Weak External Bisection of Some Graphs

Yumin Liu ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, China
${ }^{2}$ Department of Mathematics, Lishui University, Lishui, China
Email: lym6666887@163.com

How to cite this paper: Liu, Y.M. (2024) Weak External Bisection of Some Graphs. Journal of Applied Mathematics and Physics, 12, 91-97.
https://doi.org/10.4236/jamp.2024.121009
Received: December 6, 2023
Accepted: January 22, 2024
Published: January 25, 2024
Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Let G be a graph. A bipartition of G is a bipartition of $V(G)$ with $V(G)=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\varnothing$. If a bipartition satisfies $\left\|V_{1}|-| V_{2}\right\| \leq 1$, we call it a bisection. The research in this paper is mainly based on a conjecture proposed by Bollobás and Scott. The conjecture is that every graph G has a bisection $\left(V_{1}, V_{2}\right)$ such that $\forall v \in V_{1}$, at least half minuses one of the neighbors of v are in the $V_{2} ; \forall v \in V_{2}$, at least half minuses one of the neighbors of v are in the V_{1}. In this paper, we confirm this conjecture for some bipartite graphs, crown graphs and windmill graphs.

Keywords

Weak External Bisection, Bipartite Graph, Windmill Graph

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. An external bipartition of G is $V(G)=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\varnothing$ and requires that at least half of the neighbors of each vertex are in the other part. If a bipartition satisfies $\left|\left|V_{1}\right|-\left|V_{2}\right|\right| \leq 1$, we call it a bisection and denote it by $\left(V_{1}, V_{2}\right)$. Ban and Linial [1] showed that every class 1,3 or 4 regular graph G has an external bisection. Bollobás and Scott [2] observed that not every graph has an external bisection. In the same paper, they gave a counterexample that $K_{2 l+1, m}$, where $m \geq 2 l+3$ doesn't have an external bisection. Esperet, Mazzuoccolo and Tarsi [3] found a set of cubic graphs without external bisection and containing at least 2 bridges.

For vertices $u, v \in V(G)$, if $u v \in E(G)$, then edge $u v$ is said to be associated with u and v. The degree of v is the number of edges in G associated with v, denoted as $d(v)$. Let $\left(V_{1}, V_{2}\right)$ be a bisection of G. For a vertex v in V_{1}, the internal degree of v is the number of the edges associated with v and other endpoints
of these edges are in V_{1} too; and the external degree of v is the number of the edges associated with v and other endpoints of these edges are in V_{2}. For a vertex v in V_{2}, the internal degree of v is the number of the edges associated with v and other endpoints of these edges are in V_{2}; and the external degree of v is the number of the edges associated with v and other endpoints of these edges are in V_{1}. The internal degree of v is denoted as $d_{\text {in }}(v)$ and the external degree of v is denoted as $d_{e x}(v)$.

A graph is said to be a bipartite graph, denoted by $G[X, Y]$, if the set of vertices of the graph can be partitioned into two non-empty subsets X and Y such that no two vertices in X are connected to each other with an edge and no two vertices in Y are connected with an edge.

The crown graph of [4] $G_{n, m}$ satisfies the condition:

$$
\begin{gathered}
V\left(G_{n, m}\right)=\left\{u_{i} \mid i=1,2, \cdots, n\right\} \cup\left\{v_{i} \mid i=1,2, \cdots, n\right\} \bigcup_{i=1}^{n}\left\{u_{i j} \mid j=1,2, \cdots, m\right\} \\
E\left(G_{n, m}\right)=\left\{u_{1} u_{2}, u_{2} u_{3}, \cdots, u_{n} u_{1}\right\} \cup\left\{v_{1} v_{2}, v_{2} v_{3}, \cdots, v_{n} v_{1}\right\} \cup\left\{v_{1} u_{1}, v_{2} u_{2}, \cdots, v_{n} u_{n}\right\} \\
\bigcup_{i=1}^{n}\left\{u_{i} u_{i j} \mid j=1,2, \cdots, m\right\} \bigcup_{i=1}^{n}\left\{u_{i j} u_{i(j+1)} \mid j=1,2, \cdots, m-1\right\}, \quad(n \geq 3, m \geq 1)
\end{gathered}
$$

For example, Figure 1 shows $G_{3,3}$.
A windmill graph $K_{m}^{(n)}$ is a graph consisting of $n m$-order complete graphs K_{m} with a common vertex.
For example, Figure 2 shows $K_{4}^{(n)}$.
Conjecture 1.1. (Bollobás and Scott [2]). Every graph G has a weak external bisection that is G has a bisection $\left(V_{1}, V_{2}\right)$, such that:

$$
d_{e x}(v) \geq d_{i n}(v)-1 \text { for all } v \in V(G)
$$

Figure 1. $G_{3,3}$.

Figure 2. $K_{4}^{(n)}$.

Ji, Ma, Yan and Yu [5] showed that every graphic sequence has a realization for which Conjecture 1.1 holds. In the same paper, they gave an infinite family of counterexamples to Conjecture 1.1.

In this paper, we confirm this conjecture for some graphs by showing the following three theorems.

Theorem 1.1. Let $G[X, Y]$ be a bipartite graph with $|X|=3$, then $G[X, Y]$ admits a weak external bisection.

Theorem 1.2. Every crown graph $G_{n, m}$ admits a weak external bisection.
Theorem 1.3. Every windmill graph $K_{m}^{(n)}$ admits a weak external bisection.
In fact, by the proof Theorem 1.2, $G_{n, m}$ admits an external bisection.

2. Weak External Bisection

In this section, we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3.
Proof of Theorem 1.1. Let $G[X, Y]$ be a bipartite graph with two parts X and Y, we define $Y_{S}=\{y \in Y \mid N(y)=S, S \subseteq X\}$.

For a set S, we define a function:

$$
f(S)= \begin{cases}1 & \text { if }|S| \text { is odd } \tag{1}\\ 0 & \text { if }|S| \text { is even }\end{cases}
$$

Let $X=\left\{v_{1}, v_{2}, v_{3}\right\}$, and assume, without loss of generality, that:

$$
\left|Y_{\left\{v_{1}, v_{3}\right\}}\right| \geq\left|Y_{\left\{v_{1}, v_{2}\right\}}\right| \geq\left|Y_{\left\{v_{2}, v_{3}\right\}}\right| .
$$

Otherwise, we can re-label the three vertices in X. We give a weak external bisection $\left(V_{1}, V_{2}\right)$ of $V(G)$ by three steps.

First, let $\left\{v_{1}, v_{2}\right\} \subseteq V_{1}, \quad\left\{v_{3}\right\} \subseteq V_{2}, \quad Y_{\left\{v_{1}, v_{2}\right\}} \subseteq V_{2}$ and $Y_{\left\{v_{1}, v_{3}\right\}}^{*} \subseteq V_{1}$ where $Y_{\left\{1_{1}, v_{3}\right\}}^{*} \subseteq Y_{\left\{v_{1}, v_{3}\right\}}$ and $\left|Y_{\left\{v_{1}, v_{3}\right\}}^{*}\right|=\left|Y_{\left\{v_{1}, v_{2}\right\}}\right|$. Because $\left|Y_{\left\{v_{1}, v_{3}\right\}}\right| \geq\left|Y_{\left\{v_{1}, v_{2}\right\}}\right|$, such $Y_{\left\{v_{1}, v_{3}\right\}}^{*}$ exists. Let $Y_{\left\{v_{1}, v_{3}\right\}}^{* *}=Y_{\left\{v_{1}, v_{3}\right\}} \backslash Y_{\left\{v_{1}, v_{3}\right\}}^{*}$.

Then, we partition the odd sets of $Y_{\left\{v_{2}\right\}}, Y_{\left\{v_{1}\right\}}, Y_{\left\{v_{1}, v_{3}\right\}}^{* *}, Y_{\left\{v_{1}, v_{2}, v_{3}\right\}}, Y_{\left\{v_{2}, v_{3}\right\}}, Y_{\left\{v_{3}\right\}}$
one after another. Denote by $S_{1}, S_{2}, \cdots, S_{m}$, the odd sets of $Y_{\left\{v_{2}\right\}}, Y_{\left\{\left\{_{1}\right\}\right.}, Y_{\left\{\left\{_{1}, v_{3}\right\}\right.}^{* *}$, $Y_{\left\{v_{1}, v_{2}, v_{3}\right\}}, Y_{\left\{v_{2}, v_{3}\right\}}, Y_{\left\{v_{3}\right\}}$, with the same order. For each $i \in\{1, \cdots, m\}$, put $\left\lceil\frac{\left|S_{i}\right|}{2}\right\rceil$ vertices of S_{i} into V_{2} and $\left\lfloor\frac{\left|S_{i}\right|}{2}\right\rfloor$ vertices of S_{i} into V_{1} if i is odd; and put $\left\lceil\frac{\left|S_{i}\right|}{2}\right\rceil$ vertices of S_{i} into V_{1} and $\left\lfloor\frac{\left|S_{i}\right|}{2}\right\rfloor$ vertices of S_{i} into V_{2} if i is even.

Finally, denote by $T_{1}, T_{2}, \cdots, T_{k}$ the even sets of $Y_{\left\{v_{2}\right\}}, Y_{\left\{v_{1}\right\}}, Y_{\left\{v_{1}, v_{3}\right\}}^{* *}, Y_{\left\{v_{1}, v_{2}, v_{3}\right\}}$, $Y_{\left\{v_{2}, v_{3}\right\}}, \quad Y_{\left\{v_{3}\right\}}$. For each $i=1, \cdots, k$, put $\frac{\left|T_{i}\right|}{2}$ vertices of T_{i} into V_{1} and $\frac{\left|T_{i}\right|}{2}$ vertices of T_{i} into V_{2}.

Now, we show that V_{1} and V_{2} form a weak external bisection of $G[X, Y]$. Clearly, $\left|V_{1}\right|-\left|V_{2}\right|=0$ if m is odd, and $\left|V_{1}\right|-\left|V_{2}\right|=1$ if m is even. So $\left(V_{1}, V_{2}\right)$ is a bisection. Since $\left\{v_{1}, v_{2}\right\} \subseteq V_{1}$ and $Y_{\left\{v_{1}, v_{2}\right\}} \subseteq V_{2}$, then $d_{e x}(v)-d_{i n}(v)=2$ for each vertex $v \in Y_{\left\{v_{1}, v_{2}\right\}}$. Moreover, $\left|d_{e x}(v)-d_{i n}(v)\right|=1$ for each vertex $v \in Y_{S}$ if $S \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$ and $|S|=1$ or 3; and $d_{e x}(v)=d_{i n}(v)$ for each vertex $v \in Y_{S}$ if $S \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}, S \neq\left\{v_{1}, v_{2}\right\}$ and $|S|=2$. So, for each $v \in Y$, $d_{e x}(v) \geq d_{i n}(v)-1$.

Let:

$$
\begin{aligned}
& S_{1}=\left\{Y_{\left\{v_{1}\right\}}, Y_{\left\{v_{1}, v_{3}\right\}}^{* *}, Y_{\left\{v_{1}, v_{2}, v_{3}\right\}}\right\}, \\
& S_{2}=\left\{Y_{\left\{v_{1}, v_{2}, v_{3}\right\}}, Y_{\left\{v_{2}, v_{3}\right\}}\right\}, \\
& S_{3}=\left\{Y_{\left\{v_{1}, v_{3}\right\}}^{* *}, Y_{\left\{v_{1}, v_{2}, v_{3}\right\}}, Y_{\left\{v_{2}, v_{3}\right\}}, Y_{\left\{v_{3}\right\}}\right\} .
\end{aligned}
$$

Let $\mathcal{S}_{i}^{\prime}=\left\{S_{1}, S_{2}, \cdots, S_{m}\right\} \cap \mathcal{S}_{i}$, for each $i=1,2,3$. Note that $S_{1}, S_{2}, \cdots, S_{m}$ are the odd sets of $Y_{\left\{v_{2}\right\}}, Y_{\left\{v_{1}\right\}}, Y_{\left\{v_{1}, v_{3}\right\}}^{* *}, Y_{\left\{v_{1}, v_{2}, v_{3}\right\}}, Y_{\left\{v_{2}, v_{3}\right\}}, Y_{\left\{v_{3}\right\}}$, with the same order. Then, each \mathcal{S}_{i}^{\prime} contains several continuous set of $S_{1}, S_{2}, \cdots, S_{m}$. Let $\mathcal{T}_{i}=\left\{T_{1}, T_{2}, \cdots, T_{k}\right\} \cap \mathcal{S}_{i}$, for each $i=1,2,3$. We have:

$$
\begin{aligned}
& d_{e x}\left(v_{1}\right)=\left|Y_{\left\{v_{1}, v_{2}\right\}}\right|+\sum_{\substack{S_{i} \leq \mathcal{S}^{\prime} \\
i \text { is odd }}}\left[\left.\frac{\left|S_{i}\right|}{2}\left|+\sum_{\substack{S_{i} \leq \mathcal{S}^{\prime} \\
i \text { is even }}}\right| \frac{\left|S_{i}\right|}{2} \right\rvert\,+\sum_{T_{i} \leq \mathcal{T}_{1}} \frac{\left|T_{i}\right|}{2} ;\right. \\
& \left.d_{i n}\left(v_{1}\right)=\left|Y_{\left\{v_{1}, v_{3}\right\}}^{*}\right|+\sum_{\substack{S_{i} \leq \mathcal{S}_{i}^{\prime} \\
i \text { is odd }}} \left\lvert\, \frac{\left|S_{i}\right|}{2}\right.\right]+\sum_{\substack{S_{i} \leq \mathcal{S}_{1}^{\prime} \\
i \text { is even }}}\left[\frac{\left|S_{i}\right|}{2} \left\lvert\,+\sum_{T_{i} \leq \mathcal{T}_{1}} \frac{\left|T_{i}\right|}{2} .\right.\right.
\end{aligned}
$$

Since \mathcal{S}_{1}^{\prime} contains continuous set of $S_{1}, S_{2}, \cdots, S_{m}$, then we see that $\left|d_{e x}\left(v_{1}\right)-d_{\text {in }}\left(v_{1}\right)\right|=f\left(\mathcal{S}_{1}^{\prime}\right)$, where $f\left(\mathcal{S}_{1}^{\prime}\right)$ is defined as (1). It is easy to see that:

$$
\begin{aligned}
& d_{e x}\left(v_{2}\right)=\left|Y_{\left\{v_{1}, v_{2}\right\}}\right|+\left[\frac{\left.\mid Y_{\left\{v_{2}\right\}}\right\}}{2} \left\lvert\,+\sum_{\substack{S_{i} \leq \mathcal{S}^{\prime} \\
i \text { is odd }}}\left[\left.\frac{\left|S_{i}\right|}{2}\left|+\sum_{\substack{S_{i} \leq \mathcal{S}^{\prime} \\
i \text { is even }}}\right| \frac{\left|S_{i}\right|}{2} \right\rvert\,+\sum_{T_{i} \leq \mathcal{T}_{2}} \frac{\left|T_{i}\right|}{2} ;\right.\right.\right. \\
& \left.\left.d_{i n}\left(v_{2}\right)=\left\langle\frac{\left|Y_{\left\{v_{2}\right\}}\right|}{2}\right|+\sum_{\substack{S_{i} \leq \mathcal{S}_{2}^{\prime} \\
i \text { is odd }}} \right\rvert\, \frac{\left|S_{i}\right|}{2}\right\rfloor+\sum_{\substack{S_{i} \leq \mathcal{S}_{2}^{\prime} \\
i \text { is even }}}\left[\frac{\left|S_{i}\right|}{2} \left\lvert\,+\sum_{T_{i} \leq \mathcal{T}_{2}} \frac{\left|T_{i}\right|}{2} .\right.\right.
\end{aligned}
$$

Clearly, if $\left|Y_{\left\{v_{2}\right\}}\right|$ is odd, then $S_{1}=Y_{\left\{v_{2}\right\}}$. Thus, we have $d_{e x}\left(v_{2}\right)-d_{i n}\left(v_{2}\right) \geq\left|Y_{\left\{v_{1}, v_{2}\right\}}\right|+f\left(Y_{\left\{v_{2}\right\}}\right)-f\left(\mathcal{S}_{2}^{\prime}\right) \geq-1$. Similarly, we have:

$$
\begin{aligned}
& \left.d_{e x}\left(v_{3}\right)=\left|Y_{\left\{v_{1}, v_{3}\right\}}^{*}\right|+\sum_{\substack{S_{i} \leq \mathcal{S}_{3}^{\prime} \\
i}} \left\lvert\, \frac{\left|S_{i}\right|}{2}\right.\right]+\sum_{\substack{S_{i} \leq \mathcal{S}_{3}^{\prime} \\
i \text { isd }}}\left[\frac{\left|S_{i}\right|}{2} \left\lvert\,+\sum_{T_{i} \leq \mathcal{T}_{3}} \frac{\left|T_{i}\right|}{2}\right. ;\right. \\
& d_{i n}\left(v_{3}\right)=\sum_{\substack{S_{i} \leq \mathcal{S}_{3}^{\prime} \\
i \text { is odd }}}\left[\left.\frac{\left|S_{i}\right|}{2}\left|+\sum_{\substack{S_{i} \leq \mathcal{S}_{3}^{\prime} \\
i \text { is even }}}\right| \frac{\left|S_{i}\right|}{2} \right\rvert\,+\sum_{T_{i} \subseteq \mathcal{T}_{3}} \frac{\left|T_{i}\right|}{2} .\right.
\end{aligned}
$$

So, we have $\left|d_{e x}\left(v_{3}\right)-d_{i n}\left(v_{3}\right)\right| \geq\left|Y_{\left\{v_{1}, v_{3}\right\}}^{*}\right|-f\left(\mathcal{S}_{2}^{\prime}\right)$. Then, for each $v_{i} \in X$, $d_{e x}\left(v_{i}\right) \geq d_{i n}\left(v_{i}\right)-1$. Thus, $\left(V_{1}, V_{2}\right)$ is a weak external bisection of $G[X, Y]$.
Proof of Theorem 1.2. Let
$V\left(G_{n, m}\right)=\left\{u_{i} \mid i=1, \cdots, n\right\} \cup\left\{v_{i} \mid i=1, \cdots, n\right\} \bigcup_{i=1}^{n}\left\{u_{i j} \mid j=1, \cdots, m\right\}$. We give a weak external bisection $\left(V_{1}, V_{2}\right)$ of $V\left(G_{n, m}\right)$ by two steps.

First, let $\left\{v_{i} \mid i \in\{1,2, \cdots, n\}\right.$ and i is odd $\} \subset V_{2}$ and
$\left\{v_{i} \mid i \in\{1,2, \cdots, n\}\right.$ and i is even $\} \subset V_{1}$. Let $\left\{u_{i} \mid i \in\{1,2, \cdots, n\}\right.$ and i is odd $\} \subset V_{1}$ and $\left\{u_{i} \mid\{i \in 1,2, \cdots, n\}\right.$ and i is even $\} \subset V_{2}$.

Then, we partition the set $\bigcup_{i=1}^{n}\left\{u_{i j} \mid j=1,2, \cdots, m\right\}$. The partition of $\bigcup_{i=1}^{n}\left\{u_{i j} \mid j=1,2, \cdots, m\right\}$ is determined by $\bigcup_{i=1}^{n}\left\{u_{i}\right\}$. For a given k, if $u_{k} \in V_{1}$, let $\left\{u_{k j} \mid j \in\{1,2, \cdots, m\}\right.$ and j is odd $\} \subset V_{2}$ and $\left\{u_{k j} \mid j \in\{1,2, \cdots, m\}\right.$ and j is even $\} \subset V_{1}$; if $u_{k} \in V_{2}$, let $\left\{u_{k j} \mid j \in\{1,2, \ldots, m\}\right.$ and j is odd $\} \subset V_{1}$ and $\left\{u_{k j} \mid j \in\{1,2, \cdots, m\}\right.$ and j is even $\} \subset V_{2}$.
Now, we show that V_{1} and V_{2} form a weak external bisection of $G_{n, m}$. Clearly, $\left|V_{1}\right|-\left|V_{2}\right|=1$ if both n and m are odd. Otherwise, $\left|V_{1}\right|-\left|V_{2}\right|=0$. So, $\left(V_{1}, V_{2}\right)$ is a bisection. If n is even, then $d_{e x}(v)-d_{\text {in }}(v)=3$ for each $v \in \bigcup_{i=1}^{n}\left\{v_{i}\right\}$. If n is odd, then $d_{e x}\left(v_{1}\right)-d_{i n}\left(v_{1}\right)=1, d_{e x}\left(v_{n}\right)-d_{i n}\left(v_{n}\right)=1$ and $d_{e x}(v)-d_{i n}(v)=3$ for each $v \in \bigcup_{i=2}^{n-1}\left\{v_{i}\right\}$. So, in any case, $d_{e x}\left(v_{i}\right) \geq d_{i n}\left(v_{i}\right)$ for $i=1,2, \cdots, n$.

If m is odd, then $d_{e x}(v)-d_{i n}(v)=2$ for each $v \in \bigcup_{i=1}^{n}\left\{u_{i 1}, u_{i m}\right\}$, $d_{e x}(v)-d_{i n}(v)=1$ for each $v \in \bigcup_{i=1}^{n}\left\{u_{i j} \mid j \in\{2, \cdots, m-1\}\right.$ and j is even $\}$ and $d_{e x}(v)-d_{i n}(v)=3$ for each $v \in \bigcup_{i=1}^{n}\left\{u_{i j} \mid j \in\{2, \cdots, m-1\}\right.$ and j is odd $\}$. If m is even, then $d_{e x}\left(u_{i 1}\right)-d_{i n}\left(u_{i 1}\right)=2, d_{e x}\left(u_{i m}\right)=d_{i n}\left(u_{i m}\right), d_{e x}(v)-d_{i n}(v)=1$ for each $v \in \bigcup_{i=1}^{n}\left\{u_{i j} \mid j \in\{2, \cdots, m-1\}\right.$ and j is even $\}$ and $d_{e x}(v)-d_{i n}(v)=3$ for each $v \in \bigcup_{i=1}^{n}\left\{u_{i j} \mid j \in\{2, \cdots, m-1\}\right.$ and j is odd $\}$. So, in any case, $d_{e x}\left(u_{i j}\right) \geq d_{i n}\left(u_{i j}\right)$ for
$i=1,2, \cdots, n ; \quad j=1,2, \cdots, m$.
If both n and m are odd, then $d_{e x}\left(u_{1}\right)-d_{i n}\left(u_{1}\right)=2, d_{e x}\left(u_{n}\right)-d_{i n}\left(u_{n}\right)=2$ and $d_{e x}(v)-d_{i n}(v)=4$ for each $v \in \bigcup_{i=2}^{n-1}\left\{u_{i}\right\}$. If n is odd and m is even, then $d_{e x}\left(u_{1}\right)-d_{i n}\left(u_{1}\right)=1, d_{e x}\left(u_{n}\right)-d_{i n}\left(u_{n}\right)=1$ and $d_{e x}(v)-d_{i n}(v)=3$ for each $v \in \bigcup_{i=2}^{n-1}\left\{u_{i}\right\}$. If n is even and m is odd, then $d_{e x}(v)-d_{i n}(v)=4$ for each $v \in \bigcup_{i=1}^{n}\left\{u_{i}\right\}$. If both n and m are even, then $d_{e x}(v)-d_{i n}(v)=3$ for each $v \in \bigcup_{i=1}^{n}\left\{u_{i}\right\}$. So, in any case, $d_{e x}\left(u_{i}\right) \geq d_{i n}\left(v_{i}\right)$ for $i=1,2, \cdots, n$. Thus, $\left(V_{1}, V_{2}\right)$ is a weak external bisection of $G_{n, m}$.

Proof of Theorem 1.3. We labeled the vertices of graph $K_{m}^{(n)}$ as in Figure 2. $V\left(K_{m}^{(n)}\right)=\left\{x_{0}\right\} \bigcup_{i=1}^{n}\left\{x_{i 1}, x_{i 2}, \cdots, x_{i, m-1}\right\}$. Let $\left\{x_{0}\right\} \subset V_{1}$.

We consider the following two cases.
Case 1. m is odd.
Let $\bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is even $\} \subset V_{1}$ and $\bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is odd $\} \subset V_{2}$. Now $\left|V_{1}\right|-\left|V_{2}\right|=1$. So $\left(V_{1}, V_{2}\right)$ is a bisection. $d_{e v}\left(x_{0}\right)-d_{i n}\left(x_{0}\right)=1$. For each $v \in \bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is even $\}, d_{e v}(v)=d_{i n}(v)$. For each $v \in \bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is odd $\}, \quad d_{e v}(v)-d_{i n}(v)=2$. Thus, $\left(V_{1}, V_{2}\right)$ is a weak external bisection of $K_{m}^{(n)}$.

Case 2. m is even.
If i is odd, let $\bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is odd $\} \subset V_{2}$ and let $\bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is even $\} \subset V_{1}$. If i is even, let $\bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is odd $\} \subset V_{1}$ and let $\bigcup_{i=1}^{n}\left\{x_{i j} \mid j \in\{1,2, \cdots, m-1\}\right.$ and j is even $\} \subset V_{2}$.

Now, we show that V_{1} and V_{2} form a weak external bisection of $K_{m}^{(n)}$. Clearly, $\left|V_{1}\right|-\left|V_{2}\right|=0$ if n is odd and $\left|V_{1}\right|-\left|V_{2}\right|=1$ if n is even. So $\left(V_{1}, V_{2}\right)$ is a bisection. If i is odd, $d_{e v}(v)-d_{i n}(v)=1$ for each $v \in\left\{x_{i j} \mid j \in\{1, \cdots, m-1\}\right.$ and j is odd $\}$; and $d_{e v}(v)-d_{i n}(v)=1$ for each $v \in\left\{x_{i j} \mid j \in\{1, \cdots, m-1\}\right.$ and j is even $\}$. If i is even, then $d_{e v}(v)-d_{i n}(v)=-1$ for each $v \in\left\{x_{i j} \mid j \in\{1, \cdots, m-1\}\right.$ and j is odd $\}$; and $d_{e v}(v)-d_{i n}(v)=3$ for each $v \in\left\{x_{i j} \mid j \in\{1, \cdots, m-1\}\right.$ and j is even $\}$. If n is even, then $d_{e v}\left(x_{0}\right)=d_{i n}\left(x_{0}\right)$. If n is odd, then $d_{e v}\left(x_{0}\right)-d_{i n}\left(x_{0}\right)=1$.Thus, $\left(V_{1}, V_{2}\right)$ is a weak external bisection of $K_{m}^{(n)}$.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Ban, A. and Linial, N. (2016) Internal Partitions of Regular Graphs. Journal of Graph Theory, 83, 5-18. https://doi.org/10.1002/jgt. 21909
[2] Bollobás, B., and Scott, A.D. (2002) Problems and Results on Judicious Partitions. Random Structures \& Algorithms, 21, 414-430. https://doi.org/10.1002/rsa.10062
[3] Esperet, L., Mazzuoccolo, G. and Tarsi, M. (2017) Flows and Bisections in Cubic Graphs. Journal of Graph Theory, 86, 149-158. https://doi.org/10.1002/jgt.22118
[4] Zhou, X.H. (2009) Adjacent Vertex Distinguishing Incidence Chromatic Number of Crown Graph Gn,m. Journal of Shandong University of Technology (Natural Science Edition), 23, 40-43.
[5] Ji, Y.L., Ma, J., Yan, J. and Yu, X.X. (2019) On Problems about Judicious Bipartitions of Graphs. Journal of Combinatorial Theory, Series B, 139, 230-250. https://doi.org/10.1016/j.jctb.2019.03.001

