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Abstract 
This article presents an investigation into the flow and heat transfer characte-
ristics of an impermeable stretching sheet subjected to Magnetohydrodynam-
ic Casson fluid. The study considers the influence of slip velocity, thermal 
radiation conditions, and heat flux. The investigation is conducted employing 
a robust numerical method that accounts for the impact of thermal radiation. 
This category of fluid is apt for characterizing the movement of blood within 
an industrial artery, where the flow can be regulated by a material designed to 
manage it. The resolution of the ensuing system of ordinary differential equa-
tions (ODEs), representing the described problem, is accomplished through 
the application of the finite difference method. The examination of flow and 
heat transfer characteristics, including aspects such as unsteadiness, radiation 
parameter, slip velocity, Casson parameter, and Prandtl number, is explored 
and visually presented through tables and graphs to illustrate their impact. 
On the stretching sheet, calculations, and descriptions of the local skin-friction 
coefficient and the local Nusselt number are conducted. In conclusion, the 
findings indicate that the proposed method serves as a straightforward and ef-
ficient tool for exploring the solutions of fluid models of this kind. 
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1. Introduction 

Comprehending the flow of fluid over a stretching sheet is crucial across scien-
tific and engineering realms. This phenomenon plays a fundamental role in ex-
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plaining fluid motion dynamics, especially in scenarios involving the stretching 
or deformation of material surfaces. These situations are prevalent in industries, 
biomedical applications, and environmental settings. The investigation into fluid 
flow over a stretching sheet offers valuable insights into the intricate relation-
ships among forces, velocities, and temperature distributions. This contributes 
significantly to understanding heat transfer mechanisms and optimizing various 
processes. Ever since Crane [1] analytically presented the solution to the steady 
flow problem involving a Newtonian fluid propelled by a stretched flat sheet 
moving within its plane at a velocity that varies linearly with distance from a 
fixed point, there has been a growing research interest in the flow and heat 
transfer arising from an unsteady stretching sheet. This heightened interest is at-
tributed to the multitude of practical applications in various sectors of manu-
facturing processes and technology. In [2], Gupta expanded upon the problem 
presented by [1] by incorporating a porous sheet, yielding a closed-form solu-
tion. Additionally, Grubka and Bobba [3] delved into the thermal field and in-
troduced a solution for the energy equation using Kummer’s functions. Numer-
ous other studies have been conducted in the same area of investigation, as do-
cumented in [4]. 

Non-Newtonian fluids are characterized by nonlinear connections between 
shear stress and strain rate, introducing a notably complex and intricate nature 
to this type of fluid. Their utilization extends to diverse applications in manu-
facturing and technology, such as the separation of crude oil from petroleum 
products. The distinctive rheological behavior of these fluids poses challenges 
and requires tailored approaches in various industrial processes and technical 
contexts. Among the various types of non-Newtonian fluids, the Casson fluid 
class stands out as the most widely recognized, attributed to its widespread use 
in numerous industrial applications. The thermal transport characteristics of 
Casson fluids are notably efficient when compared to their Newtonian counter-
parts. Several additional studies related to the Casson fluid model can be found 
in ([5] [6] [7]). 

Ordinary and partial differential equations have been the focus of extensive 
investigations due to their recurrent presence in diverse fields such as fluid me-
chanics, viscoelasticity, biology, physics, and engineering. The solutions to ordi-
nary differential equations (ODEs) with physical relevance have garnered consi-
derable attention, as highlighted in [8]. To quantitatively address the physical 
problem governed by nonlinear ODEs, the finite difference method was em-
ployed as an effective numerical approach. This method aids in obtaining solu-
tions that are crucial for understanding and modeling the behavior of systems 
across various scientific and engineering domains. 

In this article, we demonstrate the use of the implicit finite difference method 
(FDM) as a numerical method to address the study’s main problem. Recent re-
search in this area has begun to significantly include the FDM. Numerous re-
search [9] [10] [11] have shown that this method is a reliable instrument for 
handling a wide range of issue kinds. The original issue is changed into a nonli-
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near system of algebraic equations using this method. The Newton iteration ap-
proach will be used to solve the resulting system of nonlinear algebraic equations. 
The capacity of the FDM to solve problems that occur in calculations with other 
numerical methods, such as the finite element approach [12], has been noted by 
numerous scholars [13] [14]. This technique has been utilized to solve various 
problems [15] [16] [17]. 

However, the primary objective of this study is to explore the numerical solu-
tion for the flow of Casson fluid over a continuously stretching sheet under un-
steady conditions, taking into account thermal radiation, a magnetic field, and 
variable heat flux, all while incorporating slip effect boundary conditions. This 
research employs the implicit finite difference method to address these complex 
interactions. The novelty and significance of this investigation lie in its pioneer-
ing use of the proposed numerical method to computationally solve the formu-
lated model, marking the first instance of such an approach in this particular 
context.  

2. Methodology 

In this segment, we examine the dynamic behavior of two-dimensional unsteady 
laminar flow and heat transfer involving a non-Newtonian Casson fluid over a 
stretching sheet that is in motion. The equation describing the rheological state 
of an incompressible and isotropic fluid flow involving a non-Newtonian Casson 
fluid has been articulated and thoroughly discussed in prior works, particularly 
in references [18] [19]. The analysis includes considerations for thermal radia-
tion and variable heat flux based on the thermal radiation. Additionally, we as-
sume a coordinate system where the x-axis aligns with the plane of the sheet, and 
the y-axis is perpendicular to the plane. We posit that the stretching sheet begins  

its motion from a stationary position, with the velocity ( ),
1

cxU x t
tα

=
−

. Here, c  

and α are positive constants with units of reciprocal time. In this context, c spe-
cifically denotes the initial stretching rate. Similarly, we assume that the surface 
heat flux ( ),Q x t  on the stretching sheet exhibits variation based on the power 
of the distance x from the slit and the power of the time factor, as previously in-
troduced in the reference [20] as follows:  

( ) ( )
1
20, 1 .m r TQ x t T t dx

y
α κ− − ∂

= − = −
∂

                 (1) 

In this context, T0 represents the reference temperature, T signifies the tem-
perature of the fluid, κ  stands for the thermal conductivity of the Casson fluid, 
and d is a constant. The variables r and m serve as indices for space and time, 
respectively. Furthermore, it is posited that the Casson fluid undergoes the in-
fluence of two significant and relevant phenomena: magnetic forces and thermal 
radiation [21]. These factors play a pivotal role in governing the heat transfer 
process within the fluid flow. Moreover, the simplification applied to express 
thermal radiation in a linear form is expounded in detail in reference [21]. The 
time-dependent velocity and temperature fields that govern the flow described 
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in this manner are outlined as follows, as referenced in [22]:  

0,u v
x y
∂ ∂

+ =
∂ ∂

                           (2) 

( )
2

1 01 1 ,Bu u u uu v u
x y t y y

σ
µ γ

ρ ρ
− ∂ ∂ ∂ ∂ ∂

+ + = + − ∂ ∂ ∂ ∂ ∂ 
           (3) 

* 3 2

* 2

161 ,
3p

TT T T Tu v
x y t c k y

σκ
ρ κ

∞ ∂ ∂ ∂ ∂
+ + = + ∂ ∂ ∂ ∂ 

              (4) 

here, the components of velocity along the x and y directions are denoted by u 
and v respectively. In this context, µ  represents the viscosity of the fluid, ρ  
signifies the density of the fluid, σ  stands for the electric conductivity, B0 
represents the strength of the magnetic field, γ  is indicative of the Casson pa-
rameter, and cp corresponds to the specific heat at constant pressure. The suita-
ble boundary conditions for the current problem are as follows [20] [22]:  

( )1
11 , 0, , at 0,

1
cx u Tu v Q x t y

t y y
λ κ

α γ
  ∂ ∂

= + + = − = = − ∂ ∂ 
     (5) 

, 0, as ,T T u y∞→ → →∞                   (6) 

where 1λ  denotes the velocity slip factor, a parameter that dynamically varies 
over time. The simplification of the mathematical analysis of the problem is 
achieved by introducing the subsequent dimensionless coordinates [20]:  

( ) ( )
( )

( )
1

12
2

1
2

, 1 , ,
1 1

cx c cu f t y v f
t t

νη η α η
α ν α

− ′= = − = − −   −
    (7) 

( ) ( )0 1 ,
r

mdxT T T t
c

α θ η
κ ν

−
∞

 
= + −  

 
               (8) 

In this context, ( )f η  represents the dimensionless stream function, and 
( )θ η  denotes the dimensionless temperature. Moreover, by the final equation, 

the temperature of the sheet, denoted as wT , can be expressed as follows  

( ) ( )0 1 0
r

m
w

dxT T T t
c

α θ
κ ν

−
∞

 
= + −  

 
. By employing Equations (7)-(8), the ma-

thematical problem delineated in Equations (2)-(4) is subsequently converted  
into a system of ordinary differential equations along with their corresponding 
boundary conditions:  

( )1 21 0,
2

f f f f ff Mfηγ −  ′′′ ′ ′′ ′ ′′ ′+ − Λ + − + − = 
 

          (9) 

( )1 1 0,
2

R f m rf
Pr

ηθ θ θ θ θ ′′ ′ ′ ′+ + − Λ + − = 
 

          (10) 

( )110, , 1 1 , at 0,
1

f f f
R

θ λ γ η−′ ′ ′′= = − = + + =
+

      (11) 

0, 0 as .f θ η′→ → →∞                  (12) 

Here, the prime symbol signifies differentiation concerning η , and the para-
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meters are defined as follows: Λ represents the unsteadiness parameter, given by  

c
α

Λ = ; R is the radiation parameter, expressed as 
* 3

*

16
3

TR
k
σ
κ
∞= ; M denotes the 

magnetic parameter, calculated as 
2
0BM

c
σ
ρ

= ; and Pr stands for the Prandtl 

number, defined as pc
Pr

ρν
κ

= . In the realm of engineering and practical ap-

plications, our focus is directed toward exploring crucial physical attributes re-
lated to flow behavior and heat transfer characteristics. This exploration involves  
the analysis of non-dimensional quantities, specifically the local skin friction 
coefficient ( xCf ) or fractional drag coefficient, and the local Nusselt number 
( xNu ). The definitions of these non-dimensional parameters are articulated as 
follows:  

( ) ( )

1
1 2

2 12 1 0 , ,
0
x

x x x
ReCf Re f Nu

γ θ

−   ′′= − + = 
 

 

where x
UxRe
ν

=  is the local Reynolds number.  

3. Solution Procedure Using FDM  

Our aim in this section is to use the FDM to solve Equations (9)-(10) with the 
boundary conditions (11)-(12). This method has been tested for accuracy and ef-
ficiency in solving different problems. We use the transformation ( ) ( )f η φ η′ =  
to rewrite the system of Equations (9)-(12) in the following form:  

0,f φ′ − =                             (13) 

( ) ( )1 21 0.5 0,f Mγ φ φ ηφ φ φ φ− ′′ ′ ′+ − Λ + − + − =             (14) 

( ) ( )1 0.5 0,R Pr f Pr m r Prθ θ θ ηθ φθ′′ ′ ′+ + − Λ + − =           (15) 

( ) ( ) ( ) ( ) ( ) ( )1 10 0, 0 1 , 0 1 1 0 ,f Rθ φ λ γ φ− −′ ′= = − + = + +        (16) 

( ) ( )0, 0.φ η θ η∞ ∞= =                        (17) 

In finite difference methods the space of solution’s domain is discretized. We use 
the notations 0η∆ = >  to be the grid size in η-direction, Nη η∞∆ = , with 

k kη =   for 0,1, ,k N=  . Define ( )k kf f η= , ( )k kφ φ η=  and ( )k kθ θ η= . 
Let ,k kF Φ , and kΘ  denote the numerical values of ,f φ , and θ  at the kth 

node, respectively. We take  

1 1 1 1 1 1, , ,
2 2 2

k k k k k k
k k k

f ff φ φ θ θ
φ θ+ − + − + −− − −′ ′ ′≈ ≈ ≈

  

       (18) 

1 1 1 1
2 2

2 2, .k k k k k k
k k

φ φ φ θ θ θ
φ θ+ − + −− + − +′′ ′′≈ ≈

 

           (19) 

The main step is that the system of ODEs (13)-(17) is discretized in space by 
using FDM. To do this we substitute from (18)-(19) into (13)-(17) and neglect 
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the truncation errors, the resulting algebraic equations take the form:  

1 1 2 0, 0,1, , ,k k kF F k N+ −− − Φ = =                 (20) 

( )( ) ( )( )
( )

1 2
1 1 1 1

2 2 2
1 1

1 2 0.25

0.5 0,
k k k k k k k

k k k k kF M

γ η−
+ − + −

+ −

+ Φ − Φ +Φ −Λ Φ + Φ −Φ

− Φ + Φ −Φ − Φ =

 

  

    (21) 

( )( ) ( )
( )( )

1 1 1 1

2 2
1 1

1 2 0.5

0.25 0.
k k k k k k

k k k k k k

R Pr F

Pr m r Prη
+ − + −

+ −

+ Θ − Θ +Θ + Φ −Φ

−Λ Θ + Θ −Θ − Φ Θ =



  

      (22) 

Also, the boundary conditions are:  

( )
( )( )

1
0 1 0

1 1
0 1 0

0, 2 1 , 0,

1 0.5 1 .
N NF R

λ γ

−

− −

= Θ −Θ + + Φ = Θ =

Φ = + + Φ −Φ





           (23) 

The system of Equations (20)-(23) is a non-linear system of algebraic equa-
tions in the variables ,k kF Φ , and kΘ , ( 0,1, ,k N=  ). In our calculation using 
the Mathematica Package, and Newton iteration method with suitable initial so-
lutions to solve numerically this system.  

4. Results and Discussion 

The preceding examination delved into the impact of variable heat flux on the 
flow characteristics of a magnetohydrodynamics (MHD) non-Newtonian Cas-
son fluid with slip conditions over an unsteady stretching sheet. This investiga-
tion also considered the concurrent influence of thermal radiation on heat 
transfer phenomena within the system. In this particular segment, our focus will 
shift towards a comprehensive exploration of the characteristics exhibited by the 
physical parameters that play a pivotal role in shaping the dynamics of the for-
mulated model. These parameters include the Casson parameter denoted as γ, 
the magnetic parameter represented by M, the unsteady parameter identified as 
Λ, the time indices parameter denoted as m, the velocity slip parameter indi-
cated by λ, the space indices parameter represented by r, and lastly, the Prandtl 
number denoted as Pr. Figure 1(a) and Figure 1(b) scrutinize the impact of the 
magnetic number denoted as M on the profiles of velocity and temperature, re-
spectively. Figure 1(a) illustrates that the velocity experiences a decline as a 
function of the magnetic number M while Figure 1(b) depicts an increasing 
trend with the same parameter M. This behavior can be attributed to the physi-
cal phenomenon associated with magnetic fields, which generate the Lorentz 
force. The Lorentz force acts in opposition to the flow, leading to a reduction in 
fluid velocity.  

Figure 2(a) is constructed to elaborate on the dimensionless velocity distribu-
tion within the boundary layer across various values of the unsteadiness para-
meter Λ. The observation drawn from this figure indicates that an augmentation 
in the unsteadiness parameter results in a decrease in the velocity distribution 
within the boundary layer. Conversely, as a consequence of the heat flux pre-
vailing along the sheet, it is observed that the temperature distribution within 
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the boundary layer, as well as the wall temperature denoted as ( )0θ , demon-
strates an increase with a corresponding rise in the aforementioned parameter, 
as depicted in Figure 2(b). In terms of physical interpretation, this behavior 
emphasizes a fundamental aspect: the cooling rate is significantly accelerated for 
smaller values of the unsteadiness parameter. Conversely, larger values of the 
unsteadiness parameter may necessitate a more prolonged duration for the 
cooling process. 

Figure 3(a) and Figure 3(b) have been meticulously illustrated to provide a 
clearer understanding of how the velocity slip parameter, denoted as λ affects 
both velocity and temperature profiles. The purpose of these figures is to eluci-
date and shed light on the intricate relationship between the parameter λ and the 
respective profiles of velocity and temperature. By examining Figure 3(a), it can  
 

 
Figure 1. (a) Velocity distribution for M, (b) Temperature distribution for M. 
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Figure 2. (a) Velocity distribution for Λ, (b) Temperature distribution for Λ. 
 

be noted that as the slip velocity parameter increases, there is a noticeable reduc-
tion in both the velocity distribution within the boundary layer and the thickness 
of the boundary layer. Physically, the introduction of slip conditions implies that 
the fluid exhibiting slip reduces the surface skin friction values between the fluid 
and the stretching sheet. Consequently, an increase in the slip velocity parameter 
results in a decrease in the flow velocity within the boundary layer region. Fig-
ure 3(b) depicts the dimensionless temperature distribution within the boun-
dary layer region corresponding to the slip velocity parameter. An increase in 
the velocity slip parameter, as observed in the figure, is associated with higher 
temperatures at the wall ( ( )0θ ) and an enhanced distribution of fluid tempera-
ture within the thermal boundary layer. These observations imply that changes 
in the velocity slip parameter significantly influence not just the temperature at 
the wall but also the broader thermal characteristics within the boundary layer. 
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Figure 3. (a) Velocity distribution for λ, (b) Temperature distribution for λ. 

 
In the subsequent illustration presented in Figure 4(a), the velocity distribu-

tion is displayed as a function of the similarity variable η across different values 
of the Casson parameter γ. This graphical representation aims to provide a visu-
al depiction of how the velocity varies concerning the similarity variable for var-
ious settings of the Casson parameter γ. The depicted Figure illustrates that 
augmenting the Casson parameter results in an elevation of the velocity distribu-
tion along the sheet, whereas the opposite trend is observed away from the sheet. 
Furthermore, an increase in the Casson parameter is associated with a reduction 
in the thickness of the boundary layer. Figure 4(b) displays the impact of the 
radiation parameter on the temperature profile. This graphical representation is 
designed to elucidate how variations in the radiation parameter influence the 
distribution of temperature within the system. It is clear from the observations 
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that an escalation in the radiation parameter has the effect of amplifying the 
temperature distribution along the boundary layer while concurrently causing a 
reduction in the temperature at the surface, denoted as ( )0θ . 

Illustrated in Figure 5 is the influence of the Prandtl number, denoted as Pr, 
on the temperature profiles above the sheet. Upon careful examination of this 
figure, it becomes apparent that a reduction in the Prandtl number contributes 
to an augmentation in the thickness of the thermal boundary layer, the distribu-
tion of temperature, and the temperature at the wall, represented by ( )0θ . This 
phenomenon can be attributed to the physical observation that higher values of 
the Prandtl number are indicative of weaker thermal diffusivity.  

Table 1 reveal the effect of different values of physical governing parameters of 
the magnetic parameter M, the Casson parameter β, the unsteady parameter S,  

 

 

Figure 4. (a) Velocity distribution for γ, (b) Temperature distribution for R.  
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Figure 5. Temperature distribution for Pr.  
 

Table 1. Variation of ( )11 0f
γ

  ′′− + 
 

 and 
( )
1
0θ

 for various values of , , , ,M Rλ γΛ  

and Pr.  

M Λ λ γ R Pr ( )11 0f
γ

  ′′− + 
 

 ( )
1
0θ

 

0.0 0.8 0.2 0.5 0.5 2.0 1.42101 2.96573 

1.0 0.8 0.2 0.5 0.5 2.0 1.71145 2.86408 

2.0 0.8 0.2 0.5 0.5 2.0 1.91604 2.79193 

0.5 0.7 0.2 0.5 0.5 2.0 1.55898 2.82161 

0.5 1.0 0.2 0.5 0.5 2.0 1.62378 3.07891 

0.5 1.5 0.2 0.5 0.5 2.0 1.88450 3.67287 

0.5 0.8 0.0 0.5 0.5 2.0 2.50577 3.23579 

0.5 0.8 0.2 0.5 0.5 2.0 1.58118 2.90983 

0.5 0.8 0.4 0.5 0.5 2.0 1.17388 2.73923 

0.5 0.8 0.2 0.5 0.5 2.0 1.58118 2.90983 

0.5 0.8 0.2 1.0 0.5 2.0 1.38137 2.92291 

0.5 0.8 0.2 1.5 0.5 2.0 1.29648 2.92520 

0.5 0.8 0.2 0.5 0.0 2.0 1.58118 2.39589 

0.5 0.8 0.2 0.5 0.5 2.0 1.58118 2.90983 

0.5 0.8 0.2 0.5 1.5 2.0 1.58118 3.70911 

0.5 0.8 0.2 0.5 0.0 2.0 1.58118 2.02109 

0.5 0.8 0.2 0.5 0.5 2.0 1.58118 3.59383 

0.5 0.8 0.2 0.5 1.5 2.0 1.58118 5.56367 

 
time indices parameter m, space indices parameter r, the heat generation para-
meter, the Prandtl number Pr, the velocity slip parameter λ and the Eckert  
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number Ec as these are required for the evaluation of the local skin-friction coef-

ficient 
1
21

2 x xCf Re  and the local Nusselt number 
1

2
x xNu Re

−

. It is seen that the in-

crease in the unsteady parameter causes an increase in both the skin friction  
coefficient and local Nusselt number. Also, the local skin-friction coefficient de-
creases by increasing the Casson parameter, whereas the local Nusselt number 
increases with the increasing values it. With the increase in the slip velocity pa-
rameter λ both the local skin-friction coefficient and the local Nusselt number 
decrease. Moreover, it is noticed that increases in the values of the Eckert num-
ber and the heat generation parameter lead to a decrease in the local Nusselt 
number. On the other hand, an increase in the Prandtl number causes an in-
crease in the local Nusselt number. This is because fluid with a higher value of 
Prandtl number possesses a large heat capacity, and hence intensifies the heat 
transfer. Finally, the local Nusselt number increases as the space indices para-
meter, the heat absorption parameter, and the time indices parameter increases.  

5. Conclusion 

This research systematically investigates the influence of slip effects, thermal 
radiation, variable heat flux, and a magnetic field on the boundary layer flow and 
heat transfer of a Casson fluid over an unsteady stretching sheet. By employing 
appropriate dimensionless transformations, the governing partial differential 
equations are transformed into ordinary differential equations. These equations 
are then solved numerically using the finite difference method. The overarching 
goal of this comprehensive study is to understand how the interplay of these di-
verse factors collectively shapes the flow dynamics and heat transfer characteris-
tics in the scenario of a Casson fluid interacting with an unsteady stretching 
sheet. The impact of increasing either the unsteadiness parameter or the Prandtl 
number on the local Nusselt number has been documented. Additionally, it was 
observed that an elevation in the slip velocity parameter results in a decrease in 
both the local skin friction coefficient and the local Nusselt number. Conversely, 
as the radiation parameter increases, the local Nusselt number decreases, whe-
reas an opposite trend is noted for the Casson parameter.  

Acknowledgements 

Sincere thanks to the members of JAMP for their professional performance, and 
special thanks to managing editor for a rare attitude of high quality.  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Crane, L.J. (1970) Flow past a Stretching Plate. Zeitschrift für angewandte Mathe-

https://doi.org/10.4236/jamp.2023.1112242


A. H. Tedjani 
 

 

DOI: 10.4236/jamp.2023.1112242 3838 Journal of Applied Mathematics and Physics 
 

matik und Physik, 21, 645-647. https://doi.org/10.1007/BF01587695 

[2] Gupta, P.S. and Gupta, A.S. (1977) Heat and Mass Transfer on a Stretching Sheet 
with Suction or Blowing. Canadian Journal of Chemical Engineering, 55, 744-746.  
https://doi.org/10.1002/cjce.5450550619 

[3] Grubka, L.J. and Bobba, K.M. (1985) Heat Transfer Characteristics of a Continuous 
Stretching Surface with Variable Temperature. ASME Journal of Heat Transfer, 
107, 248-250. https://doi.org/10.1115/1.3247387 

[4] Chen, C.K. and Char, M. (1988) Heat Transfer on a Continuous, Stretching Surface 
with Suction or Blowing. Journal of Mathematical Analysis and Applications, 35, 
568-580. https://doi.org/10.1016/0022-247X(88)90172-2 

[5] Ghadikolaei, S.S., Hosseinzadeh, K. and Jafari, G.B. (2018) Nonlinear Thermal Rad-
iation Effect on Magneto Casson Nanofluid Flow with Joule Heating Effect over an 
Inclined Porous Stretching Sheet. Case Studies in Thermal Engineering, 12, 176-187.  
https://doi.org/10.1016/j.csite.2018.04.009 

[6] Lund, L.A., Omar, Z., Khan, I., Baleanu, D. and Nisar, K.S. (2020) Dual Similarity 
Solutions of MHD Stagnation Point Flow of Casson Fluid with Effect of Thermal 
Radiation and Viscous Dissipation: Stability Analysis. Scientific Reports, 10, Article 
No. 15405. https://doi.org/10.1038/s41598-020-72266-2 

[7] Sarkar, S. and Endalew, M.F. (2019) Effects of Melting Process on the Hydromag-
netic Wedge Flow of a Casson Nanofluid in a Porous Medium. Boundary Value 
Problem, 2019, Article No. 43. https://doi.org/10.1186/s13661-019-1157-5 

[8] Yaslan, H.Ç. (2017) Numerical Solution of Fractional Riccati Differential Equation 
via Shifted Chebyshev Polynomials of the Third Kind. Journal of Engineering Tech-
nology and Applied Sciences, 2, 1-11.  

[9] Butcher, J.C. (2003) Numerical Methods for Ordinary Differential Equations. John 
Wiley & Sons, Hoboken. https://doi.org/10.1002/0470868279 

[10] Khader, M.M. and Adel, M. (2016) Numerical Solutions of Fractional Wave Equa-
tions Using an Efficient Class of FDM Based on Hermite Formula. Advances in 
Difference Equations, 2016, Article No. 34.  
https://doi.org/10.1186/s13662-015-0731-0 

[11] Khader, M.M. (2019) Fourth-Order Predictor-Corrector FDM for the Effect of 
Viscous Dissipation and Joule Heating on the Newtonian Fluid Flow. Computers 
and Fluids, 182, 9-14. https://doi.org/10.1016/j.compfluid.2019.02.011 

[12] Khader, M.M. and Sharma, R.P. (2021) Evaluating the Unsteady MHD Micropolar 
Fluid Flow past Stretching/Shirking Sheet with Heat Source and Thermal Radiation: 
Implementing Fourth Order Predictor-Corrector FDM. Mathematics and Comput-
ers in Simulation, 181, 333-350. https://doi.org/10.1016/j.matcom.2020.09.014 

[13] Khader, M.M. (2011) On the Numerical Solutions for the Fractional Diffusion 
Equation. Communications in Nonlinear Science and Numerical Simulation, 16, 
2535-2542. https://doi.org/10.1016/j.cnsns.2010.09.007 

[14] Sweilam, N.H., Khader, M.M. and Nagy, A.M. (2011) Numerical Solution of 
Two-Sided Space Fractional Wave Equation Using FDM. The Journal of Computa-
tional and Applied Mathematics, 235, 2832-2841.  
https://doi.org/10.1016/j.cam.2010.12.002 

[15] Khader, M.M., Sweilam, N.H. and Mahdy, A.M.S. (2013) Numerical Study for the 
Fractional Differential Equations Generated by Optimization Problem Using Che-
byshev Collocation Method and FDM. Applied Mathematics and Information Science, 
7, 2013-2020. https://doi.org/10.12785/amis/070541 

https://doi.org/10.4236/jamp.2023.1112242
https://doi.org/10.1007/BF01587695
https://doi.org/10.1002/cjce.5450550619
https://doi.org/10.1115/1.3247387
https://doi.org/10.1016/0022-247X(88)90172-2
https://doi.org/10.1016/j.csite.2018.04.009
https://doi.org/10.1038/s41598-020-72266-2
https://doi.org/10.1186/s13661-019-1157-5
https://doi.org/10.1002/0470868279
https://doi.org/10.1186/s13662-015-0731-0
https://doi.org/10.1016/j.compfluid.2019.02.011
https://doi.org/10.1016/j.matcom.2020.09.014
https://doi.org/10.1016/j.cnsns.2010.09.007
https://doi.org/10.1016/j.cam.2010.12.002
https://doi.org/10.12785/amis/070541


A. H. Tedjani 
 

 

DOI: 10.4236/jamp.2023.1112242 3839 Journal of Applied Mathematics and Physics 
 

[16] Johnston, H. and Liu, J.G. (2002) Finite Difference Schemes for Incompressible 
Flow Based on Local Pressure Boundary Conditions. Journal of Computational 
Physics, 180, 120-154. https://doi.org/10.1006/jcph.2002.7079 

[17] Zakaria, M., Khader, M.M., Ibrahim, A. and Al-Tayeb, W. (2022) Solving Fractional 
Generalized Fisher-Kolmogorov-Petrovsky-Piskunov’s Equation Using Compact 
Finite Difference Method Together with Spectral Collocation Algorithms. Journal of 
Mathematics, 2022, Article ID: 1901131. https://doi.org/10.1155/2022/1901131 

[18] Megahed, A.M. (2015) Effect of Slip Velocity on Casson Thin Film Flow and Heat 
Transfer Due to an Unsteady Stretching Sheet in the Presence of Variable Heat Flux 
and Viscous Dissipation. Applied Mathematics and Mechanics, 36, 1273-1284.  
https://doi.org/10.1007/s10483-015-1983-9 

[19] Megahed, A.M. (2016) Heat Flux and Variable Thermal Conductivity Effects on 
Casson Flow and Heat Transfer Due to an Exponentially Stretching Sheet with 
Viscous Dissipation and Heat Generation. International Journal of Chemical Reac-
tor Engineering, 14, 167-174. https://doi.org/10.1515/ijcre-2015-0135 

[20] Megahed, A.M. (2014) Variable Heat Flux Effect on MHD Flow and Heat Transfer 
over an Unsteady Stretching Sheet in the Presence of Thermal Radiation. Canadian 
Journal of Physics, 92, 86-91. https://doi.org/10.1139/cjp-2012-0543 

[21] Megahed, A.M., et al. (2021) Modeling of MHD Fluid Flow over an Unsteady 
Stretching Sheet with Thermal Radiation, Variable Fluid Properties and Heat Flux. 
Mathematics and Computers in Simulation, 185, 583-593.  
https://doi.org/10.1016/j.matcom.2021.01.011 

[22] Mostafa, A.A.M. and Megahed, A.M. (2017) MHD Flow and Heat Transfer Charac-
teristics in a Casson Liquid Film towards an Unsteady Stretching Sheet with Tem-
perature Dependent Thermal Conductivity. Brazilian Journal of Physics, 47, 512-523.  
https://doi.org/10.1007/s13538-017-0518-8 

 
 
 

https://doi.org/10.4236/jamp.2023.1112242
https://doi.org/10.1006/jcph.2002.7079
https://doi.org/10.1155/2022/1901131
https://doi.org/10.1007/s10483-015-1983-9
https://doi.org/10.1515/ijcre-2015-0135
https://doi.org/10.1139/cjp-2012-0543
https://doi.org/10.1016/j.matcom.2021.01.011
https://doi.org/10.1007/s13538-017-0518-8

	Numerical Study by Imposing the Finite Difference Method for Unsteady Casson Fluid Flow with Heat Flux
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	3. Solution Procedure Using FDM 
	4. Results and Discussion
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

