Kutta method (RK4) is used to simulate the model system 
(1) in MATLAB software. This combination ensures accurate representation of 
the FMD transmission model dynamics. Our simulation aims to fill knowledge 
gaps about Foot and Mouth Disease and illustrate its spread in a population with 
active immigrants. The chosen initial conditions are: 90S = , 5E = , 2A = , 

3I = , and 0R = . These values are deliberately chosen to produce a desired mod-
el behavior. 

Figure 2 describes the changes in animal population over time. The trend in 
the graph implies that active immigrants play a crucial role in shaping the dy-
namics of an FMD outbreak. The rapid decrease in susceptibility, combined with 
gradual changes in other compartments, suggests a limited disease establish-
ment potential. This emphasizes the need for prompt interventions and high-
lights the complex interplay of disease spread within the context of active immi-
grants. 

2.10. Results and Discussion 

Our results can be summarized as follows: Figures 3-7, Figure 9 and Figure 10 
demonstrate that, with an increase in infectious immigrants ( 1α  and 2α ); the 
susceptible animal population gradually decreases to a steady state. This suggests  

 

 
Figure 2. Evolution of animal population with time. 
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Figure 3. Effect of α1 on susceptible animal population. 

 

 

Figure 4. Effect of α1 on exposed animal population. 
 

a connection between immigrant influx and susceptible population decline. In-
fectious immigrants notably contribute to reducing susceptibility through disease 
transmission. Subsequent gradual decrease to its steady state shows ongoing dis-
ease dynamics and the establishment of a stable endemic equilibrium. 

Figure 3 shows an initial decline within 10 days followed by a gradual rise with  
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Figure 5. Effect of α1 on asymptomatic animal population. 
 

 

Figure 6. Effect of α1 on symptomatic animal population. 
 

an increase in ( 1α ); this might reflect complex exposure-immigrant dynamics. 
The fluctuations possibly reveal interactions among infection introduction, host 
responses, and adaptation processes. Figure 7 is characterized by decreasing trend, 
followed by a sharp increase and gradual decrease before reaching the steady state, 
this pattern is shaped by the arrival of infectious immigrants ( 2α ), showcas-
ing the dynamic interplay between disease introduction, population response, and  
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Figure 7. Effect of α2 on susceptible animal population. 

 

 

Figure 8. Effect of α2 on exposed animal population. 
 

Adaptation (see Figure 8). The steady state signifies ongoing disease dynamics 
and the formation of a stable endemic equilibrium. 

In Figure 5, rising active immigrants ( 1α ) lead to initial increase, then gradual 
decrease due to possibly virulent immigrant strains causing higher symptomatic 
cases and reduce asymptomatic individuals, or new variants by infective immigrants. 
Figure 9 displays sharp increase followed by a gradual decrease towards a stable  
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Figure 9. Effect of α2 on asymptomatic animal population. 

 

 

Figure 10. Effect of α2 on symptomatic animal population. 
 

state with an increase in ( 2α ); this could be attributed to the fact that infec-
tious immigrants can rapidly spread disease in local animals and shift animals 
to symptomatic states, reducing asymptomatic numbers. Some animals gain 
immunity, increasing asymptomatic or resistant individuals. Equilibrium shows 
disease-immune balance, highlighting dynamic adaptation. 

Figure 10 portrays a sharp increase and gradual decrease to stable condition 
with an increase in ( 1α ); possible factors for this could include, a phase of lo-
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cal adaptation to the new agent, during this period, recovery could increase as 
the agent spreads, also, more animals acquire immunity through infections 
and recovery. The rapid rise in recoveries signifies initial immunity develop-
ment to the new agent. Subsequent gradual increase and steady state show 
ongoing disease dynamics and the establishment of a stable endemic equili-
brium. 

The key observation is that the presence of infectious immigrants ( 1α  and 2α ) 
is closely associated with increased susceptibility in animal populations. This im-
plies that the local animal population becomes more susceptible to FMD when 
exposed to these infectious immigrants. This result underscores the complexity 
of disease transmission dynamics and has important implications for designing 
targeted interventions and management strategies. The findings provide valu-
able insights that contribute to a more comprehensive understanding of the fac-
tors influencing the establishment and spread of infectious diseases in popula-
tions. 

3. Conclusions 

In summary, the figures collectively highlight the intricate interplay of disease 
dynamics in animal populations, driven significantly by the influx of infectious 
immigrants ( 1α  and 2α ). These immigrants significantly shape susceptibility 
and recovery populations, causing fluctuations and equilibrium. The observed 
patterns stress the need to account for immigrant influence in understanding 
disease transmission, population responses, and stability. These insights have im-
plications for disease control and management strategies. In essence, the figures 
underscore the dynamic nature of disease processes and the significance of grasp-
ing the interaction between immigrant influx, host responses, and disease outcomes 
for effective management. 

While these figures provide valuable insights, there are areas requiring further 
exploration. Specifically, researching the mechanisms of interactions between im-
migrants and local populations, understanding strain impacts and transmission 
dynamics, and investigating genetic, ecological, and epidemiological factors will 
refine our comprehension. Advancing understanding in these aspects will enhance 
precise disease management strategies. The study’s findings provide a founda-
tion for shaping targeted and adaptive intervention strategies in the manage-
ment of Foot and Mouth Disease. These recommendations emphasize the need 
for a multifaceted approach, combining early detection, preventive measures, adap-
tive management, and international collaboration to effectively address the com-
plexities introduced by active immigrants in disease transmission dynamics. For 
the future, the study can be extended in a multidisciplinary approach, incorpo-
rating insights from epidemiology, immunology, economics, and genomics, which 
can provide a holistic understanding of the complexities associated with FMD 
and contribute to the global effort to control and mitigate the impact of this im-
portant livestock disease. 
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