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Abstract 
Important operator characteristics (such boundedness or compactness) for 
particular classes of operators on particular reproducing kernel Hilbert spaces 
may be impacted by the behaviour of the operators on the reproducing ker-
nels. These results have been shown for Toeplitz operators on the Pa-
ley-Wiener space, a reproducing kernel Hilbert space over C. Furthermore, 
we show how the norm of such an operator has no relation to the supremum 
of the norms of the pictures of the normalization reproducing kernels of the 
space. As a result, if this supremum is finite, the operator is implicitly bounded. 
To further demonstrate that the operator norm is not the same as the supre-
mum of the norms of the pictures of the real normalized reproducing kernels, 
another example is also provided. We also set out a necessary and sufficient 
condition for the operators’ compactness in terms of their limiting function 
on the reproducing kernels. 
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1. Introduction and Notation 

The “Bonsall’s Theorem” implies that the supremum of the norms of the images 
of the normalization reproducing kernels of the Hardy space in [1] and [2] cor-
responds to the norm of a Hankel operator on the Hardy space of the disc. This 
statement may be used to the “Reproducing Kernel Thesis” (in [3]), it implies 
that the operation of the operators on the kernels defines important characteris-
tics of certain classes of operators on replicating kernel Hilbert spaces. Huge 
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Hankel operators on the Hardy space of the bidisc and Hankel operators on the 
Bergman space of the disc both produced results that were equivalent in [4] and 
[5], respectively. The replication of kernels for Hankel operators on an extensive 
group of function spaces are shown to determine boundedness, but there doesn’t 
seem to be a single theorem that proves this. Actually, it has been shown in [6] 
that the comparable claim for tiny Hankel operators on the Hardy space of the 
bidisc is not true. We will prove an equivalent of Bonsall’s Theorem for Toeplitz 
operators acting on the function space Paley-Wiener. 

For more details on the value of this space in signal processing, in [7]. It will 
be established later. Let EP  is orthogonal projection onto E, E⊥  is orthogonal 
complement of E for E, a closed subspace of a Hilbert space. Let ( )2L J  be the 
closed subspace of ( )2L   containing those functions that vanish, or are out-
side of J, for J, a measurable subset of  , the real line, and Jχ  convey the 
characteristic function of J. We define in ( )2L  ) inner product by , , as well 
as the ( )2L   function and operator norms by . Other ( )2L   norms will 
be identified by the symbol p . The (unitary) Fourier transform and its inverse 
will be denoted by the following definitions and notations: 

( ) ( ) ( )1ˆ e d ,
2

ixtf x f x f t t−= =
π ∫

  

( ) ( ) ( )1 1 e d .
2

itxf t f t f x x− = =
π ∫

  

2. Hankel Operators in the Hardy Space 

Suppose −  and +  are lower and half upper planes of  . We define 
( )2H +  is the Hardy space of the upper half plane. By the theorem of Pa-

ley–Wiener, ( ) [ )( )2 1 2 0,H L−
+ = ∞  , in [8]. Therefore, for ( )2f L∈  , 

( ) [ )( ) ( ) ( ]( )2 2
1 1

0, ,0
ˆ ˆ, .

H H
P f f P f fχ χ⊥

+ +

− −
∞ −∞= =

 
           (1) 

If ( ) ( )W t t i= π + . For ( )2WLφ ∈  , let φΓ  is a Hankel operator on 
( )2H +  with symbol φ  so: 

( ) ( ) ( ) ( )2
2 2: , .

H
H H f P fφ φ φ⊥

+

⊥
+ +Γ → Γ =


   

See [9] for more information on these operators. It is fundamental that 

( )2WLφ ∈   for φΓ  to be defined, since ( )21 H
W +∈  . Note that under this con-

dition, φΓ  is at least defined on ( )1 H
W

∞
+ , a dense subspace of ( )2H + , also: 

( ) ( ) ( )2 2L L WL∞ ⊆   . 

The following theorem provides both essential and enough criteria for φΓ  to 
be bounded and closed (also known as “Theorem of Bonsall’s”). 

Theorem (2.1): For w +∈ , let wj  be ( )2H +  normalized Replication of 
kernel connected to w, that is 
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( )
( )
Im .w

i wj t
t w

=
π −

 

Then, for ( )2WLφ ∈  , φΓ  is limited if and only if it has limits on every 
{ }:wj w +∈ . Additionally, there is a universal constant M that exists such that 

{ }sup : .wM j wφ φ +Γ ≤ Γ ∈  

In addition, φΓ  is compact if and only if 

, ,Im 0
lim lim 0.w ww w w w

j jφ φ
+ +∈ →∞ ∈ →

Γ = Γ =
 

 

The boundedness result is proved in [1] for Hankel operators on the Hardy 
space of the disc by using Fefferman’s duality theorem. The boundedness result 
for Hankel operators on the Hardy space of the disc is shown in [1] by using 
Fefferman’s duality theorem. The compactness result is a simple corollary, which 
is quoted in [4], for instance. This version may then be obtained by a standard 
conformal mapping from the disc to the upper half plane and is essentially found 
in [10], for instance. Let PW be the Paley-Wiener space of those ( )2L   func-
tions supported on a compact subset of which Fourier transforms are possible, 
chosen to be [ ],I = −π π  but similar conclusions are valid for any compact in-
terval. PW is equal to ( )( )1 2PW L I−=  . These functions, as is well known, ex-
tend to complete functions over   of exponential type up to π in [11]. Recall 
that, given ( )2f L∈  , 

( )1 ˆ .PW IP f fχ−=                         (2) 

Let Tφ  is Toeplitz operator on PW with respect to φ  so 

( ): , .PWT PW PW T f P fφ φ φ→ =  

Then, 

( ) ( ) .IT f fφ χ φ
∧ ∧=                       (3) 

Let ( ) sinsinc tt
t
π

=
π

 (for 0t ≠ , ( )sinc 0 1= ). It is well-known that  

( ) ( )1 e
sinc .

2

iwx
I x

t w
χ −

−  
− =   π 

                  (4) 

PW is a replicating kernel Hilbert space, as is also widely known [11], with 
kernels denoted by ( ) ( )sincwr t t w= − . Let any f PW∈ , w∈ , 

( ) , .wf w f r=                         (5) 

3. Dividing the Symbol 

In [12], the Rochbergs technique is used in our analysis of Toeplitz operators Tφ  
on PW. Pick and change some ( )0L Cψ ∞∈   (  -based, indefinitely differen-
tiable functions which tend to 0 at ±∞ ) so that support is given of Lψ  lies in  

4 ,
2
π − π −  

,  1Lψ ≡  on [ ]3 ,− π −π  and ( )0 1xψ≤ ≤ .  Let ( ) ( )R Lx xψ ψ= −   
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and 0Cψ ≡  off I, ( ) ( ) ( )1C L Rx x xψ ψ ψ= − −  on I. Initially, we will assume 
that the symbols of our Toeplitz operators are in ( )2WL  , where W was pre-
viously defined. For this φ , consider:  

ˇˇ ˇ, , ,L L C C R Rφ φ ψ φ φ ψ ϕ φ ψ= ∗ = ∗ = ∗  

where ∗  denotes convolution. Note that ,R Cψ ψ  and Lψ  all belong to  , 
the functions that experience rapid descent at infinity in the Schwartz space, in 
[13] for instance. Since the Fourier transform is a bijection on  , the Fourier 
transforms of these functions also belong to  . The next lemma demonstrates 
that each of ,L Cφ φ  and Rφ  is also a member of ( )2WL  . 

Lemma (3.1): Suppose ( )2WLφ ∈   and ∆∈  then ( )2WLφ ∗∆∈  . 
Proof: Let ( )2f L∈  . Then 

( ) ( ) ( ) ( ) ( )1 1, d d ,W f s t s W t f t t sφ φ− −∗∆ = ∆ −∫ ∫ 
 

based on the Tonelli and Fubini Theorems. A straightforward justification using 
the Cauchy-Schwarz inequality demonstrates that 

( ) ( ) ( ) ( )
( )

1 1d sup .
t

W t
t s W t f t t f W

W t s
φ φ− −

∈
− ≤

+∫ 
 

by way of a simple argument, ( ) ( ) 2 22 2W t W t s s+ ≤ + . then, 

( ) ( ) ( )1 21 2 1, 2 2 d .W f s s s f Wφ φ− −∗∆ ≤ ∆ +∫  

Given that ∆∈ , the integral in the aforementioned expression is unques-
tionably finite. Consequently, ( ) ( )1 2W Lφ −∗∆ ∈  , according to the Riesz Re-
presentation Theorem [14]. Note that only a distributional perspective may be 
used to broadly consider the Fourier transforms of, , ,R Cφ φ φ  and Lφ . Their 
supports also fit into this category. We definitely have 

( ) ( ) [ ] ( )ˆ ˆ ˆsupp 4 , , supp , , supp ,4 .
2 2L C Rφ φ φπ π   ⊆ − π − ⊆ −π π ⊆ π      

 

Recall that the Toeplitz operator with the sign depends simply on φ̂  being 
restricted to [ ]2 ,2− π π . Consequently 

.
L C R

T T T Tφ φ φ φ= + +                        (6) 

Additionally, the following, which is essentially illustrated in [12], demon-
strates that the symbol’s splitting is constant in the norm. 

Lemma (3.2): Suppose Xφ  be ,L Cφ φ  or Rφ . Then XK , a universal con-
stant, exists in such a way that 

X XT f K T fφ φ≤  for all f PW∈ . 
Proof: For y∈ , let yU  be the translator specified by ( ) ( )yU f t f t y= − . 

Then (in [12] p. 201), 
yU y yT U T Uφφ −= , so for all y, 

yUT φ  is unitarily equivalent 
to Tφ . Let ˇΠ ΨX X=  so we know that X Xφ φ= ∗Π  and ( )1

X LΠ ∈ ⊆  . For 
any ( )2g L∈   and t∈ , ( ) ,PW tP g t g r=  by (5). This fact, along with the 
translation operator already described, reveals that  

( ) ( ) ( )d
X yU XT f t T f t y yφ φ= Π∫ . 
Therefore, by duality, we obtain 
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1 1
, 1 , 1

sup , sup sup , ,
X X yU X X

g PW g g PW g y
T f T f g T f g T fφ φ φ φ

∈ ≤ ∈ ≤ ∈
= ≤ Π = Π



 

since for all y∈ , 
yUT φ  is unitarily equivalent to Tφ . Therefore, for all f PW∈ , 

,
L C R

T f T f T f T fφ φ φ φ≈ + +                   (7) 

Specifically, universal constants ,c d  exist such that 

( ) ( ).L C R L C R
c T f T f T f T f d T f T f T fφ φ φ φ φ φ φ+ + ≤ ≤ + +  

We will first test the boundedness and compactness of each of the three com-
ponents before testing the boundedness and compactness of a Toeplitz operator. 
The action of multiplying by θ  on ( )2L   is represented by Mθ , which Mθ  
is obviously a unitary operator if ( ) ei ttθ π= . The fact that, for example 

( )2f L∈  , ( ) ( ) ( )ˆf x f xθ ∧ = − π  and ( ) ( ) ( )ˆf x f xθ
∧

= + π . 

The fact that follows holds for any ( )2WLψ ∈   and ( )2f L∈  , where at 
least one has a Fourier transform with compact support, will be used frequently 
throughout this paper: 

( )( ) ( ) ( ) ( )ˆ ˆˆ ˆsupp supp supp supp ,f f fψ ψ ψ∧ = ∗ ⊆ +           (8) 

In [15]. In essence, [12] also contains the following lemma. 

Lemma (3.3): Let ( )2WLψ ∈  , ( )ˆsupp ,4
2

ψ π ⊆ π  
. Then 

2ΓT M Mψ θ θθ ψ
=  and 2Γ .PWM T P Mψθ θθ ψ

=  

Therefore, 2Tψ θ ψ
= Γ , provided these are finite, and Tψ  is limited and 

closed only if 2θ ψ
Γ  is closed and bounded. 

Proof: By taking into account the support provided by the Fourier transforms 
of pertinent functions, the first two equality conditions are established. Given 
that Mθ  and PPW are bounded operators of norm 1, the operators’ norms are 
same, and their compactness is equivalent. For w∈ , let wh  be the associated 
normalized reproducing kernel of PW. 

( ) ( ) ( )2 Im sinc ,
sinh 2 Imw

wh t t w
w

π
= −

π
               (9) 

when Im 0w = , with a suitable interpretation. 
The component 

R
Tφ  boundedness will be established using the following state-

ment. 

Proposition (3.4): Let ( )2WLψ ∈   and ( )ˆsupp ,4
2

ψ π ⊆ π  
. Then Tψ  is 

bounded if and only if it is bounded on { }:wh w +∈ . Additionally, a universal 

constant M exists such that { }sup :wT M T h wψ ψ +≤ ∈ . 

Proof: Given that this is a collection of normalized functions, it is obvious 
that if Tψ  is bounded, it is limited on { }:wh w +∈ . In contrast, Tψ  is 
bounded by Lemma (2.1.4) if and only if 2θ ψ

Γ  is limited. According to Theo-
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rem (2.1.1), if 2θ ψ
Γ  is restricted on { }:wj w +∈  and such a universal con-

stant M exists. 

{ }2 2sup :wM j w
θ ψ θ ψ +Γ ≤ Γ ∈ . 

However, by Lemma (2.1.4), 2 w PW wj T P M jψ θθ ψ
Γ = . A straightforward 

calculation shows that 

( ) ( )e 2 Im sinc ,i w
PW wP M j t w t wθ

− π= π −  

and therefore 

( )2
Ime sinh 2 Im .w

w wj w T hψθ
ψ −πΓ = π              (10) 

If ( )Ime sinh 2 Im 1w w−π π <  for w +∈ , where, 

{ }2sup :wj w
θ ψ +Γ ∈ < ∞  and so 2θ ψ

Γ  

and hence Tψ  is limited. Moreover, 

{ } { }2 2sup : sup : ,w wT M j w M T h wψ ψθ ψ θ ψ + += Γ ≤ Γ ∈ ≤ ∈   

as required. We will now talk about Toeplitz operators with symbols whose 

Fourier transforms are supported on 4 ,
2
π − π −  

, such as the component 
L

Tφ . 

We present the notation. ( ) ( )h t h t∗ = − . Then it is simple to demonstrate 
that ( ) ( )ĥ h

∗ ∧
=  and that, for g PW∈ , 

( ) ( )( ) .T g T gψ ψ

∗∧ ∧
=                     (11) 

Corollary (3.5): Let ( )2WLψ ∈  , ( )ˆsupp 4 ,
2

ψ π ⊆ − π −  
. Tψ  is then said to 

be limited if and only if it has limits on { }:wh w −∈ . Additionally, An conti-

nuous constant M exists in a way that { }sup :wT M T h wψ ψ −≤ ∈ . 

Proof: Given that complex conjugation, the Fourier transform, and the opera-
tions on ∗  are all unitary, T Tψ ψ=  by (11). But we may apply Proposition 
(3.4) to ψ . By (11) again, w wT h T hψ ψ= . It is easily shown that w wh h=  and 
the result therefore stands. In order to study the component 

C
Tφ , we will now 

examine the scenario in which the symbol has support for the Fourier transform 
on [ ],−π π . 

Proposition (3.6): Let ( )2WLψ ∈  , ψ̂  It is strengthened on [ ],−π π  and 
w∈  then ( )Lψ ∞∈   provided that { }sup :wT h wψ ∈ < ∞ , Additionally, 
there is a universal constant M such that { }sup sup :wM T h wψψ

∞
≤ ∈ . 

Proof: The inner product of ( )2L   functions and, more broadly, the impact 
of a distribution on a function are both shown here using the notation , . Ac-
cording to the Paley-Wiener-Schwartz Theorem in [7], ψ  is the limit to   of 
an entire function of exponential type at most π, as it has a compactly supported 
Fourier transform. 

It is simple to demonstrate ˆ ˆˆ, ,w w w wT h h h hψ ψ= ∗  and that 
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( ) ( ) ( )2
eˆ 2 ,
2

iwx

w w Ih h x x xχ
−

∗ = π −
π

 

using (4). Let ( ) ( )2
2

2 I
x

x xχ
π −

Λ =
π

. 

Then ˆ ˆˆ ˆ, , ,w w w wT h h h hψ ψ ψ= Λ = Λ . However, 

( )
( )

ˇ ˇ , where is the point mass at ,
ˆˆ ˆ, , as supp ,

ˆˆ , .

w w

I w

w

w w

I

h

ψ ψ δ δ

ψ χ δ ψ

ψ

Λ∗ = Λ∗

= Λ ⊆

= Λ

 

Hence, ( ) { }ˇ ,w ww T h hψψΛ∗ =  and therefore, 

ˇ sup , sup ,w w w
w w

T h h T hψ ψψ
∞

∈ ∈
Λ ∗ = ≤

 
              (12) 

as 1wh =  for all w∈ . 
We aim to demonstrate this ˇ ψ ψ

∞ ∞
Λ ∗ ≈ .  

First off, we conclude that ( )1ˇ LΛ∈   as Λ is an array of I Iχ χ∗ , so Λ̌  is 

the square of an ( )2L   function. Therefore, 1
ˇ ˇψ ψ

∞ ∞
Λ ∗ ≤ Λ . For the op-

posite inference, we see that ( ) ( )( ) ( )2
ˇ

2 Ix x x
x

ψ χ ψ ∧π
= Λ∗

π −
. 

On I, however, ( )ˇ ψ ∧Λ∗  is supported. As a result, we create a function V 
that, for x I∈ , 

( ) 2 ,
2

V x
x
π

=
π −

 

After that, and V is expanded to become even, supported by 2I, and infinitely 
differentiable, save at 0. Therefore, since ( )ˆ ˇVφ φ ∧= Λ ∗  so ( )ˇ ˆVφ φ= ∗ Λ∗  The 
math below indicates that ( )1V̌ L∈  . 

( ) ( ) ( )

( ) ( ) ( )( )

2

0

2

2 0

2ˇ cos d , as is even

2 1 0 cos d ,

t V x tx x V

V V x tx x
t

V
π

π

+

=
π

′ ′′= − +
π

∫

∫
 

utilizing two integrations via sections. Therefore, ( ) ( )2 1

2 1 1ˇ 0
2

V t V V
t +′≤ +

π
. 

Being continuous, V̌  is unquestionably locally integrable, hence ( )1V L∈   
follows. 

Hence, 1
ˇ ˇVψ ψ

∞ ∞
≤ Λ∗ , so that ˇ ψ ψ

∞ ∞
Λ ∗ ≈ . By combining this with 

(12), we arrive at the desired outcome. 

4. Main Findings 

The first fundamental theorem can now be stated. Tφ  is divided into 

L C R
T T Tφ φ φ+ + , We shall see that the boundedness of Tφ  on { }:wh w +∈ . de-
termines the boundedness of 

R
Tφ . The boundedness of Tφ  on { }:wh w −∈  

and { }:wh w∈ , respectively, determines the boundedness of 
L

Tφ  and 
C

Tφ . 
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Theorem (4.1): Let ( )2WLφ ∈  . Subsequently, Tφ  is limited if and only if it 
is limited on { }:wh w∈ . Additionally, a continuous constant M exists in a way 
that 

{ }sup : .wT M T h wφ φ≤ ∈  

Proof: Clearly, if Tφ  is bounded, it is bounded on { }:wh w∈  since these 
are a collection of normalized functions. Conversely, we know by (7) that for all 
f PW∈ , 

.
L C R

T f T f T f T fφ φ φ φ≈ + +                  (13) 

By Proposition (3.4), 
R

Tφ  is limited provided that { }sup :
R wT h wφ +∈ < ∞  

and this is undoubtedly accurate given that 

{ }sup : ,wT h wφ +∈ < ∞                    (14) 

through Lemma (3.2). Similar to that, according to Corollary (3.5) and Lemma 
(3.2), 

L
Tφ  is limited if 

{ }sup : ,wT h wφ −∈ < ∞                    (15) 

Rochberg shows that 
C CTφ φ

∞
≈ , in [12]. 

C
Tφ  is therefore constrained by 

Proposition (3.6) and Lemma (3.2), provided that 

{ }sup : .wT h wφ ∈ < ∞                    (16) 

When (13), (14), (15), and (16) are combined, we discover that Tφ  is bounded 
if { }sup :wT h wφ ∈ < ∞ . The estimate for Tφ  is similarly produced by esti-
mating the norms of ,

L R
T Tφ φ  and 

R
Tφ  using Proposition (3.4), Corollary 2.5, 

and Proposition (3.6). By using a counterexample, we can demonstrate that the 
supremum of the norms of the pictures in the set of wh  for w∈  is not com-
parable to the norm of a Toeplitz operator. 

Lemma (4.2): No universal constant M exists such that  

{ }sup :wT M T h wφ φ≤ ∈ , for all bounded Tφ . 
Proof: For [ )0,2α ∈ π , let ( ) ei tt α

αφ = . Since 1αφ ∞
=  it is clear that 

1T
αφ
≤ . Fourier transforms are used in an easy computation to demonstrate 

that 

( )
( )

2 e sinh 2
.

sinh 2

v

w

v
T h

vα

α

φ

απ −
=

π
 

where Imv w=  (if v = 0, given a reasonable interpretation). In particular, if 
w∈  then 

{ }2 2 2so sup : .
2 2w wT h T h w

α αφ φ
α απ − π −

= ∈ =
π π

          (17) 

However, 
( )
( )

e sinh 2
lim 1

sinh 2

v

v

v
v

α α
→∞

π −
=

π
. 

Therefore, { }sup :wT h w
αφ

∈ ≥1, so 1T
αφ
= . Therefore, any such M would 
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need satisfy 2
2

M
α

π
≥

π −
, for all values of [ )0,2α ∈ π , which is obviously not 

possible. We will start by demonstrating a statement that is true for any compact 
operator on PW. 

Proposition (4.3): If T is any compact operator from PW to a Hilbert space H, 
assumable, lim 0ww Th→∞ = . 

Proof: To do this, we must first demonstrate that wh  weakly converges to 
zero as 

w →∞ . ( ) [ ]( )1 2
0,

,E L
δ

δ δ−
∈ π

= −π + π −


 . 

It is then simple to demonstrate that E is a dense subspace of PW. Let f E∈ . 
Using the kernels’ ability to reproduce, 

( ) ( )
2, ,

sinh 2w
vf h f w

v
π

=
π

                  (18) 

where Imv w= , by (5) and (9). There is a constant fK  such that for some 
δπ − , ( )0,δ ∈ π , f is a complete function of exponential type at most. 
( ) ( )e v

ff w K δπ−≤ , in [11]. Therefore, 

( )

( ) 4

2 e2, e 0 as .
sinh 2 1 e

v
fv

w f v

K vvf h K v
v

δ
δ

−
π−

− π

ππ
≤ = → →∞

π −
 

We can also show that, for any 0R > , ( ) 0f u iv+ →  as u →∞ , this is a 
generalization of the Riemann-Lebesgue Lemma for v R−≤ . Using (18) once 
more, it is evident that lim , 0ww f h→∞ = . 

However, a typical argument demonstrates that wh  converges weakly to zero 
as w →∞ .| since E is a dense subspace of PW and { }:wh w∈  is uniformly 
bounded. Compact operators transform weak convergence to norm convergence, 
so the outcome is as shown in [16]. If T is a Toeplitz operator, we can get the 
opposite of this conclusion. 

Theorem (4.4): Let ( )2WLφ ∈  . Then Tφ  is closed and bounded if and on-
ly if 

lim 0.ww
T hφ→∞

=  

Proof: The prior assertion provides the forward implication. Note that by (7) 
Tφ  is compact if and only if each of ,

L C
T Tφ φ , and 

R
Tφ ) is, demonstrating the 

opposite conclusion. Let’s start by thinking about 
R

Tφ . According to our theory 
and (7), 

,
lim 0.

R ww w
T hφ

+∈ →∞
=


 

By (10), 

( )2
Ime sinh 2 Im .

R

w
R w wj w T hφθ
φ −πΓ = π  

Therefore, 

2 2
, ,Im 0

lim lim 0.
R R

w ww w w w
j j

θ φ θ φ+ +∈ →∞ ∈ →
Γ = Γ =

 
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As a result, according to Theorem (2.1), 2
Rθ φ

Γ  is compact, and by Lemma 
(3.3), 

R
Tφ  is closed and bounded. The same argument (applied to 

L
Tφ  and us-

ing (11)) shows that 
L

Tφ  and hence 
L

Tφ  is compact. 
C

Tφ  is compact provided 
that ( ) 0C wφ →  as w →∞ , in [12]. 

C
Tφ  is therefore implied to be closed 

and bounded by Lemma (3.2) and Proposition (3.6), according to our hypothesis. 
Tφ  is hence compact. 

5. Other Issues 

It is possible to determine whether Toeplitz operators belong to a certain Schat-
ten-von Neumann class by observing how the operators behave on the repro-
ducing kernels. It would be interesting to see if similar results are obtained for 
Hankel-type operators on PW. For this space, Hankel-type operators in one 
form are considered in [12], and it is found that they are equivalent to the Toep-
litz operators considered in this paper. However, Hankel-type operators defined 
on PW by 

( ): , ,
PW

H PW PW H f P fφ φ φ⊥
⊥→ =  

do not appear to have been analyses. 
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