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Abstract 
Hessian matrices are square matrices consisting of all possible combinations 
of second partial derivatives of a scalar-valued initial function. As such, 
Hessian matrices may be treated as elementary matrix systems of linear 
second-order partial differential equations. This paper discusses the Hessian 
and its applications in optimization, and then proceeds to introduce and derive 
the notion of the Jaffa Transform, a new linear operator that directly maps a 
Hessian square matrix space to the initial corresponding scalar field in nth 
dimensional Euclidean space. The Jaffa Transform is examined, including the 
properties of the operator, the transform of notable matrices, and the exis-
tence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix 
operator. The Laplace equation is then noted and investigated, particularly, the 
relation of the Laplace equation to Poisson’s equation, and the theoretical 
applications and correlations of harmonic functions to Hessian matrices. The 
paper concludes by introducing and explicating the Jaffa Theorem, a prin-
ciple that declares the existence of harmonic Jaffa Transforms, which are, es-
sentially, Jaffa Transform solutions to the Laplace partial differential equa-
tion. 
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1. Introduction 

Developed in the nineteenth century by German mathematician Ludwig Otto 
Hesse, the Hessian matrix is a square matrix consisting of all possible combina-
tions of second partial derivatives of a scalar-valued function f. The Hessian ma-
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trix may consequently be treated as an elementary system of second-order partial 
differential equations, referred to as a Hessian matrix system. The generalized 
form of the Hessian matrix, denoted by fH , is defined as: 

2
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n n

f f
x x x

f f
x x x
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 ∂ ∂ ∂ 

=  
 ∂ ∂ 
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where f is a 2C  scalar-valued subspace of n . The elements along the central 
diagonal of the Hessian matrix are the homogenous second partial derivatives of 
f, whilst the remaining elements are the second-order mixed partial derivatives. 
Hence, the property emerges that: 

( ) 2
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1
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i i

f f
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∂
= = ∇
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The above property is referred to as the Laplacian Trace property, pivotal in the 
derivation of harmonic solutions to Hessian matrix systems. Additionally, con-
sider the Jacobian matrix [1] of the gradient of f: 
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where iγ  is the i-th component of f’s gradient vector. By defining the Jacobian 
in terms of f, it is evident that: 
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Implicit Gradient Form of Hessian Matrices 

Theorem 1.1. All n × n Hessian matrices may be described in terms of the gra-
dient of the initial function, in the form: 

[ ]1 2f nγ γ γ= ∇ ∇ ∇H  
Proof. Let nf ⊂   be a 2C  scalar-valued function. Consider the gradient 

field of f: 
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The Hessian of f: 

1
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The first column contains the n second partial derivatives of the first compo-

nent of f∇ . Similarly, the nth column contains the n second partial derivatives 
of the nth component of f∇ . Hence, the above Hessian matrix may be described 
as: 

[ ]
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The form derived in (1) holds true for all n × n Hessian matrices, and is re-
ferred to as the implicit gradient form. This form describes the Hessian of a sca-
lar-valued initial function in terms of the function’s gradient components. By the 
above form emerges a method of determining solutions to Hessian matrix sys-
tems utilizing the Intersect Rule of gradient fields [2], as derived and demon-
strated within this paper. 

2. Analysis of Hessian Determinants 

The following section discusses the Hessian determinant and its prevalence re-
garding concavity and curvature in three dimensions. The section analyzes the 
correlation between the initial function’s concavity and curvature at critical 
points, and the hessian determinant and eigenvalues. 

2.1. The Second Partial Derivative Test 

Theorem 2.1. For all 2 × 2 Hessian matrices, the Hessian determinant yields the 
second partial derivative test for concavity. As in: 

( ) ( ) ( ) ( )
2 2 2

2
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For all input vectors ( ) 2
0 0,x y ∈ . 

Proof. Let 3f ⊂   be a 2C  scalar-valued function defined by 2:f →  . 
The Hessian of f is defined as: 
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By Clairaut’s Theorem (1743), the symmetry of the second mixed partial de-
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rivatives allows the Hessian to be defined as: 
2 2
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The Hessian determinant: 
22 2 2

2 2f
f f f

x y y x
∂ ∂ ∂

= ⋅ −
∂ ∂ ∂ ∂

H
 

Recall the second partial derivative test for concavity, which states that, for a 
2C  scalar-valued function in 3 , the nature of critical point ( )0 0,x y  may be 

determined through: 

( ) ( ) ( )
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−
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Which is, by definition, the Hessian determinant. Hence, the proof is complete, 
and it is fair to state that: 
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Thus, the Hessian determinant provides the general form of the second partial 
derivative test, allowing the Hessian at a given critical point to be utilized to de-
termine the nature of said critical point. As a result, the Hessian matrix proves 
pivotal in unconstrained optimization, in addition to concavity testing at critical 
input points in 3 . 

2.2. Eigenvalues of Hessian Matrices 

Theorem 2.2. For all 2 × 2 Hessian matrices, the Hessian determinant is equiva-
lent to the product of its eigenvalues. As in: 

1 2 fλ λ = H
 

Proof. Consider the Hessian of a 2C  scalar-valued function 3f ⊂  : 
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The Hessian determinant: 
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The eigenvalues of the Hessian may be derived through: 
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( ) ( ) ( ) 2
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Simplifying: 

( )2 2 0xx yy xx yy xyf f f f fλ λ− + + − =
 

Substituting 2
f xx yy xyf f f= −H  and 2

xx yyf f f∇ = + : 
2 2 0ffλ λ− ∇ + =H

 
Utilizing the quadratic formula to determine the eigenvalues: 

2 2 2 4

2
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λ
∇ ± ∇ −

=
H

 
The Hessian possesses two (potentially) distinct eigenvalues, given by: 
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The product of the eigenvalues: 
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Simplifying: 

( ) ( )
( )

2 2 2 2 2 2
1 2

2 2 2 2

1 4 4
4
1 4
4

f f

f

f f f f

f f

λ λ = ∇ + ∇ − ∇ − ∇ −

= ∇ −∇ +

H H

H
 

Combining like-terms: 

( ) ( )2 2 2 2
1 2

1 14 4
4 4f f ff fλ λ = ∇ −∇ + = =H H H

 
Hence: 

1 2 fλ λ = H
 

Thus, the Hessian determinant is equivalent to the product of the Hessian’s 
eigenvalues. By this notion, the Hessian determinant may be utilized to determine 
the nature of the eigenvalues. As in: 

1 20 0f λ λ< ⇔ < ⇒H  Relative Extrema 

1 20 0f λ λ= ⇔ = ⇒H  Inconclusive Concavity 

1 20 0f λ λ> ⇔ > ⇒H  Inconsistent Concavity 

Which correlates the eigenvalues and determinant of the Hessian matrix, with 
the concavity and curvature of its initial function, as per the three-dimensional 
second partial derivative test derived in (2). 

As a whole, the Hessian determinant is a pivotal tool regarding the analysis of 
an initial function’s curvature and behavior at critical input points. The functio-
nality of the Hessian determinant evidently impacts the non-zero nature of the 
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eigenvalues. Put simply, degenerate Hessian determinants imply null eigenvalues, 
and the inconclusive outcome of the curvature and concavity test. Accordingly, 
the Hessian matrix possesses a crucial role in multivariable optimization, as dem-
onstrated within the following section. 

3. Applications of Hessian Matrices 

Hessian matrices contain all necessary information regarding the second partial 
derivatives of a scalar-valued function. The primary applications of Hessian ma-
trices root in constrained and unconstrained multivariable optimization, as con-
veyed below. 

3.1. The Bordered Hessian 

Consider the Lagrange function, where n∈
x  : 

( ) ( ) ( ), f gλ λ λκ= − +
  

 x x x  
where f is to be optimized subject to constraint function, g, and real constraint 
constant, κ. Determine the gradient of the Lagrange function: 
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By Theorem 1.1, the Hessian may be determined utilizing the components of 
the gradient field, hence: 
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Note that the first column—excluding the zero entry—consists of the negative 
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first partial derivatives of g, as does the first row. Therefore, the above Hessian 
matrix may be described in terms of the gradient of g, considering the first row 
and column consist of implicit gradient vectors: 

T

2 2 2 2

2 2
1 1 1 1

2 2 2 2

2 2
1 1
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n n

n n n n
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f g f gg

x x x x x x
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Additionally, note that the remaining entries consist of all possible combina-

tions of second partial derivatives of the function ( ) ( )f gλ− x x , which, by de-
finition, is the implicit Hessian of ( ) ( )f gλ− x x . Thus: 

T0

f g

g
g λ−

 −∇
=  

−∇  
H

H                       (3) 

The above form of Hessian matrices, occasionally denoted by ΛH , is referred 
to as the Bordered Hessian, the Hessian of the Lagrange function. The Bordered 
Hessian possesses various uses in the context of constrained multivariable opti-
mization, reducing an (n + 1) × (n + 1) matrix into a 2 × 2 implicit square ma-
trix, proving pivotal in determining the nature of critical inputs of the Lagrange 
function, in order to optimize f. 

Recall that, as per Theorem 2.1, the determinant of 2 × 2 Hessian matrices 
yields the generalized second partial derivative test for concavity. Considering 
that the bordered Hessian may be reduced into an implicit 2 × 2 matrix, the re-
sulting Hessian determinant is the generalized form of the second partial deriva-
tive test of the Lagrange function. 

To contextualize this, suppose 
v  is an input vector of the Lagrange function, 

such that: 

( ) 0∇ =


 v  

Which implies that 
v  is a critical input point of the Lagrange function. By 

the bordered Hessian described in (3), the determinant of the Lagrangian may be 
reduced to: 

1
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1 n

n

g
x

g gg g
x x

g
x

∂ 
 ∂  ∂ ∂

= −∇ ∇ =   ∂ ∂    ∂ 
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 H

 

Evaluating the vector-matrix product:  
2 2 2

11

n

in i

g g g
x x x=

∂ ∂ ∂
+ + =
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Inputting 

v  into the Hessian determinant will yield one of the following re-
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sults: 

( )
2

1
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i i

g
x=

∂
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∂∑ v  Relative Extrema 

( )
2

1
0

n

i i

g
x=

∂
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∂∑ v  Inconclusive Concavity 

( )
2

1
0

n

i i

g
x=

∂
> ⇒

∂∑ v  Inconsistent Concavity 

Assuming 
v  is an extreme value with agreeing concavities, inputting 

v  in-
to the Lagrangian will determine the nature of the extreme value. As a result, if 
v  is a local maximum, the input function f will possess a relative maximum at 
v , subject to the constraint function g and constraint constant κ. If 

v  is a local 
minimum, the input function f will possess a relative minimum at 

v , subject to 
the above constraints. 

This notion proves majorly applicable in the context of economic optimiza-
tion. When maximizing profit functions subject to various constraints, the Bor-
dered Hessian may be utilized to determine the extreme inputs of the profit 
function, whilst still adhering to the bounds imposed by the constraints. 

Hence, the Hessian matrix proves a crucial tool in the fields of economic and 
generalized nonlinear optimization. 

3.2. Linear and Quadratic Approximations of Multivariable  
Functions 

Recall the notion of a Taylor polynomial expansion [3] of single variable sca-
lar-valued function f, centered about input value x0: 

( )
( ) ( ) ( )0

0
0 !

n
n

n

f x
f x x x

n

∞

=

= −∑
 

As n →∞ , the accuracy of the approximation increases, consequently, the 
“neighborhood” of the expansion’s accuracy near x0 increases. Expanding the 
first two and three terms of the Taylor polynomial: 

( ) ( ) ( ) ( )0 0 0f x f x f x x x′≈ + −  

( ) ( ) ( ) ( ) ( ) ( )2
0 0 0 0 0

1
2

f x f x f x x x f x x x′ ′′≈ + − + −
 

As the number of terms in the expansion increases, as does the accuracy of the 
approximation around x0. Hence, as n grows infinitely large, the approximation 
approaches the function almost identically. Additionally, Recall the single varia-
ble tangent line approximation of functions in 2  about point (x0, y0): 

( ) ( )0 0 0
d
d
yy y x x x
x

− = −
 

where ( )0
d
d
y x
x

 indicates the derivative of the function at input value x0. Rear-

ranging and expressing the above in a form comparable to that of the Taylor po-
lynomial expansion: 
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( ) ( ) ( )0 0 0y f x f x x x′= + −  
Hence, the information required to linearize and approximate the single vari-

able function through tangency is the value of y and the derivative, y', at x0. This 
notion may be extended for functions in nth dimensional Euclidean space. 

Multivariable, scalar-valued functions may be approximated about a certain 
input point, and within a minute neighborhood of said point through linear and 
quadratic approximations. Given certain information with respect to the values 
of a function and its first partial derivatives at certain input points, an affine func-
tion tangent to the curve at said input point may be derived through the process 
of linearization. 

To contextualize this abstract notion, consider multivariable scalar valued 
function f, defined as : nf →  , with general input vector n∈

x  . Consider 
the particular nth dimensional input vector 0

x , at which the function f shall be 
approximated. Moreover, recall that the gradient of f is directly analogous to the 
first derivative of a single variable scalar-valued function. Hence, when given the 
value of f and its gradient at input vector 0

x , the affine approximation about 

0
x  is defined as: 

( ) ( ) ( )0 0 0fL f f= +∇ ⋅ −
   x x x x  

Which is directly comparable to the single variable tangent line approxima-
tion. In addition, it is crucial to note that the affine approximation—occasionally 
referred to as the tangent plane approximation in 3 —possesses a certain mar-
gin of error, and swiftly decreases in accuracy upon minutely shifting away from 
the miniscule neighborhood of 0

x . The notion of affine linearity roots from the 
lack of higher degree terms in the approximation, although, as the dimensions of 
the input space increase, describing the approximation as a linear tangent plane 
grows increasingly abstract. 

Due to the practically negligible size of the neighborhood of 0
x  whilst ap-

proximating through affine tangency, the notion of quadratic approximations of 
multivariable functions emerges. Reconsider scalar-valued function f. To extend 
the neighborhood of approximation around 0

x , second partial derivative in-
formation is required. 

Define function fQ  as the quadratic function tangent to f at 0
x , and ap-

proximately equivalent to f within a certain neighborhood of 0
x . The rationale 

behind referring to fQ  as quadratic roots in the fact that fQ  must include all 
possible combinations of quadratic terms—terms consisting of the product of 
two input variables—within f’s input space. Furthermore, recall the single varia-
ble Taylor polynomial expansion of the first three terms: 

( ) ( ) ( ) ( ) ( ) ( )2
0 0 0 0 0

1
2

f x f x f x x x f x x x′ ′′≈ + − + −
 

As noted above, the gradient of a multivariable, scalar-valued function is ana-
logous to the single variable first derivative, as the gradient provides all neces-
sary information regarding the first partial derivatives of the function. Noting 
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this, consider the definition of the Hessian matrix of f at input vector 0
x , gene-

ralized for all nth dimensional Euclidean space: 

( )

( ) ( )

( ) ( )

0 02
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x x x

f f
x x x
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x x

H x

x x
 

The Hessian of f at 0
x  provides all necessary information regarding the second 

partial derivatives of f at 0
x . Hence, it is fair to state that the Hessian of a mul-

tivariable, scalar-valued function is directly analogous to the second derivative of 
a single variable function. 

In order to construct fQ  in a manner such that the property of tangency to f 
at 0
x  holds, whilst also containing all possible combinations of quadratic terms 

in the input space of f, define fQ  recursively in terms of fL : 

( )f fQ L g= +
x  

fL  accounts for the tangency properties, whilst ( )g x  must be a function 
with the same input space as f, such that the second partial derivative informa-
tion of fQ  at certain inputs matches that of f. As a matter of fact, ( )g x  is de-
fined as: 

( ) ( ) ( )T
0 0 0

1
2 f− −
    x x H x x x

 
Which, when simplified, produces a term directly corresponding to the 2n =  

term of the single variable Taylor polynomial expansion. Therefore: 

( ) ( ) ( ) ( ) ( )( )T
0 0 0 0 0 0

1
2f fQ f f= +∇ ⋅ − + − −

        x x x x x x H x x x       (4) 

Consequently, it is majorly evident that the Hessian matrix’ analogy to the 
single variable second derivative extends the second degree Taylor polynomial 
expansion for functions in all nth dimensional Euclidean space, and, as a result, 
provides a method of approximating multivariable functions. 

4. Introduction to the Jaffa Transform 

This section introduces and derives the Jaffa Transform, an operator that maps a 
square matrix space to a scalar field in nth dimensional Euclidean space, utiliz-
ing the Intersect Rule from the calculus of sets. The primary purpose, as to be 
demonstrated, of the Jaffa Transform, is the derivation of general solutions to Hes-
sian matrix systems, in cohesion with harmonic function solutions to the Lap-
lace partial differential equation. 

4.1. Deriving General Solutions to Hessian Matrix Systems 

As briefly mentioned previously, the Hessian matrix may be treated as an ele-
mentary system of linear second-order partial differential equations. To expand 
on this notion, consider the Hessian below: 
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where, ijh  is the entry in the i-th row and j-th column. Each entry is a function 
of the same input space as the initial function, f. Hence: 
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Forming a matrix system of linear second-order partial differential equations. 
To describe the matrix as an explicit system of differential equations: 

( )

( )

( )

( )

2

11 2
1

2

1
1

2

1
1

2

2

n
n

n
n

nn
n

fh
x

fh
x x

fh
x x

fh
x

 ∂
= ∂




∂ = ∂ ∂


 ∂ =

∂ ∂


 ∂

=
∂















x

x

x

x
 

Let i
i

f
x

γ ∂
= ∇

∂
, which thus yields: 

T2 2

1 2
1 1

T2 2

2
1 2 2

T2 2

2
1

n

n

n
n n

f f
x x x

f f
x x x x

f f
x x x

γ

γ

γ

  ∂ ∂
∇ =  ∂ ∂ ∂  


 ∂ ∂∇ =  ∂ ∂ ∂ ∂  


  ∂ ∂∇ =   ∂ ∂ ∂ 









 

The Hessian matrix system has thus been reduced to a system of linear gra-
dient equations. In order to solve gradient equations, the Intersect Rule of the 
calculus of sets may be utilized. 

Utilizing the information given by the gradient vectors and the Intersect Rule’s 
definition of the potential function of a gradient field: 

2
1

1
1 1 1

d d
n n

i i
i ii i

fx x
x x x
γγ

= =

∂ ∂
= =

∂ ∂ ∂∫ ∫ 
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2

1 1
d d

n n
n

n i i
i ii i n

fx x
x x x
γγ

= =

∂ ∂
= =

∂ ∂ ∂∫ ∫ 

 
The Intersect Rule hence yields: 

2
1

1 1 1

2

1 1

d d

d d

n n

i i
i ii i

n n
n

i i
i ii i n

fx x
x x x

f
fx x

x x x

γ

γ

= =

= =

 ∂ ∂ 
  ∂ ∂ ∂  
  ∇ = =
  ∂ ∂  
  ∂ ∂ ∂   

∫ ∫

∫ ∫

 

 




 
which now reduces the Hessian matrix system into a gradient equation. 

Assuming that f is a 2C  function—an assumption which holds true, given 
the existence of the Hessian of f—there must exist a certain solution space con-
sisting of all possible functions which satisfy the Hessian matrix system. The so-
lution space oftentimes consists of infinitely many elements, given the nature of 
second-order partial differential equations. The following section discusses the 
methodology and intuition behind determining the aforementioned solution 
space. 

4.2. The Jaffa Transform Derivation 

Lemma 4.1. For all Hessian matrices, there exists an integral transform that maps 
the Hessian matrix to its scalar-valued initial function, defined as: 

}{
2

1 1
d d

n n

f i k
k i i k

f x x f
x x= =

∂
= =

∂ ∂∫ ∫ 

J H
 

Proof. Recall the Hessian matrix implicit gradient form, as derived in Theo-
rem 1.1: 

[ ]

1

1 1

1 2

1

dd
d d

dd
d d

n

f n

n

n n

x x

x x

γγ

γ γ γ
γγ

 
 
 

= = ∇ ∇ ∇ 
 
 
  



   



H

 
Additionally, recall the Intersect Rule, a theorem which states that for all gra-

dient fields in n , the potential function, f, of the gradient field may be defined 
as: 

1 1
d

n n

i i i
i i

f xγ
= =

= = Λ∫ 

 
where: 

( ) ( ){ }1 1, , | , , di i n i n i ix x x x xρ ρ γΛ = = ∫ 

 
The set iΛ  may be referred to as the “integral set” of f’s gradient’s i-th com-

ponent, iγ . The Intersect Rule’s primary conjecture states that the general po-
tential function of a gradient field may be defined by intersecting the n integral 
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sets of the function’s gradient components, and, as a result, implicitly intersect-
ing the integrals of the n components with respect to the corresponding input 
variables. 

It is evident that the methods of the Intersect Rule may be utilized within the 
process of deriving the general solution space of a Hessian matrix system. With 
respect to the implicit gradient form above, in order to determine the compo-
nents of f’s gradient field, apply the Intersect Rule to each entry of the Hessian: 

1 1 1 1
1 1 2

1 1 2

d d d d
n

i n
i i n

x x x x
x x x x
γ γ γ γγ

=

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫ 



 
2 2 2 2

2 1 2
1 1 2

d d d d
n

i n
i i n

x x x x
x x x x
γ γ γ γγ

=

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫ 



 
  

1 2
1 1 2

d d d d
n

n n n n
n i n

i i n

x x x x
x x x x
γ γ γ γγ

=

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫ 



 
In terms of f: 

2 2 2
1

1 12
1 11 1 1

d d d d
n n

i n i
i ii n i

f f fx x x x
x x x x x x
γγ

= =

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫

 

 
2 2 2

2
2 1

1 11 2 2 2

d d d d
n n

i n i
i ii n i

f f fx x x x
x x x x x x x
γγ

= =

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫

 

 
  

2 2 2

1 2
1 11

d d d d
n n

n
n i n i

i ii n n i n

f f fx x x x
x x x x x x
γγ

= =

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫

 

 
By the Intersect Rule, the above intersections must provide the general com-

ponents of f’s gradient field. The result of the first stage of the mapping: 
2

1 1
1 2

2
1 2

2

1

d

d

d

n

i
i i

n

i
i i

n n

i
i i n

f x
x x

f x
f x x

f x
x x

γ
γ

γ

=

=

=

 ∂
 ∂ ∂    ∂    ∇ = = ∂ ∂        
 ∂
 ∂ ∂ 

∫

∫

∫











 
Hence, f∇  has been determined. 
Note that the Intersect Rule may be utilized yet again in order to derive f given 

its gradient field, as the first stage of the mapping transformed the Hessian ma-
trix system into a gradient equation: 

1
d

n

k k
k

f xγ
=

= ∫
 

Expanding the intersection: 

1 1 2 2
1

d d d d
n

k k n n
k

f x x x xγ γ γ γ
=

= =∫ ∫ ∫ ∫ 
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Describing kγ  in terms of f: 
2 2

1
1 11

d d d d
n n

i i n
i ii i n

f ff x x x x
x x x x= =

∂ ∂
=

∂ ∂ ∂ ∂∫ ∫ ∫ ∫

 

 

Condensing the above intersections: 
2

1 1
d d

n n

i k
k i i k

ff x x
x x= =

∂
=

∂ ∂∫ ∫ 

 

The above process is referred to as the Jaffa Transform, a new method of de-
riving general solutions to Hessian matrix systems. The Jaffa Transform maps a 
matrix-valued function to a scalar-valued function, particularly, transforming a 
Hessian matrix system to the solution space of its entries, which completes the 
proof of Lemma 4.1. To formally define the Jaffa Transform of the Hessian of f: 

{ }
2

1 1
d d

n n

f i k
k i i k

f x x
x x= =

∂
=

∂ ∂∫ ∫ 

J H                   (5) 

The Jaffa Transform applies the Intersect Rule twice, utilizing the information 
given within the Hessian matrix, in order to solve Hessian systems. Assuming 
the conjecture of the Intersect Rule holds true, the Jaffa Transform directly pro-
duces the generalized solution space of the Hessian matrix, the space consisting 
of all functions which satisfy the system. 

5. Properties of the Jaffa Transform 

By definition, the Jaffa Transform of the Hessian of f is always equivalent to the 
general form of f. As in: 

{ }
2

1 1
d d

n n

f i k
k i i k

f x x f
x x= =

∂
= =

∂ ∂∫ ∫ 

J H
 

Through this, crucial properties of the transform may be derived, as carried 
out within the following section. 

5.1. Closed under Matrix Addition 

Lemma 5.1. For all 2C  scalar-valued functions f and g in n  with Hessian 
matrices fH  and gH , respectively: 

{ } { } { }f g f g+ = +J H H J H J H
 

Proof. Consider the n × n Hessian matrices of 2C  scalar-valued functions f 
and g: 

2 2

2
1 1

2 2

2
1

n

f

n n

f f
x x x

f f
x x x

 ∂ ∂
 ∂ ∂ ∂ 
 =
 
∂ ∂ 

 ∂ ∂ ∂ 



  



H

 

2 2

2
1 1

2 2

2
1

n

g

n n

g g
x x x

g g
x x x

 ∂ ∂
 ∂ ∂ ∂ 
 =
 
∂ ∂ 

 ∂ ∂ ∂ 



  



H

 

The sum of the above matrices: 
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2 2 2 2

2 2
1 1 1 1

2 2 2 2

2 2
1 1

n n

f g

n n n n

f f g g
x x x x x x

f f g g
x x x x x x

   ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂ ∂ ∂   
   + = +
   
∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂   

 

     

 

H H

 
Matrix addition property: 

2 2 2 2

2 2
1 1 1 1

2 2 2 2

2 2
1 1

n n

f g f g

n n n n

f g f g
x x x x x x

f g f g
x x x x x x

+

 ∂ ∂ ∂ ∂
+ + ∂ ∂ ∂ ∂ ∂ ∂ 

 + = =
 
∂ ∂ ∂ ∂ + + ∂ ∂ ∂ ∂ ∂ ∂ 



  



H H H

 
The Jaffa Transform of the sum of the matrices: 

{ } { }f g f g++ =J H H J H
 

By definition: 

{ } { } ( ) ( )f g f g f g++ = = +
 J H H J H x x

 
With respect to the sum of the Jaffa Transforms of the matrices: 

{ } { }f g+J H J H
 

Recall that: 

{ } ( )f f=
J H x

 
{ } ( )g g=

J H x
 

Substituting: 

{ } { } ( ) ( )f g f g+ = +
 J H J H x x

 
Hence: 

{ } { } { }f g f g+ = +J H H J H J H                   (6) 

5.2. Closed under Scalar Multiplication 

Lemma 5.2. For all 2C  scalar-valued functions f in n  with Hessian matrix 

fH , and scalar β ∈ : 

{ } { }f fβ β=J H J H
 

Proof. Consider the Hessian of f as described within Lemma 5.1: 
2 2

2
1 1

2 2

2
1

n

f

n n

f f
x x x

f f
x x x

 ∂ ∂
 ∂ ∂ ∂ 
 =
 
∂ ∂ 

 ∂ ∂ ∂ 



  



H

 
Consider the Hessian of the scalar multiple of f by a factor of β ∈ : 
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2 2 2 2

2 2
1 1 1 1

2 2 2 2

2 2
1 1

n n

f f

n n n n

f f f f
x x x x x x

f f f f
x x x x x x

β

β β

β β

β β

   ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂ ∂ ∂   
   = = =
   

∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂   

 

     

 

H H

 
The Jaffa Transform of the Hessian of fβ : 

{ } { } ( )f f fβ β β= =
J H J H x

 

Consider the product of β and the Jaffa Transform of the Hessian of f: 

{ }fβJ H
 

By definition: 

{ } ( )f fβ β= J H x
 

Hence: 

{ } { }f fβ β=J H J H                       (7) 

5.3. Linearity of the Jaffa Transform Operator 

The conditions required to establish the linearity of an operator is that of being 
closed under the addition and subtraction of inputs, and under real scalar mul-
tiplication. Consequently, the results of (6) and (7) convey that the Jaffa Trans-
form evidently abides by the conditions of linearity as an operator. Hence, the 
Jaffa Transform is a linear operator. 

Given the linearity of the Jaffa Transform, linear combinations of the trans-
form also satisfy the Hessian matrix system. To contextualize this, suppose there 
exists an arbitrary Hessian, hH , that may be defined as: 

h f g= +H H H  
The resulting Hessian matrix system will possess the following Jaffa Trans-

form solutions: 

{ } { }h f g= +J H J H H
 

Which must be, by definition, a scalar field in n . Considering the linearity 
of the transform, the solutions may be separated, given the transform’s being 
closed under input matrix addition: 

{ } { } { }h f g= +J H J H J H
 

Additionally, let 1f c δ=  and 2g c σ= , where 1 2,c c ∈ . Describing f and g 
in terms of δ and σ, respectively: 

{ } { } { }1 2h c cδ σ+=J H J H J H  
Hence, linear combinations of the solutions must also satisfy the Hessian ma-

trix system, given the transform’s being closed under real scalar multiplication. 
Thus, the principle of superposition holds as a result of the transform’s linearity. 
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The uniqueness of the Jaffa Transform’s linearity roots in the mapping of 
spaces. As in, the Jaffa Transform maps a real square matrix space to a scalar 
field in Euclidean space. The Jaffa may thus be described in terms of its domain 
and codomain as: 

( ),: n
n n → J  

As a result, the Jaffa is one of the few linear integral transform operators that 
maps between differing real spaces as a whole, as opposed to differing domains, 
exclusively. 

6. Notable Jaffa Transforms 

This section discusses the Jaffa Transform of notable Hessian Matrices, and the 
prevalence of said Jaffa Transforms. Particularly proving the existence of func-
tions for which the Hessian is identical to the n × n zero matrix, identity matrix, 
and Bordered Hessian. 

6.1. The Zero Matrix 

Lemma 6.1. For the n × n zero matrix, n0 , there exists a scalar-valued function, 
f, such that }{ nf = J 0 , defined as: 

{ }
1

, where and
n

n i i i
i

C a x a C
=

= + ∈∑ 0J
 

Proof. Consider the n × n zero matrix: 

0 0

0 0
n

 
 =  
  



  



0

 
The proposed conjecture is that there exists a scalar-valued subspace, f, such 

that f n≡H 0 . To determine f, apply the Jaffa Transform to the zero matrix: 

{ } ( ) ( )1 1 10d 0d d 0d 0d dn n n nx x x x x x= ∫ ∫ ∫ ∫ ∫ ∫     J 0
 

Evaluating the integrals: 

{ } ( ){ } ( ){ }
( ){ } ( ){ }

1 1 2 1 1 1

1 1 2 1 1

, , , , d

, , , , d

n n n n n

n n n n n

b f x x b f x x x

c g x x c g x x x

−

−

= + +

+ +

∫
∫

 

 

  

   

J 0

 

where, ,i ib c ∈ . Intersecting the integral sets: 

{ } ( ) ( )1 2 1 1 2d dn n n nb b b x c c c x= + + + + + +∫ ∫   J 0
 

Summing the constant terms: 

{ } 1 1d dn n na x a x= ∫ ∫J 0
 

Evaluating the n indefinite integrals: 

{ } ( ){ } ( ){ }1 1 1 2 1 1, , , ,n n n n n na x x x a x x xρ ρ −= + +  J 0
 

Intersecting the n integral sets: 
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{ } 1 1 2 2 3 3
1

n

n n n i i
i

C a x a x a x a x C a x
=

= + + + + + = +∑J 0
 

Hence: 

{ }
1

n

n i i
i

C a x
=

= +∑J 0                        (8) 

A notable property of the generalized zero matrix: 

( )tr 0n ≡0  

Recall the Laplacian Trace property of Hessian matrices, which states that for 
all Hessian matrices: 

( ) 2
2

1
tr

n

f
i i

f f
x=

∂
= = ∇

∂∑H
 

Thus: 

( ) 2tr 0n f= ∇ ≡0  

Which implies that the function f satisfies the n-th dimensional Laplace equa-
tion. By definition: 

{ }2 2 0nf∇ = ∇ ≡J 0  
This evidently conveys that the zero matrix possesses a harmonic Jaffa Trans-

form, as the Jaffa Transform satisfies the Laplace equation. Therefore, the Jaffa 
Transform was utilized to derive harmonic functions. 

6.2. The Identity Matrix 

Lemma 6.2. For the n × n identity matrix, nI , there exists a scalar-valued func-
tion, f, such that }{ nf = J I , defined as: 

{ } 2

1

1 , where and
2

n

n i i i i
i

C x a x a C
=

+ + ∈= ∑ J I
 

Proof. Consider the n × n identity matrix: 

1 0 0
0

1 0
0 0 1

n

 
 
 =
 
 
 



 





I

 
The conjecture proposed states that there exists a scalar-valued subspace, f, 

such that f n≡H I . To determine f, apply the Jaffa Transform to the identity 
matrix: 

{ } ( ) ( )1 1 1d 0d d 0d d dn n n nx x x x x x= ∫ ∫ ∫ ∫ ∫ ∫     J I
 

Integrating: 

{ } ( ){ } ( ){ }
( ){ } ( ){ }

1 1 2 1 1 1 1

1 1 2 1 1

, , , , d

, , , , d

n n n n

n n n n n

x f x x b f x x x

c g x x x g x x x

−

−

= + +

+ +

∫
∫

 



  

     

J I
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where, ,i ib c ∈ . The intersection of the integral sets simplifies to: 

{ } ( ) ( )1 1 1 1 1 1d dn n n n nx b b x x c c x− −+= + + + + +∫ ∫   J I
 

Summing the constant terms: 

{ } ( ) ( )1 1 1d dn n n nx a x x a x= + +∫ ∫ J I
 

Evaluating the n indefinite integrals: 

{ } ( ) ( )
22

1
1 1 1 2 1 1, , , ,

2 2
n

n n n n n n
xx a x x x a x x xρ ρ −

  
+ + + +   

  
=


  J I

 

Intersecting the n integral sets: 

{ }
22 2

21 2
1 1 2 2

1

1
2 2 2 2

n
n

n n n i i i
i

xx xC a x a x a x C x a x
=

+ + + + + + + = + += ∑J I
 

Hence: 

{ } 2

1

1
2

n

n i i i
i

C x a x
=

= + +∑J I                     (9) 

Manipulating the summation: 

{ } 2

1 1

1
2

n n

n i i i
i i

C x a x
= =

+ += ∑ ∑J I
 

By the results of Lemma 6.1, it can be concluded that: 

{ } { } 2

1

1
2

n

n n i
i

x
=

= +∑J 0I J
 

6.3. The Bordered Hessian 

Lemma 6.3. For the Bordered Hessian, ΛH , as described in (3), there exists a 
Jaffa Transform such that: 

{ } ( ), , whereC CλΛ = + ∈
 J H x  

Proof. Recall the Bordered Hessian in implicit gradient form, as stated in (3), 
which describes the Bordered Hessian in terms of the constraint function, g, and 
optimized function, f: 

T0

f g

g
g λ−

 −∇
=  −∇  

H
H

 

The conjecture proposed states that the Bordered Hessian possesses a Jaffa 
Transform always equivalent to the Lagrange function. By definition, the Jaffa 
Transform maps a Hessian matrix to the corresponding scalar-valued initial func-
tion. As in, for all Hessian matrices of function f: 

{ } ( )f f=
J H x

 
As proven in Section 3.1, the Hessian of the Lagrange function is, indeed, the 

Bordered Hessian. Considering this notion, in cohesion with the definition of the 
Jaffa Transform, it is fair to conclude that: 
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{ } ( ),C λΛ = +
J H x                      (10) 

7. The Inverse Jaffa Transform 

This section discusses the notion of the existence of an inverse operator for any 
given linear operator. Noting that the Jaffa Transform is a linear operator, it is 
proved that the conditions for invertibility apply to the Jaffa Transform. 

7.1. Invertibility of Linear Operators 

The invertibility of a linear operator roots in its surjectivity and injectivity, as in, 
a linear operator must be bijective in order to be invertible. To restate the condi-
tions of invertibility, consider linear operator T, defined as: 

( ) 1 2:T Ω →Ω
x  

Which indicates: 

( ) 1domain T = Ω  ( ) 2codomain T = Ω  

T is said to be invertible if and only if: 

( ) ( )( ) ( )( )2 1 1 2: , Ω| , ΩS S T T S∃ Ω →Ω = = ∀ ∈ ∈
      y x x y y x y

 
The above condition hence defines ( ) ( )1S T −=

 y x . The existence of such an 
operator indicates the invertibility of ( )T x . 

7.2. Invertibility of the Jaffa Transform 

Lemma 7.1. The invertibility of the Jaffa Transform roots in the existence of the 
Hessian matrix. As in: 

{ }1
ff− =J H  

Proof. Recall that the Jaffa Transform is a linear operator, which transforms a 
real square matrix space to a scalar field in nth dimensional Euclidean space. To 
define the transform in terms of its domain and codomain: 

( ),: n
n n → J  

By definition, the inverse of a linear operator—assuming the existence of an 
inverse—must map from the codomain to the domain of the transform. Let 

{ }1X f−= J  be defined as: 

( ),: n
n nX →   

Such that: 

{ }( ) ( ),f f f n nX = ∀ ∈ J H H H
 

and: 

( ){ } nX f f f= ∀ ⊂ J
 

Substituting { }f f=J H : 

{ }( ) ( )f fX X f= =J H H
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Hence: 

( ) fX f = H  
It is majorly apparent that, in order to inverse the mapping of a Hessian ma-

trix to its corresponding initial function, it is necessary to take the Hessian ma-
trix of the initial function. Thus, it holds that: 

{ }1
ff− =J H                         (11) 

Essentially, considering the Hessian matrix is the inverse Jaffa Transform, the 
Jaffa Transform may, as a result, be viewed and treated as the inverse Hessian 
operator. However, it is absolutely crucial to distinguish between the inverse 
Hessian matrix, 1

f
−H , and the Jaffa Transform. The inverse Hessian matrix only 

exists assuming the functionality of the Hessian determinant, and is, by defini-
tion, a matrix for which the matrix product with the Hessian yields the identity 
matrix. 

Meanwhile, the Jaffa Transform is the inverse mapping of the Hessian matrix, 
as it intakes members of the codomain of the Hessian, and transforms said in-
puts to functions within the domain of the Hessian operator. By this, it is fair to 
state that { }1 1

ff− −≠J H . 

8. Harmonic Jaffa Transforms 

This section derives Poisson’s equation, then briefly introduces and discusses the 
Laplace equation, its applications, and its correlation to Poisson’s equation of 
heat conduction and electrostatic. The section then proceeds to examine the 
prevalence of the Jaffa Transform in deriving nth dimensional solutions to the 
Laplace equation, by transforming Hessian matrices with ( )tr 0f ≡H , to gene-
ralized harmonic functions, satisfying the Laplace equation. The section con-
cludes with the notion of the Jaffa Theorem, a fundamental principle in the cal-
culus of sets which ensures the existence of harmonic Jaffa Transforms for all 
traceless Hessian matrices. 

8.1. Poisson’s Equation of Electrostatic 

Recall Gauss’s law regarding the electric flux through a closed surface: 

0

v
E

ρφ =
  

where, Eφ  is the electric flux through a surface of volume v, vρ  is the charge 
density, and 0  is the electric constant—also referred to as the electric permit-
tivity. 

Note that electric force possesses an associated electric potential. By this, in an 
electric potential scalar field, V, the electric force vector field, E , is given by the 
relation: 

V= −∇E  
This relation holds true given that the electric potential decreases as it is con-
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verted to electric force energy. Also, note the proportionality of the electric flux 
density [4] vector field, D , and the electric force vector field, E : 

0 0 V= = − ∇ D E  
With 0  as the constant of proportionality. The electric flux through a sur-

face is, by definition, the divergence of the electric force vector field, hence, the 
following relation exists: 

0 0

1 v
E

ρφ = ∇⋅ = ∇⋅ =
 

D E
 

Multiplying both sides by 0  yields: 

vρ∇⋅ =D  
Which is oftentimes referred to as the differential form of Gauss’s law of elec-

tric flux [5]. Describing the electric charge density in terms of the electric poten-
tial field through the substitution 0 V= − ∇D  : 

0 vV ρ∇⋅− ∇ =  

By the dot product scalar multiplication property: 

0 vV ρ− ∇⋅∇ =  

Dividing both sides by 0− : 

0

vV ρ−
∇⋅∇ =

  

The dot product of the gradient vector with itself may be condensed into: 

2

0

vV ρ−
∇ =

  
The 2∇  operator is referred to as the Laplacian operator, and shall be dis-

cussed in greater depth within the following section. The derived equation is re-
ferred to as Poisson’s equation of electrostatic [6], and is utilized in the modeling 
of flows within systems containing external force. An illustration of this notion 
roots in the modeling of unsteady-state heat conduction, as in, heat conduction 
within a region containing either a heat source or sink. By the notion of external 
force roots another form of Poisson’s equation: 

( )2V xσ∇ =  
where ( )xσ  is the external force function [7]—oftentimes referred to as the ex-
ternal source function or component. It is crucial to note that, generally, Pois-
son’s equation is an inhomogeneous second-order partial differential equation. 
However, there exists a particular homogeneous case of Poisson’s equation, the 
Laplace equation. 

8.2. The Laplace Equation 

As previously mentioned, the Poisson equation is generally nonhomogeneous, 
given its application in the representation of flows through regions containing 
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external force. With that, in order to represent a flow through a region without 
external force, the homogeneous Poisson equation emerges, in the form of the 
Laplace equation. 

The nth dimensional Laplace partial differential equation [8] is a particular 

homogeneous case of Poisson’s equation, which implies that 
0

0vρ− =


, indicat-

ing a steady-state heat conduction system, suggesting the absence of heat sources 
and sinks. The Laplace equation states that for nth dimensional function, u: 

2 0u u∇ = ∆ ≡  
where 2∇  and ∆  are the Laplacian operators, defined as the Euclidean inner 
product of the gradient operator vector with itself—also referred to as the squared 
norm of the gradient operator. As in: 

22 ,∇ = ∇ ∇ = ∇ = ∆  
Expressing the Laplace equation in terms of the inner product of the gradient 

vector: 
2 0u u∇ = ∇⋅∇ ≡  

Let u= ∇


U , which implies that 


U  is the conservative gradient field asso-
ciated with u: 

( )2 div 0u∇ = ∇⋅ = ≡
 

U U
 

Consequently, the Laplacian of a scalar field represents the divergence of its 
corresponding gradient vector field. The divergence of a vector field is, by defi-
nition, the amount of outward flow at a given input point within the field. In this 
context, the divergence of 



U  depicts the amount of outward flow at any given 
point in the gradient of u. 

Given that the divergence of the gradient field is identical to zero, for any and 
every input point within 



U , there is no outward flow divergence, and, similarly, 
no inward flow convergence. 

Suppose that 


U  represents a particular heat conduction flow through a real 
space. This implies that at any given point within the gradient space, there does 
not exist a heat source or sink. Put simply, there is no external force that applies 
added heat or cooling to the system, which implies that 



U  depicts the flow of 
an isolated heat conduction system. 

The absence of sources and sinks within a vector field implies that the field 
portrays an incompressible flow. As a result, all functions which satisfy the Lap-
lace equation have incompressible gradient fields. 

8.3. Applications of the Laplace Equation 

The Laplace equation possesses various physical applications, particularly in the 
context of describing incompressible, irrotational flows within physical spaces. 
As previously established, all solutions to the Laplace equation—referred to as 
harmonic functions—by definition, hold the property of having an incompressi-
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ble gradient field. A vector field, Φ , is said to be incompressible if and only if: 

( )div , 0= ∇⋅ = ∇ ≡Φ Φ Φ  

Suppose there exists a function, ϕ , such that ϕ= ∇Φ , which implies that 
ϕ  is the potential function of Φ . Given the components of Φ , ϕ  may be 
determined through the Intersect Rule. In assumption that there exists such a 
ϕ —signifying that Φ  is conservative—substitute ϕ= ∇Φ  in the above equ-
ation: 

( ) 2div , 0ϕ ϕ ϕ ϕ∇ = ∇⋅∇ = ∇ ∇ = ∇ ≡  

Which is, by definition, the Laplacian operator applied on ϕ . Hence, ϕ  is a 
harmonic function, satisfying the Laplace equation. With respect to steady-state 
flows, the harmonic function, ϕ , is referred to as the potential flow within a 
space, whilst Φ  is referred to as the flow’s velocity. However, it is worth noting 
that the potential flow is occasionally correlated to the flow velocity by: 

ϕ= −∇Φ  
Given the nature of increasing kinetic energy implying decreasing potential 

energy due to energy conversion. However, for the sake of consistency, the corre-
lation ϕ= ∇Φ  shall be utilized when describing flow velocity in terms of po-
tential flow. 

With respect to the irrotational flows depicted by harmonic functions, recon-
sider vector field Φ , which is defined as conservative, given the existence of a 
corresponding scalar-valued potential function. A vector field is said to be irro-
tational if, at all given points within the vector field, the curl is zero. 

The curl of a vector field is, by definition, the amount of rotation at a given 
input point within the field. Hence, if the curl of a vector field is identical to ze-
ro, then there exists the absence of any rotation within the field. Meaning that, at 
any and every input point in the vector field, there is no vortex rotation. 

Suppose that vector field Φ  represents the flow of a particular fluid within a 
real space. The complete absence of curl in the vector field directly conveys that, 
at any input point in the field, the fluid flowing through said region will never 
rotate and curl in a vortex-like manner. 

To correlate harmonic functions to irrotational fluid flow, recall the irrotational 
property of conservative vector fields, which states that: 

( )Curl 0ϕ ϕ∇ = ∇×∇ ≡  

Utilizing the relation ϕ= ∇Φ : 

( ) ( )Curl Curl 0ϕ∇ = = ∇× ≡Φ Φ  

Therefore, solutions to the Laplace equation are utilized in order to describe 
steady-state physical systems of incompressible and irrotational flow, amongst 
various other applications. This notion proves particularly prevalent with respect 
to incompressible and irrotational fluid mechanics, and may be extended to var-
ious coordinate systems. Although, within the following section, assume the Lap-
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lacian operator refers to that of Cartesian coordinates, as opposed to spherical 
and cylindrical coordinate system. 

8.4. The Jaffa Theorem 

The Hessian matrix is correlated to the Laplace equation by the Laplacian trace 
property. As in, the sum of the terms along the central diagonal of the Hessian 
matrix—which is, by definition, the trace of the Hessian—is equivalent to the 
Laplacian operator applied to the Hessian’s initial function. 

Consider an arbitrary scalar-valued function, f in n , with existing conti-
nuous second partial derivatives. The Laplacian operator is defined as the Eucli-
dean inner product of the gradient vector with itself, as previously mentioned: 

1 1
2 ,

n n

x x

x x

∂ ∂   
   ∂ ∂   

∇ = ∇ ∇ = ⋅   
   ∂ ∂   
∂ ∂      

 

 

Evaluating the inner product: 
2 2 2

2
2 2 2

11

n

in ix x x=

∂ ∂ ∂
∇ = + + =

∂ ∂ ∂∑

 

Applying the Laplacian operator to f: 

( )
2 2 2

2
2 2 2

11

tr
n

f
in i

f f ff
x x x=

∂ ∂ ∂
∇ = + + = =

∂ ∂ ∂∑ H
 

As mentioned in the previous section, a function is said to be harmonic if and 
only if it satisfies the Laplace equation. As in, the Laplacian of the function must 
be identical to zero in order to be considered harmonic. 

Suppose that f is harmonic. This implies that f satisfies the Laplace equation, 
and it thus holds that, by definition: 

( )2 tr 0ff∇ = ≡H
 

Hence, the Laplacian trace property consequently yields another property, which 
states that, if the initial function is harmonic, then its corresponding Hessian ma-
trix will be traceless. 

Theorem 8.1. Recall the Laplacian trace property of Hessian matrices, which 
states: 

( ) 2
2

1
tr

n

f
i i

f f
x=

∂
= = ∇

∂∑H
 

Essentially, the sum of the terms along the central diagonal of any Hessian ma-
trix is equivalent to the Laplacian of the initial function, f. The proof of this prop-
erty is above. The property proves vital in the derivation of harmonic functions 
through the use of the Jaffa Transform. 

The theorem states: 
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( ) { } { }2tr 0 | 0f f f≡ ⇔ ∃ ∇ ≡H J H J H               (12) 

The proposition of (12) is referred to as the Jaffa Theorem, which states that if 
and only if the trace of the Hessian of f is identical to zero, then there always ex-
ists a harmonic Jaffa Transform of f, which satisfies the Laplace equation. 

The proof of the Jaffa Theorem lies in elementary mathematical deduction. By 
definition, the Jaffa Transform maps the Hessian of scalar-valued function f back 
to f. Hence, if the initial function is harmonic, this implies that the Jaffa Trans-
form of its Hessian matrix is also harmonic. Moreover, the Laplacian trace prop-
erty may be utilized to determine the harmonic nature of the initial function. 
Therefore, if the trace of the generalized Hessian of f is identical to zero, then the 
initial function, f, is harmonic, and, as a result, the Jaffa Transform of the Hes-
sian of f is harmonic. 

Harmonic Jaffa Transforms exist due to the Laplacian trace property, and the 
mapping between Hessian matrices and initial functions. Suppose there exists a 
Hessian matrix of a scalar valued initial function, f, with ( )tr 0f ≡H . Consider 
the definition of the Jaffa Transform: 

{ }
2

1 1
d d

n n

f i k
k i i k

f x x f
x x= =

∂
= =

∂ ∂∫ ∫ 

J H
 

Given that f is harmonic, it must hold that: 

1 1
2

2
1

, 0
n

i i

n n

f f
x x

ff f
x

f f
x x

=

∂ ∂   
   ∂ ∂    ∂

∇ = ∇ ∇ = ⋅ = ≡   
∂   ∂ ∂   

∂ ∂      

∑ 

 
The Jaffa Transform yields the generalized form of the initial function of the 

Hessian matrix. Utilizing the substitution { }ff = J H  results in: 

{ } { }

{ }

{ }

{ }

{ }

{ }1 1
2

2
1

, 0

f f

n
f

f f
i i

f f

n n

x x

x

x x

=

   ∂ ∂
   

∂ ∂    ∂   ∇ = ∇ ∇ = ⋅ = ≡    ∂
   ∂ ∂
   

∂ ∂      

∑ 

J H J H

J H
J H J H

J H J H

 
Which implies that the Jaffa Transform of the Hessian of f satisfies the Laplace 

equation, meaning it is harmonic. Thus, a Jaffa Transform is said to be harmonic 
if it is the transform of a traceless Hessian matrix. To restate this, harmonic Jaffa 
Transforms are defined as the transforms of Hessian matrices of harmonic func-
tions. 

As a result, any Hessian matrix with zero trace at all given input values must 
always possess a Jaffa Transform that satisfies Laplace equation. Hence, through 
the Jaffa Theorem, various new solutions to the Laplace equation may be derived 
for all dimensions. The Jaffa Transform is extendable into all quasi-infinite di-
mensional functions, which implies that there exist infinite dimensional harmonic 
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functions. 
Although, it is crucial to note that said functions no longer exist in Euclidean 

space, however, in 2
  Hilbert space, also referred to as 2

  Lebesgue measure 
space. Additionally, the physical notion of an infinite dimensional function grows 
increasingly abstract, however, theoretically, may exist within infinite dimensional 
Hilbert spaces. 

Given a quasi-infinite dimensional Hessian matrix space with zero trace, the 
infinite dimensional harmonic initial function may be defined through the Jaffa 
Transform as: 

{ }
2

1 1
d df n k

k n n k

f x x
x x

∞ ∞

= =

∂
=

∂ ∂∫ ∫ 

J H
 

Thus, the Jaffa Theorem ensures not exclusively the existence of finite dimen-
sional harmonic functions, however, that of abstract infinite dimensional Lapla-
cian harmonic functions, contributing to the field of infinite dimensional har-
monic analysis. 

By the Jaffa Theorem, various nth dimensional solutions to the Laplace equa-
tion may be derived. When given a traceless Hessian matrix, the Jaffa Transform 
may be utilized in order to determine a solution that satisfies both the Hessian 
matrix system and the nth dimensional Laplace equation. 

9. Discussion 

The Jaffa Transform is a new, invertible, linear integral transform method of 
solving partial differential equations by mapping an n × n matrix space to a cor-
responding scalar-valued function in nth dimensional Euclidean space. The Jaffa 
Transform utilizes notions from the calculus of sets, by applying the Intersect 
Rule twice, in order to derive solutions to Hessian matrix systems, and, under 
certain circumstances, the Laplace equation. The Jaffa Theorem deploys the Jaffa 
Transform in order to establish a principle that may be used in the derivation of 
nth dimensional solutions to the Laplace equation. Hence, new solutions to the 
Laplace equation may be derived, given the existence of harmonic Jaffa Trans-
forms, and the correlation between Hessian matrices and the Laplacian. Overall, 
the Jaffa Transform is a pivotal innovation in the field of vector calculus and 
partial differential equations, as it correlates concepts from the calculus of sets in 
order to transform and solve various linear second-order partial differential eq-
uations. 
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