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Abstract 
In this article, new visual and intuitive interpretations of Lorentz transforma-
tion and Einstein velocity addition are given. We first obtain geometric inter-
pretations of isometries of vertical projection model of hyperbolic space, which 
are the analogues of the geometric construction of inversions with respect to 
a circle on the complex plane. These results are then applied to Lorentz trans-
formation and Einstein velocity addition to obtain geometric illustrations. We 
gain new insights into the relationship between special relativity and hyper-
bolic geometry. 
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1. Introduction 

Einstein’s special relativity theory is one of the foundation blocks of modern theo-
retical physics [1] [2] [3] and its rich mathematical structures have been inten-
sively studied [4] [5]. The composition law for velocities in special relativity is in-
timately related to hyperbolic geometry, as was first pointed out by Sommerfeld 
[6], Varičak [7] [8], Robb [9], and Borel [10]. More recently, the subject was ela-
borated on by Ungar [11] [12]. In light of an all-important observation described 
in Theorem 2.1 below, which involves geometric description of isometries in 
hyperbolic space, we obtain new intuitive understandings of Lorentz transforma-
tion and relativistic addition of velocities in special relativity. Though Minkows-
ki had given a geometric meaning of Lorentz transformation [1], ours seems to 
be more geometrically satisfactory. 

The basic idea of this article stems from the geometric construction of inver-
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sions with respect to a circle on the complex plane, that is, given a point P inside 
a circle C, the inversion point of P with respect to the circle C can be obtained by 
geometric construction with ruler and compass as follows: Starting from the cen-
ter O of the circle C and passing through P, create a ray OP; draw the perpendi-
cular line of OP through P, which intersects with C at point Q; draw the tangent 
of C through Q, then the intersection point of this tangent with the ray OP is the 
inversion point of P. Since inversions, which are isometries of conformal ball 
model of hyperbolic space, have the above geometric constructions, it is interest-
ing to establish the analogous geometric description of isometries of other hyper-
bolic models. We succeed in finding out the analogous geometric description of 
isometries of vertical projection model of hyperbolic space (Theorem 2.1) and, 
furthermore, use it to obtain geometric illustrations of Lorentz transformation 
and Einstein velocity addition because they can all be recognized as isometries of 
hyperbolic space. 

2. New Geometric Interpretation of Isometries in Vertical 
Projection Model of Hyperbolic Space 

Let n be a positive integer. Let ( ),1
,1 1 2 2 2 2

0 1,d d d dn
n n

ns x x x+= = − + + +


   be the 

Lorentzian n+1-space. For ( )1, , n
nx x= ∈ x , ( )1, , n

ny y= ∈ y , denote 

1 1: n nx y x y⋅ = + +x y  and 
2 = ⋅x x x . Notations ⋅  and ×  signify the usual 

dot (scalar) and cross (vector) product between two vectors throughout. Let c be 
a positive number (or the speed of light). The hyperboloid  

( ) ( ) ( ){ }1 2 2 2 2
0 0 1 0 1 0: , , , , | and 0n n

n nH c x x x x x x x c x+
+ = = ∈ − + + + = − > x .  

The open c-ball in n  is ( ){ }2 2 2
1 1: , , |n n

c n nB x x x x c= ∈ + + <   . We use 
the following four models of hyperbolic n-space: 

1) Hyperboloid model: 

( ) ( ) ( ) ( ),1
2 2: ,d d ,n n nh

n n
h c H c

c H c s s
+

+
 = = 
  


 

2) Conformal ball model: 

( ) ( ) ( )2 2 2
122

2

4: ,d d d ,

1

n
c

n n
c c nc

c B s x x

c

 
 
 
 = = + +
  
  −

    



x




 
3) Projective model: 

( ) ( ) ( )
( )

( )
2 2

2 22
1 1 12 22 22

: ,d d d d d ,n
p

n n
p c n n nc

c cc B s x x x x x x
c c

 
 

= = + + + + + − − 
 

 

x x




 
4) Vertical projection model (abbreviated as VP model): 

( ) ( ) ( )22 2 2
1 1 122

1: ,d d d d d .n
vp

n n
vp n n nc

c s x x x x x x
c

 
 = = + + − + +
 + 

 

x
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The following natural isometries among these models are needed below: 
 

( ) ( )21 : n n
h cc cϕ →   ( ) ( )1

12 21 : n n
c hc cϕ ϕ−= →   

( )0

0

,
11

x
x

c
+



xx

 

2

2

2

, 2

1

c
c

c

 
 +
 
 

−



x
x

x
x

 

( ) ( )31 : n n
h pc cϕ →   ( ) ( )1

13 31 : n n
p hc cϕ ϕ−= →   

( )0 0,x c xx x  

( )
2

2

,

1

c

c
−



x
x

x

 

( ) ( )14 : n n
vp hc cϕ →   ( ) ( )1

41 14 : n n
h vpc cϕ ϕ−= →   

( )22 ,c +x x x
 

( )0 ,x x x  

( ) ( )24 21 14 : n n
vp cc cϕ ϕ ϕ= →    ( ) ( )1

42 24 : n n
c vpc cϕ ϕ−= →   

2

21 1
c

+ +



xx
x

 

2

2

2

1
c

−



xx
x

 

( ) ( )34 31 14 : n n
vp pc cϕ ϕ ϕ= →    ( ) ( )1

43 34 : n n
p vpc cϕ ϕ−= →   

2

21
c

+



xx
x

 

2

21
c

−



xx
x

 
 

Remark 2.1. From the isometry 41ϕ , we know that the vertical projection 
model is just the vertical projection of the hyperboloid model, that’s why we 
named it vertical projection model (VP model for short). We will see that the 
vertical projection model is particularly suitable to express the relations in spe-
cial relativity. 

We first introduce some isometries in conformal ball model ( )n
c c . Let: 

 ( )

2 2
2 2 2

2 2
2 4

1 1 21 1
: ,

2 11

c c cT

c c

   − − + − ⋅   
   =

− ⋅ +
a

a x x a x a
x

a x a x
 (2.1) 

which is the analogue of the mapping ( ) ( )1z z a az→ − −  on the unit disk of 
complex plane. This mapping ( )Ta x  is of fundamental importance to us, be-
cause its physical contents are Lorentz boost and Einstein velocity addition as 
can be seemed in Sections 3 and 4. 

Let ( ),S ra  denotes a sphere with center a  and radius r. The inversion with 
respect to ( ),S ra  is the mapping: 
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( ) { } { }

( )

,

2

2

: \ \

.

n n
S ri

r

→

+ −
−



 a a a

x a x a
x a

 (2.2) 

Let ra  be the reflection with respect to the hyperplane 0⋅ =a x , that is: 

 ( ) 2 .r ⋅
= −

⋅a
x ax x a
a a

 (2.3) 

For ( ) { }\n
c c∈a 0 , 

222

2 ,
c ccS

 − 
  
 

a
a

aa
 is the unique sphere perpendi-

cular to ( ),S c0 , whose center lies on the ray 


0a , and the inversion with respect 

to which sends a  to the origin 0 . Denote the isometry ( )222

2 ,
c ccS

i  − 
 
 
 

a
a

aa

x  as  

( )ia x . ( )
2

, 1S ri =a , 2 1r =a . 

 ( ) ( ) ( ), , .n
cT r i c= ∈ a a ax x a x  (2.4) 

Since ( )ia x  and ra  are isometries of ( )n
c c , ( )Ta x  are also isometries of 

( )n
c c  by (2.4). 
Recall that k-dimensional totally geodesic submanifolds in hyperbolic space 

are called k-planes. It is well known that spheres of dimension k that meet the 
boundary orthogonally and k-dimensional vector subspaces represent totally 
geodesic hyperbolic k-planes in ( )n

c c . Especially, ( )1n − -planes in ( )n
c c  are 

( )1n − -dimensional vector subspaces and spheres of the form:  
222

2 ,
c ccS

 − 
  
 

a
a

aa
, ( ) { }\n

c c∈a 0 . 

In the subsequent, we describe the above isometries in vertical projection 
model ( )n

vp c . 
Proposition 2.1. 1) ( )1n − -planes in VP model ( )n

vp c  are ( )1n − -dimen- 
sional vector subspaces and hyperboloid of the form  

2
2

2 2

2

1

: | 1 0

1 1

n cH
c

c

 
 ⋅
 = ∈ + − = 
 

+ − 
 

a

a xx
x

a
, ( ) { }\n

vp c∈a 0 . Furthermore, the 

k-planes (1 k n≤ < ) in ( )n
vp c  are the nonempty intersection of ( )1n − -planes 

with ( )1k + -dimensional vector subspaces. 

2) In ( )n
vp c , the inversion with respect to Ha , denoted by ( )vpia x , is the 

mapping: 

 ( ) ( ) { } ( )
2

2

2 2

2

1

1 , \ , .

1 1

vp n n
vp vp

ci c c
c

c

 
 ⋅
 = + + − ∈ ∈ 
 + − 
 

 a

a xx
x x a a 0 x

a
 (2.5) 
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3) The corresponding isometry in ( )n
vp c  of ( )Ta x  (see (2.1)), denoted as 

( )vpTa x , is: 

 ( ) ( )
2

2

2 2

2

1

1 , , .

1 1

vp n
vp

cT c
c

c

 
 ⋅
 = − + − ∈ 
 + + 
 

a

a xx
x x a a x

a
 (2.6) 

4) 

 ( ) ( ) ( ) { } ( ), \ , .vp vp n n
vp vpT r i c c= ∈ ∈  a a ax x a 0 x  (2.7) 

Proof: The isometry 42ϕ  maps ( )1n − -plane 
222

2 ,
c ccS

 − 
  
 

a
a

aa
,  

( ) { }\n
c c∈a 0  in ( )n

c c  onto ( )1n − -plane in ( )n
vp c , which is a sheet of 

hyperboloid given by: 

( ) { }
2

2

2 2

2

1

: 1 0, \ .

1 1

n
vp

cH c
c

c

⋅
+ − = ∈

+ −

a

a xx
a 0

a


 
In ( )n

vp c , the inversion with respect to Ha  is: 

( ) ( ) ( )

( ) { } ( )

24

1
24 24

2
2

2 2

2

1

1 , \ , .

1 1

vp

n n
vp vp

i i

c c c
c

c

ϕϕ ϕ−=

 
 ⋅
 = + + − ∈ ∈ 
 + − 
 

 a ax x

a xx
x a a 0 x

a
 

 

( ) ( ) ( )
24

2
2

1
24 24 2 2

2

1

1 .

1 1

vp cT T
c

c

ϕϕ ϕ−

 
 ⋅
 = = − + − 
 + + 
 

 a a

a xx
x x x a

a

 
 

These isometries ( )vpia x  and ( )vpTa x  in VP model ( )n
vp c  have the follow-

ing quite clear geometric descriptions, which are analogous to the geometric con-
struction of inversion on Euclidean space n . 

Theorem 2.1 (Geometric meaning of ( )vpia x  and ( )vpTa x ) 1) The image 

point ( )vpia A  of 
2

2

2 2

2

1

| 1 0

1 1

n c
c

c

 
 ⋅
 ∈ ∈ + − < 
 

+ − 
 


a xx

A x
a

 can be drawn as  

follows (Figure 1): Make a sphere S with center 0  and radius 


0A , whose in-
tersection with hyperboloid Ha  is a ( )2n − -sphere, and the hyperplane on 
which the intersection ( )2n − -sphere lies is denoted as Π . Through A , we 
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draw a line that is parallel to the vector 


0a . This line intersects the hyperplane  

Π  at B . Extend the vector 


AB  by 
2

21 1
c

+ +
a

 times, we get a vector  



AC , then ( )vpi= aC A . 

2) Furthermore, the symmetric point of C  with respect to the vector subspace 
perpendicular to 



0a  is ( )vpTa A  (Figure 2). 
 

 
Figure 1. Geometric meaning of inversion. 

 

 
Figure 2. Geometric meaning of ( )vpTa A . 
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Proof: A direct calculation shows that: 

2
2

2 2

2

1

: 1 0;

1 1

c
c

c

⋅
Π + − =

+ −

a xA

a

 

2
2

2 2 2

2 2

1

1 ;

1 1 1 1

c
c

c c

 
 ⋅
 = + + − 
 + − + + 
 

a AA aB A
a a

 

2
2

2 2 2

2 2

1

1 ;

1 1 1 1

c
c

c c

 
 ⋅
 = + − 
 + − + + 
 



a AA aAB
a a

 

( )
2 2

2

2 2 2

2

1

1 1 1 .

1 1

vpc i
c c

c

 
 ⋅    = + + + = + + − =  
   + − 
 



a

a Aa A
C A AB A a A

a

 
By (2.7), ( ) ( ) ( )vp vpT r i r= =a a a aA A C , so the reflection of C  with respect to 

the vector subspace perpendicular to 


0a  is ( )vpTa A . 
Remark 2.2. It is worth pointing out that the geometric interpretation of in-

version given in Theorem 2.1 survives only in vertical projection model of hyper-
bolic space. It can’t implement in other models of hyperbolic space. It has some 
interesting geometric features: the line ( )vpiaA A  is parallel to the line 0a , 

in particular, ( )vpia x  and ( )vpTa x  map every parallel line of 0a  onto itself; 

the scale factor 
2

21 1
c

+ +
a

 is a constant. 

In order to clarify the relation of Theorem 2.1 with special relativity, we in-
troduce the notion of addition on hyperbolic space ( )n c  (we suppress the 
subscript here) using triangular rule, parallel transport and exponential map. For 
curve [ ] ( ): , na b cγ →  , let ( ) ( ) ( ) ( ): n n

a bT c T cγ
γ γ→ P  be the parallel 

transport isomorphism. For ( )n c∈x , let ( ) ( )exp : n nT c c→ x x  be the 
exponential map at x , which is a diffeomorphism. For ( ), n c∈u v , we denote 
the unique oriented geodesic segment joining u  to v  by 



uv . Let 0  be the cen-
ter point of ( )n c . 

Definition 2.1. For ( ), n c∈u v , the addition of u  and v  is  

( )1# : exp exp−= 0u
u 0u v P v



  . For λ ∈  and ( )n c∈u , scalar multiplication 

is ( )1: exp expλ λ − =  0 0u u . 

Remark 2.3. These are the analogues of addition and scalar multiplication on 
Euclidean space, but the triple ( )( ), #,n c   is not a vector space but actually 
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form a so-called Gyrovector space (for definition see [11] [12]). 
Introduce the hyperbolic translation in conformal ball model ( )n

c c ,  

for ( )n
c c∈a , ( ) ( )

2 2
2 2 2

2 2
2 4

1 1 21 1

2 11

c c c T

c c

τ −

   − + + + ⋅   
   = =

+ ⋅ +
a a

a x x a x a
x x

a x a x
 (see (2.1)), 

(2.8) 

which is an isometry of ( )n
c c  by Formula (2.4) (see [13]). 

Lemma 2.1. In ( )n
c c , we have: 

 ( )d .τ =


0u
u 0

P  (2.9) 

Proof: By direct calculation, we have: 

( )
2

2d 1 d .
c

τ
 
 = −
 
 

u 0

u
x

 
On the other hand,  

( ) ( )2 2 2
121 , 2

2

4d d d d d

1

n
c

ij i j ni j nc
s g x x x x

c

≤ ≤
= ⊗ = + +

 
 −
 
 

∑ 


x

. The parallel transport 

vector field ( ) ( ) ( )( )1 , , nX t X t X t=   along curve ( ): , 0 1t t tγ = ≤ ≤


0u u  sa-

tisfies: 

 ( ) ( ) ( ) ( )
1 ,

d 0, 1 ,
d

k
k i j
ij

i j n

X t t X t k n
t

γ γ
≤ ≤

+ Γ = ≤ ≤∑ 


 (2.10) 

where the Christoffel symbol: 

( )22
1

1 2 .
2

lj ijk kl li
ij j ki i kj k ij

l n j i l

g ggg x x x
x x x c

δ δ δ
≤ ≤

 ∂ ∂∂
Γ = + − = + −  ∂ ∂ ∂ − 

∑
x  

The unique solution of Equation (2.10) for initial condition ( )0X = w  is  

( )
2

2
21X t t

c

 
 = −
 
 

u
w . Hence, also: 

2

21 d .
c

 
 = −
 
 



0u u
P x  

 
Proposition 2.2. The explicit addition formulas of the above four models are 

as follows: 
1) Conformal ball model: for ( ), n

c c∈u v , 

 

2 2
2 2 2

2 2
2 4

1 1 21 1
# .

2 11
c

c c c

c c

   − + + + ⋅   
   =

+ ⋅ +

u v v u v u
u v

u v u v
 (2.11) 
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2) Hyperboloid model: for ( ) ( ) ( ) ( )0 0, , ,n n
h hU u c V v c= ∈ = ∈ u v , 

 0 0 0 0
2# , 1 .h

u v v u
U V

c c c

 + ⋅ ⋅  = + + −    

u v u vu v u
u

 (2.12) 

3) Projective model: for ( ), n
p c∈u v , 

 ( )
2

2 2 2

2
2

1 1 1# 1 .
1 1 1

p c c
c c

 
 
 = + − + ⋅ ⋅  + + − 
 

u
u v u v u v u

u v u
 (2.13) 

4) Vertical projection model: for ( ), n
vp c∈u v , 

 
2

2 22

2

1# 1 1 .

1 1
vp c c

c

 
 

⋅ = + + + + − 
 

+ + 
 

vu vu v u v u
u

 (2.14) 

Proof: 1) Since ( )xτu  is an isometry of ( )n
c c  (see [13]), it maps geodesic 

to geodesic, so: 

 ( )exp exp d .τ τ= u 0 u u 0  (2.15) 

Hence, by Definition 2.1 and Lemma 2.1, 

( ) ( ) ( ) ( ) ( )1 1 1# exp exp exp d exp exp exp .c τ τ τ− − −= = = =


     

0u
u 0 u u 0 u 0 0 u0

u v P v v v v
 

2) 
( ) ( )1 0 0 0 0

21 21 21 2# # , 1 .h c
u v v u

U V U V
c c c

ϕ ϕ ϕ−
 + ⋅ ⋅  = = + + −        

u v u vu v u
u

 

3) ( ) ( )

( )

1
13 13 13

2

2 2 2

2
2

# #

1 1 11 .
1 1 1

p h

c c
c c

ϕ ϕ ϕ−=   
 
 
 = + − + ⋅ ⋅  +

+ − 
 

u v u v

u
u v u v u

u v u

 

4) ( ) ( )1
24 24 24

2

2 22

2

# #

1 1 1 .

1 1

vp c

c c

c

ϕ ϕ ϕ−=   
 
 

⋅ = + + + + − 
 

+ + 
 

u v u v

vu vu v u
u

 

 
Remark 2.4. 

 ( ) ( ) ( ) ( ) ( )# , # .vp
c vpT Tτ−= − = = −a a ax a x x x a x  (2.16) 

In later sections, we shall apply the established results of hyperbolic space in 
this section to special relativity. 
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3. Geometric Illustration of Lorentz Transformation 

Suppose that a reference frame S' is moving relative to a similarly oriented frame S 
with velocity ( )1 2 3, ,u u u=u ; and suppose further that they both take the origin 
of their coordinate systems to be the event at which they pass each other. The 
standard 4-dimensional Lorentz boost relates space-time coordinates 1 2 3, , ,t x x x′ ′ ′ ′  
of frame S' and 1 2 3, , ,t x x x  of frame S is [2] [3]: 

 ( ) ( )( )T T
1 2 3 1 2 3 ,ct x x x B ct x x x′ ′ ′ ′ = u

 (3.1) 

(the exponent T indicates transposition) where: 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3

1 31 1 1 2
1 2 2 2

2 32 1 2 2
2 2 2 2

3 1 3 2 3 3
3 2 2 2

1 1 1 1

: 1 1 1 1

1 1 1 1

u c u c u c
u uu u u uu c

u uu u u uB u c

u u u u u u
u c

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

− − − 
 
 − + − − −
 
 

=  − − + − −
 
 
 − − − + − 
 

u u u u

u u u u

u u u u

u u u u

u u u
u

u u u

u u u

  (3.2) 

and the gamma factor γ u  is defined by: 

 2

2

1 .

1
c

γ =

−

u
u

 (3.3) 

When ( )1,0,0u=u , the corresponding matrix: 

 

1

1

0 0
0 0

0 0 1 0
0 0 0 1

u c
u c
γ γ
γ γ

− 
 − 
 
 
 

u u

u u  (3.4) 

is often called a boost in the 1x -direction. 

 ( ) T

0 0
0 0

,
0 0 1 0
0 0 0 1

c
c

B A A

γ γ
γ γ

 −
 − =  
  
 

u u

u u

u
u

u  (3.5) 

where A is the unimodular orthogonal matrix (rotation in real world space): 

 

31 2

2 1
2 2 2 2
1 2 1 2

2 2
1 21 3 2 3

2 2 2 2
1 2 1 2

1 0 0 0

0

: .0 0

0

uu u

u uA
u u u u

u uu u u u

u u u u

 
 
 
 
 

− =
 + + 
 +− − 
 + + 

u u u

uu u

 (3.6) 

Lorentz boost, which acts on the 4-dimensional Minkowski space-time 3,1 , 
can be viewed as an action on the 3-dimensional real world space 3  by the fol-
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lowing procedure. 

Since ( )22 2 2
1 2 3x x x ct+ + −  is Lorentz invariant, Lorentz boost (3.1) maps the 

hyperboloid ( ) ( ) ( ){ }23 4 2 2 2 2
1 2 3 1 2 3: , , , | , 0H c ct x x x ct x x x c t+ = ∈ − + + + = − >  in  

Minkowski space-time 3,1  1-1 onto itself. Furthermore, since Lorentz trans-
formations are linear and the hyperboloid ( )3H c+  contains a basis of the Min-
kowski space-time 3,1 , the Lorentz boost (3.1) is completely determine by its 
action on the hyperboloid ( )3H c+ . Denote ct  as 0x  and use the notations in 
Section 2. We see that the Lorentz boost (3.1) acts as an isometry on hyperboloid 
model ( )3

h c . ( )3
h c  is isometric to VP model ( )3

vp c  under the vertical 
projection 41ϕ . Thus under 41ϕ , Lorentz boost corresponds to an isometry on 

( )3
vp c . From the physical point of view, it is more natural to deal with physical 

objects such as Lorentz boost on VP model ( )3
vp c , because the underlying space 

of ( )3
vp c  is the real world space 3 . Also, mathematically, Lorentz boost is 

simplified when converting to the VP model ( )3
vp c , as can be seen from the 

following theorem. 
Theorem 3.1. When transitioning to the VP model ( )3

vp c , the Lorentz 
boost (3.1) becomes 

 ( )
2

2

2 2

2

1

1 : ,

1 1

c L
c

c

 
 ⋅
 ′ = + − + + = 
 + + 
 

U

U XX
X X U X

U
 (3.7) 

where ( ) ( ) ( )1 2 3 1 2 3 1 2 3, , , , , , , ,x x x x x x u u uγ′ ′ ′ ′= = = uX X U . 

Proof: For 1 2 3, , ,t x x x  on the hyperboloid ( )22 2 2 2
1 2 3 , 0x x x ct c t+ + − = − > , 

we have: 

2
2 2 2 2

1 2 3 21 .ct c x x x c
c

= + + + = +
X

 
And by (3.1), it follows that: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 31 1 1 2
2 2 2

1 1 1
2 32 1 2 2

2 2 22 2 2

3 3 3

3 1 3 2 3 3
2 2 2

2 1

2

1 1 1 1

1 1 1 1

1 1 1 1

1

u uu u u u

x u c x
u uu u u ux ct u c x

x u c x
u u u u u u

u

c

γ γ γ

γ
γ γ γ γ
γ

γ γ γ

γ
γ

 
 + − − −
 

′ −      
      ′ = − + − + − −      
     ′  −     

 
− − + −  

 

−
= + −

u u u

u

u u u u

u

u u u

u

u

u u u

u u u

u u u

X

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 31 1 1 2
2 2 2

1 1
2 32 1 2 2

2 2 22 2 2

3 3 3

3 1 3 2 3 3
2 2 2

1 1 1

1 1 1

1 1 1

u uu u u u

x x
u uu u u uu x x

u x x
u u u u u u

γ γ γ

γ γ γ
γ

γ γ γ

 
 − − −
 

      
      + + − − −      
      −     

 
− − −  

 

u u u

u u u

u

u u u

u u u

u u u

u u u
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( )

2
T T T T

2 2

2
T T T

2 2

2
2

T T
2 2

2

1
1

1
1

1

1 .

1 1

c

c

c
c

c

γ

γ

−
= − + + +

−
= − + + + ⋅

 
 ⋅
 = + − + + 
 + + 
 

u

u

X
U X u uX

u

X
U X u X u

u

U XX
X U

U

 

 
Remark 3.1. Lorentz transformations are essentially different from rotations 

in 4-dimensional Euclidean space, since by Theorem 3.1 Lorentz transformations 
can reduce to 3-dimension but rotations can’t. 

Theorem 3.2. A Lorentz boost is the composition of an inversion with a ref-

lection. More precisely, ( ) ( ) ( )vp vpL T r i′ = = = U U U UX X X X . 

Proof: Comparing Formulas (6) and (7), we have ( ) ( )vpL T=U UX X . 

Remark 3.2. By Theorem 3.2, Remark 2.4 and Definition 2.1 of addition in 
hyperbolic space, Lorentz boost is a translation operation of hyperbolic space. 

By Theorem 2.1 and Theorem 3.2, we get the geometric meaning of Lorentz 
boosts. 

Theorem 3.3 (Geometric meaning of Lorentz boosts). The Lorentz boost 

( ) ( )vpL T=U UX X  of 
2

2
3

2 2

2

1

| 1 0

1 1

c
c

c

 
 ⋅
 ∈ ∈ + − < 
 

+ − 
 


U xx

X x
U

 can be drawn  

as follows (Figure 3): Make a sphere S with center 0  and radius 


0X , whose 
intersection with hyperboloid HU  is a circle, and the hyperplane on which the 
intersection circle lies is denoted as Π . Through X , we draw a line that is pa-
rallel to the vector 



0U . This line intersects the hyperplane Π  at B . Extend  

the vector 


XB  by 
2

21 1
c

+ +
U

 times, we get a vector 


XC , then ( )vpi= UC X .  

Furthermore, the symmetric point of C  with respect to the vector subspace 
perpendicular to 



0U  is ( )LU X . 
Theorem 3.4. A proper orthochronous Lorentz transformation is the compo-

sition of a Euclidian rotation with an inversion and a reflection. 
Proof: First, a proper orthochronous Lorentz transformation is the composi-

tion of a Lorentz boost and a Euclidian rotation [4]. Furthermore, by Theorem 
3.2, a Lorentz boost is the composition of an inversion with a reflection. 

Remark 3.3. By Theorem 3.4, the geometric meaning of proper orthochron-
ous Lorentz transformations is clear. 
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Figure 3. Geometric meaning of Lorentz boost. 

 

 
Figure 4. Geometric meaning of velocity addition. 

4. Geometric Meaning of Relativistic Addition of Velocities 

Consider the worldline of a particle in uniform motion which has velocity 

( )1 2 3, ,v v v=v  in inertial coordinate system S. Along the particle worldline, the 
inertial coordinates , , ,t x y z  are functions of the proper time τ . The four- 
velocity of the particle is: 

 ( )0 1 2 3
d d d d, , , : , , , .
d d d d

t x y zV V V V V c
τ τ τ τ

 = =  
 

 (4.1) 
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The proper velocity of the particle is: 

 ( )1 2 3
d d d: , , , , .
d d d

x y zV V V
τ τ τ

 = =  
 

V  (4.2) 

The relativity admissible velocity of the particle is: 

 ( )1 2 3
d d d, , , , .
d d d
x y zv v v
t t t

 = =  
 

v  (4.3) 

Since 

 2

2

d 1 ,
d

1

t

c

γ
τ
= =

−

v
v

 (4.4) 

it follows that: 

 ( ) ( ) 2 2 2 2 2
0 1 2 3 0 1 2 3, , , , , ,V V V V c V V V V cγ= − + + + = −v v  (4.5) 

and 

 
2 2 2

0 1 2 3
21 : .

V V V V
c c

γ β
+ +

= = + =v V
 (4.6) 

Remark 4.1. The relations of these three kind of velocities are ( )13V ϕ= v , 

( )14V ϕ= V . In view of (4.5), the space of four-velocities, endowed with metric 

( )3
2 2 2 2 2

0 1 2 3d d d d d
H c

s V V V V
+

= − + + + , is just hyperboloid model ( )3
h c . The  

space of relativity admissible velocities, endowed with metric ( )* 2
13 dsϕ , is pro-

jective model ( )3
p c . The space of proper velocities, endowed with metric 

( )* 2
14 dsϕ , is VP model ( )3

vp c . 
Let ( )0 1 2 3, , ,V V V V′ ′ ′ ′  be the four-velocity of the particle with respect to the sys-

tem S'. Then take the derivative with respect to proper time τ  in Equation 
(3.1), we have: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3

1 31 1 1 2
1 2 2 20 0

1 1
2 32 1 2 2

2 2 2 22 2

3 3
3 1 3 2 3 3

3 2 2 2

1 1 1 1

1 1 1 1

1 1 1 1

u c u c u c
u uu u u uu cV V

V Vu uu u u uu cV V
V V

u u u u u u
u c

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

− − − 
 
 − + − − −′    

    ′   = − − + − −  ′  
   ′    

 − − − + −
 
 

u u u u

u u u u

u u u u

u u u u

u u u

u u u

u u u





 (4.7) 

0 1 2 3

0 0 0 1 31 1 1 2
1 2 2 2

0 0 0 2 32 1 2 2
2 2 2 2

0 3 1 0 3 2 0 3 3
3 2 2 2

1 1 1 1

1 1 1 1

1 1 1 1

U c U c U c U c
U U U U UU U U UU c
c c c

U U U U UU U U UU c
c c c

U U U U U U U U U
U c

c c c

− − − 


      − + − − −           

=      − − + − −      

     


      − − − + −           

U U U

U U U

U U U

0

1

2

3

V
V
V
V



 
 
 
 
 
 




 (4.8) 
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T

0 0 0 0
2, 1

U V V U
c c c

 − ⋅ ⋅  = − + + −    

U V U VU V U
U

 (4.9) 

which, comparing with the non-relativistic case, may be heuristically understood 
as the relativistic “composition velocity” of four-velocities  

( )0 1 2 3: , , ,U U U U U− = − − −  (the physical reverse 4-velocity of 4-velocity  

( )0 1 2 3, , ,U U U U U= ) and V. Notice Formula (2.12), it is recognized as the addi-
tion in hyperboloid model ( )3

h c : 
 ( )# .hV U V′ = −  (4.10) 

Thus, the space of four-velocities forms hyperboloid model ( )3
h c  and the 

relativistic addition of four-velocities is exactly the addition in ( )3
h c  as de-

fined in Section 2 Definition 2.1. 
Since ( )13V ϕ= v , the relativistic addition of relativity admissible velocities u  

and v  is given by: 

 

( ) ( )( )

( )

( )

1
13 13 13

2

2

2

2

# #

1 1 1
11

1 1 ,
11

p h

c
c

c
c

ϕ ϕ ϕ

γ
γ γ

γ
γ

−=

 
= + + ⋅ ⋅ + +

 
= + + × × ⋅ + +

u

u u

u

u

u v u v

u v u v u
u v

u v u u v
u v

 (4.11) 

which is the well-known Einstein velocity addition formula. By Proposition 2.2, 
the space of relativity admissible velocities forms projective model ( )3

p c  and 
the relativistic addition of relativity admissible velocities is exactly the addition 
in ( )3

p c  as defined in Definition 2.1. 
Since ( )14V ϕ= V , the relativistic addition of proper velocities U  and V  

is given by: 

 

( ) ( )( )

( ) ( )( )

1
14 14 14

2

2 22

2

# #

1 1 1

1 1

 by 2.6 .

vp h

vp

c c

c
T

ϕ ϕ ϕ−

−

=

 
 

⋅ = + + + + − 
 

+ + 
 

= U

U V U V

VU VU V U
U

V

 (4.12) 

In view of Proposition 2.2, the space of proper velocities forms VP model 
( )3

vp c  and the relativistic addition of proper velocities is exactly the addition 
in ( )3

vp c  as defined in Definition 2.1. 
Remark 4.2. Comparing (3.7) and (4.12), it is interesting to notice that in VP 

model ( )3
vp c  Lorentz transformation and velocity addition are given by the 

same formula, so they are equivalent to each other. 
Proposition 4.1. 

 # 2 ,
vp c

β β β ⋅
= +U V U V

U V  (4.13) 
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2

2# # 1.vp vp c
c

β β ⋅ = = + − 
 

U V
U VU V V U  (4.14) 

By Formula (4.12) and Theorem 2.1, we get the geometric meaning of relati-
vistic addition formula of velocities. 

Theorem 4.1 (Geometric meaning of relativistic velocity addition). The 

relativistic velocity addition ( )# vp
vp T−= UU V V  of  

2
2

3
2 2

2

1

| 1 0

1 1

c
c

c

 
 ⋅
 ∈ ∈ + + < 
 

+ − 
 


U xx

V x
U

 can be drawn as follows (Figure 4): 

Make a sphere S with center 0  and radius 


0V , whose intersection with 

hyperboloid H−U  is a circle, and the hyperplane on which the intersection cir-

cle lies is denoted as Π . Through V , we draw a line that is parallel to the 

vector 


0U . This line intersects the hyperplane Π  at B . Extend the vector 



VB  by 
2

21 1
c

+ +
U

 times, we get a vector 


VC , then ( )vpi−= UC V . Fur-

thermore, the symmetric point of C  with respect to the vector subspace per-
pendicular to 



0U  is #vpU V . 

Proof: By Formulas (2.6) and (4.12), we have: 

 ( ) ( ) ( )# .vp vp vp
vp T r i r i− − − −= = = U U U U UU V V V V  (4.15) 

 
Remark 4.3. The dilation factor in Theorem 4.1 is the gamma factor plus one, 

i.e. 
2

21 1 1
c

β+ + = +U

U
. 

Remark 4.4. When c →∞ , Lorentz transformation turns into Galilean trans-
formation and addition in hyperbolic space reduces to ordinary addition in Euc-
lidean space. 

5. Successive Lorentz Transformations and Thomas  
Precession 

Consider composition of Lorentz boots given by (3.2), by polar decomposition, 
we have [4]: 

 ( ) ( ) ( ) [ ]( )# , ,pB B B R= Ωu v u v u v  (5.1) 

where 

 [ ]( ) [ ]T

1
, ,

,
R

 
Ω =  Ω 

0
u v

0 u v  (5.2) 

where [ ],Ω u v  is an unimodular orthogonal matrix, called Thomas rotation, 
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and is given by: 

 [ ]
T

, ,
1 γ

Ω = −
+

b au v M  (5.3) 

and where: 

 
21 ,

c
γ γ γ ⋅ = + 

 
u v

u v  (5.4) 

 ( ) ( )
21 ,

c c c
γ γ γ γ γ

⋅
= + + −u v u u v

u v vv ua
v

 (5.5) 

 ( ) ( )
21 ,

c c c
γ γ γ γ γ

⋅
= + + −u v v v u

u v uu vb
u

 (5.6) 

( ) ( )( )
T T T

3 2 21 1 1 1 .
c

γ γ γ γ γ γ
 ⋅

= + − + − + + − − 
  

u v u v u v

u vu u v v u v u vM 1
u u v u vv

 (5.7) 

The Thomas rotation takes place in the plane { },span u v . The sense of the 
Thomas rotation in the uv -plane is negative (we orient this plane in the usual 
way, such that ×u v  defines the direction of the normal). And the cosine of the 
angle of rotation θ  is: 

 
( )

( )( )( )

21
cos 1.

1 1 1
γ γ γ

θ
γ γ γ

+ + +
= −

+ + +
u v

u v
 (5.8) 

We have: 

 [ ]( )# , # ,p p= Ωu v u v v u  (5.9) 

and for 3∈x , 

 

[ ]

( )( ) ( )( )

( )( )

( )
( )

( )
( )( )

( )
( )

2

T T

2 2 2 T

2 2 4

2

2 2

,

1 1 2 1 1

1 1
1 1

1 2
=

11 1 1

1
1

c

c c

c c c

c c

γ γ γ γ γ γ

γ γ γ γ
γ γ

γ γ γ γγ γ
γγ γ γ

γ γ γ γ
γ

Ω

  ⋅
= + − − + − − +      

 
⋅ + − + − − ⋅ 
+ +  
  − ⋅

+ ⋅ + + ⋅    ++ + +   

−
+ ⋅ −

+

u v u v u v

u v u v

u v u vu v

u u v

v u u v

v

u v x

u vu u v vx
u u v v

vx u u v x v
u v v

u v ux u x v x

v x
T

.
1 γ

 
⋅ 

+  

vu x

 (5.10) 

The corresponding results in VP model are as follows: 

 

[ ]

( )
( )

( )( )

( )

2 2 4
#

T

2 2
#

,

21 1
11 1 1

1 1 ,
11

vp

vp

T

c c c

c c

β
ββ β β

β
ββ

Ω

  ⋅−
= + ⋅ + + ⋅    ++ + +   

 −
+ ⋅ − ⋅ 

++  

V

U VU U V

U

U VV

U V X

U V UX U X V X

VV X U X

 (5.11) 

https://doi.org/10.4236/jamp.2024.121008


W. Y. Luo 
 

 

DOI: 10.4236/jamp.2024.121008 89 Journal of Applied Mathematics and Physics 
 

 ( ) [ ]( )# , ,
vp

L L L= ΩU V U VX U V X  (5.12) 

 [ ]( )# , # ,vp vp= ΩU V U V V U  (5.13) 

 
( )

( )( )( )

2

#

#

1
cos 1.

1 1 1
vp

vp

β β β
θ

β β β

+ + +
= −

+ + +

U V U V

U V U V

 (5.14) 

Corollary 5.1 (Geometric meaning of #vpU V  for fixed V ). First, re-
peat the procedure of Theorem 4.1, we get #vpU V , then rotate an angle θ , 
which is given by (5.14), in the UV -plane in the negative direction yields 

#vpU V . 

6. Conclusion 

In conclusion, Lorentz transformation and relativistic addition of velocities in 
VP model ( )3

vp c  have fairly intuitive descriptions. Since the hyperboloid mod-
el ( )3

h c  is the same as the VP model ( )3
vp c  up to a vertical projection, 

the geometric meaning of Lorentz transformation and relativistic addition of 
velocities in ( )3

h c  are also clear now. 
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