
Journal of Applied Mathematics and Physics, 2023, 11, 3735-3746 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.1111235  Nov. 30, 2023 3735 Journal of Applied Mathematics and Physics 
 

 
 
 

Cyclic Solution and Optimal Approximation of 
the Quaternion Stein Equation 

Guangmei Liu, Yanting Zhang, Yiwen Yao, Jingpin Huang* 

College of Mathematics and Physics, Guangxi Minzu University, Nanning, China 

 
 
 

Abstract 
In this paper, two different methods are used to study the cyclic structure 
solution and the optimal approximation of the quaternion Stein equation 

− =AXB X F . Firstly, the matrix equation equivalent to the target structure 
matrix is constructed by using the complex decomposition of the quaternion 
matrix, to obtain the necessary and sufficient conditions for the existence of 
the cyclic solution of the equation and the expression of the general solution. 
Secondly, the Stein equation is converted into the Sylvester equation by add-
ing the necessary parameters, and the condition for the existence of a cyclic 
solution and the expression of the equation’s solution are then obtained by 
using the real decomposition of the quaternion matrix and the Kronecker 
product of the matrix. At the same time, under the condition that the solution 
set is non-empty, the optimal approximation solution to the given quaternion 
circulant matrix is obtained by using the property of Frobenius norm prop-
erty. Numerical examples are given to verify the correctness of the theoretical 
results and the feasibility of the proposed method. 
 

Keywords 
Quaternion Field, Stein Equation, Cyclic Matrix, Complex Decomposition,  
Real Decomposition, Optimal Approximation 

 

1. Introduction 

In the field of numerical algebra, it is frequently important to discuss some 
structural solutions of a matrix equation. For example, [1] studied the symmetric 
solution of the equation Lyapunov + =AX YA C  in the real field; [2] gave the 
η -inverse Hermitian solution of a class of classical matrix equations in the qua-
ternion field; and [3] [4] [5] studied the cyclic solution and unitary structure so-
lution of the Lyapunov equation and the Sylvester equation on the quaternion 
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field. 
In the domains of cybernetics, system stability analysis, probability statistics, 

spectral analysis, neural networks, and image restoration, the Stein equation is a 
type of matrix equation that is frequently utilized [6] [7] [8] [9] [10]. Numerous 
academics have investigated the equation’s general solution as well as a few 
structural solutions using various techniques, with some success. For example, 
the positive definite solution of the Stein equation was discussed in 2012 [11], 
the general solution of the Stein equation was given by using the double conju-
gate gradient method in 2019 [12], and the cyclic solution of the Stein equation 
was discussed in the complex field by using the H-representation method of the 
matrix in 2022 [13]. However, there is no related research report on the cyclic 
solution of the Stein equation over the quaternion field, so the study of the cyclic 
structure solution of the quaternion Stein equation is a novel topic. The purpose 
of this paper is to discuss the cyclic solution of Stein equation − =AXB X F  
and its optimal approximation solution on the quaternion field. 

Let , ,n n n n n n× × ×Q C R  denote the set of all n n×  quaternion matrices, com-
plex matrices and real matrices; let , ,T ∗A A A  denote the conjugacy, transpose 
and conjugate transpose of matrix A , and +A  denotes the Moore-Penrose 
generalized inverse of matrix A ; let ⊗  denote the Kronecker product and 

( )vec A  denote the vector that straightens the columns of matrix A  sequen-
tially. And let 1/2 2 1/2

, 1[tr( )] [ | | ]H n
i j ija== = ∑A A A  denote the Frobenius norm 

of quaternion matrix A  [14] and ( )0 1:x x n=  denote an n-dimensional vec-
tor consisting of the first to nth elements of vector x. This paper mainly dis-
cusses the following two issues. 

Problem 1. Given the matrices , , n n×∈A B F Q , finding the circulant matrix 
n n×∈X Q  makes 

− =AXB X F                          (1) 

Problem 2. Given the circulant matrix n n×∈P Q , the quaternion circulant 
matrix ∈ΩX  is obtained under the condition of the solution set of problem 1 
and the Ω ≠ ∅ , such that 

min .
∈Ω

− = −
X

X P X P                      (2) 

2. Related Definitions and Lemmas 

Define 1. Given quaternion matrix 1 2 1 2( , )m n m nj × ×= + ∈ ∈A A A A AQ C , the form 

( ) 1 2 2 2

2 1

m nL × 
= ∈ − 

A A
A

A A
C                    (3) 

called to be the complex representation matrix of matrix A . 
Define 2 An n n×  matrix 

0 1 1

1 0 2

1 2 0

n

n n n n

q q q
q q q

q q q

−

− − ×

 
 
 = ∈
 
 
 

X





   



Q                  (4) 
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is called n-order quaternion circulant matrix. Then ( )0 1 1, , , nCir q q q −=X  , 
note 

10
1 0

n n n− × 
= ∈ 
 

I
D R                       (5) 

where 1n−I  is a unit matrix, Then the circulant matrix (4) can be expressed as 
1 1 2

1 1 0 ( , , , )n n n
nq q q q q q− − −
−= + + + =X D D I D D            (6) 

where 
T 1

1 1 0( , , , ) .n
nq q q q ×
−= ∈ Q                     (7) 

Lemma 1. [15] For any matrix , n n×∈A B Q , according to Definition 1, it is 
easy to prove that the complex representation matrix of quaternion matrix has 
the following properties. 

(a) ( ) ( )L L= ⇔ =A B A B ; ( ) ( ) ( )L L L= +A+ B A B ; ( ) ( ) ( )L L L=AB A B ; 

(b) 1
2 2( ) ( )n nL Q L Q−= ⋅ ⋅A A , where 2

0
0

n
n

n

− 
=  
 

I
Q

I
. 

Lemma 2. [16] The matrix equation =AX B  over the complex field has a 
solution if and only if + =AA B B . When there is a solution, both the general 
solution and the least square solution of the equation can be expressed as 

( )+ += + −X A B I A A Q , where Q  is an arbitrary matrix and +=X A B  is the 
unique minimum norm least square solution. 

Lemma 3. Let the quaternion matrix , , n n×∈A B F Q , then the quaternion 
Stein equation − =AXB X F  has a solution if and only if its complex repre-
sentation equation 

( ) ( ) ( )L L L− =A Y B Y F                      (8) 

has a solution. Where 2 2n n×∈Y C , If Y  is the solution of Equation (8), then 

[ ] 1
2 2

1 ,
4

n
n n n n

n

j
j

−   = − ⋅ + ⋅     

I
X I I Y Q YQ

I
               (9) 

is the solution of the original equation − =AXB X F , where 2nQ  such as 
Lemma 1(b). 

Proof. It is obvious to prove the necessity, when n n×∈X Q  is the solution of 
equation (1), 2 2( ) n nL ×= ∈Y X C  must be the solution of Equation (8). 

For the adequacy, let 2 2n n×∈Y C  be the solution of Equation (8), and divide 
Y  into the following blocks: 

( )1 2

3 4

, , 1, 2,3, 4n n
i i× 

= ∈ = 
 

Y Y
Y Y

Y Y
C                (10) 

It is sufficient to prove that the matrix (9) determined by Equation (10) is the 
solution of the original equation. The formula (10) is substituted into the (9), 
and it is calculated. 

( ) ( )1 4 2 3
1 1 .
2 2

j= + + −X Y Y Y Y
 

From Lemma 1, 
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( ) ( )11 4 2 3
2 2

2 3 1 4

1 1
2 2 n nL − −

= = + − + + 

Y + Y Y Y
X Y Q YQ

Y Y Y Y  
and Y  satisfies the Equation (8), after calculation 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1
2 2

1 1 .
2 2 n nL L L L L L L−− = + =A X B X F Q F Q F

 
Therefore, (9) determined by Equation (10) is the solution of the original equ-

ation. 

3. The Solution of Problem 1 

In this section, we discuss the necessary and sufficient conditions for the exis-
tence of cyclic solutions of quaternion matrix Equation (1) and the expressions 
of their general solutions. Here are two ways to discuss it. 

3.1. Complex Representation 

Define 

( )2

2

1

1

2

2 22
4

0
0

0
0

, , ( ( )) ( ) .0
0

0
0

R

n

n

n

n n Tn
n

n

n

L L

−

−

−

×−

 
 
 
 
   

= ∈ = = ⊗ −   
  

 
 
 
 

D
D

D
M

M D W B A ID
M

I
I



 

 (11) 

First of all, the complex representation equation ( ) ( ) ( )L L L− =A Y B Y F  of 
matrix Equation (1) is equivalently expressed to using Kronecker product as 

( )24
( ( )) ( ) ( ) ( ( )).T

n
L L vec vec L⊗ − =B A I Y F             (12) 

Using the expression of circulant matrix (6) and n-order complex circulant 
matrix 1 2 3 4, , ,Y Y Y Y  in (10), then 

( ) ( )1 2, , , 1, 2,3, 4n n
i i i iy y y i− −= =Y D D               (13) 

where 1n
iy ×∈C  is the last column elements of ( )1,2,3,4i i =Y . Therefore, 

from the definitions of (11) and (13) and of the straightening operation we have 

( ) 1 3 2 1, ( , , , ) .Tvec y y y y y y= =Y D                 (14) 

In summary, the matrix Equation (12) is equivalent to 

( )( )y vec L=WD F                       (15) 

So with regard to the solution of problem 1, we have the following results. 
Theorem 1. Given the matrix , , n n×∈A B F Q , and the Stein equation  

− =AXB X F  has a cyclic solution if and only if 

( )( ) ( )( ) ( )( ).vec L vec L
+

=WD WD F F                (16) 

When there is a solution 
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[ ] 1
2 2

1 ,
4

n
n n n n

n

j
j

−   = − ⋅ + ⋅     

I
X I I Y Q YQ

I
              (17) 

where 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

4 1
4

1 3 2 4

,

1: , 1: 2 , 2 1:3 , 3 1: 4 .

n
ny vec L z z

y y n y y n n y y n n y y n n

+ + × = + − ∀ ∈  
= = + = + = +

WD F I WD WD   C

 
Proof From (11) - (15) and Lemma 2, the Equation (1) has a cyclic solution 

⇔  the complex matrix Equation (15) has solution ⇔  
( )( ) ( )( ) ( )( )vec L vec L

+
=WD WD F F  . Then it is known from Lemma 2 and 

Lemma 3 that when the cyclic solution of the matrix equation − =AXB X F  
exists, its general expression is shown in (17). 

3.2. Parameter Transformation Method 

The real parameter α  is chosen such that α+B I  and α +A I  are simulta-
neously invertible, so the Equation (1) can be equivalently deformed into 

1 1 1 1

( ) ( )

( ) ( ) ( ) ( )

α α

α α α α− − − −

+ − + =

⇒ + − + = + +

AX B I A I X F
A I AX X B I A I F B I

       (18) 

Write down 1( )α −= +A A I A , 1( )α −= +B B I , 1 1( ) ( )α α− −= + +F A I F B I , 
then (18) becomes 

− =AX XB F                           (19) 

It is obvious that (19) is a Sylvester equation. Let the real decomposition of the 
circulant matrix n n×∈X Q  be 0 1 2 3i j k= + + +X X X X X  and the n n

i
×∈X R

( )0,1,2,3i =  is real circulant matrix. Let the real decomposition of quaternion 
matrix , ,A B F    is 

0 1 2 3 0 1 2 3 0 1 2 3, ,i j k i j k i j k= + + + = + + + = + + +A A A A A B B B B B F F F F F  

 
where ( ), , 0,1, 2,3n n

i i i i×∈ =A B F R , so the matrix Equation (19) is equivalent to 

( )( )
( )( )

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

i j k i j k

i j k i j k i j k

+ + + + + +

− + + + + + + = + + +

A A A A X X X X

X X X X B B B B F F F F
  (20) 

expanding Equation (20) by using the uniqueness of quaternion real decomposi-
tion 

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0

1 0 0 1 0 1 1 0 3 2 2 3 2 3 3 2 1

2 0 0 2 3 1 1 3 0 2 2 0 1 3 3 1 2

3 0 0 3 1 1 2 1 2 2 1 0 3 3 0 3

− − + − + − + =
 − + − − − + + =
 − + + + − − − =
 − − − + + + − = 2

A X X B A X X B A X X B A X X B F
A X X B A X X B A X X B A X X B F
A X X B A X X B A X X B A X X B F
A X X B A X X B A X X B A X X B F

   (21) 

Because ( )0,1,2,3n n
i i×∈ =X R  is the real circulant matrix, according to (6), 

it is possible to order 

( ) ( )1 2, , , , 0,1, 2,3n n
i i i ix x x i− −= =X D D               (22) 

where 1n
ix ×∈R  is the last column elements of iX . Put 
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2 2

0 0 1 1 2 2 3 3

4 41 1 0 0 3 3 2 2

2 2 3 3 0 0 1 1

3 3 2 2 1 1 0 0

T T T T

T T T T
n n

T T T T

T T T T

×

 ⊗ − ⊗ − ⊗ + ⊗ − ⊗ + ⊗ − ⊗ + ⊗
 

⊗ − ⊗ ⊗ − ⊗ − ⊗ − ⊗ ⊗ + ⊗ =  ⊗ − ⊗ ⊗ + ⊗ ⊗ − ⊗ − ⊗ − ⊗
 

⊗ − ⊗ − ⊗ − ⊗ ⊗ + ⊗ ⊗ − ⊗  

I A B I I A B I I A B I I A B I
I A B I I A B I I A B I I A B I

K
I A B I I A B I I A B I I A B I
I A B I I A B I I A B I I A B I

R

 

( ) ( ) ( ) ( )

2 2

2

1

2
4 4

4 1 4 1
0 1 2 3 0 1 2 3

ˆ

ˆ
ˆ , ,

ˆ

ˆ

[ , , , ] , [ , , , ]

n

n
n n n n

T n T nvec vec vec vec x x x x x

−

−
× ×

× ×

  
  
  = ∈ = ∈  
  
     

= ∈ = ∈

DD
DD

D K K
D

I D

L F F F F





R R

R R

(23) 

Using the Kronecker product of a matrix, the system of Equation (21) is 
equivalent to 

0

1

2

3

ˆ

ˆ

ˆ

ˆ

x

x

x

x

 
 
 

= ⇔ = 
 
 
 

D

D
K L Kx L

D

D

                    (24) 

where K  is represented by (23). So with regard to the solution of problem 1, 
we have the following results. 

Theorem 2. Given the quaternion matrix , , n n×∈A B F Q , the Stein equation 
− =AXB X F  has a cyclic solution if and only if + =KK L L  . When there is a 

solution, its general solution is 

0 1 2 3i j k= + + +X X X X X                    (25) 

where 

( ) 4 1, nx + + ×= + − ∈K L I K K V V   R  is arbitrary 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

0 1 3 0

1 2

1: , 1: 2 , 2 1: 3 , 3 1: 4

, , , , 1 , , 1 , 0,1, 2,3n n
i i i i i i i

x x n x x n n x x n n x x n n

x x x C x n x n x i− −

= = + = + = +

= = − =X D D  

 

Proof. From (22) - (24) and Lemma 2, the Equation (1) has a cyclic solution
⇔  Sylvester Equation (19) has solution ⇔  Equation (24) has solution  

+⇔ =KK L L  , then it is known from Lemma 2 and Lemma 3 that when the 
cyclic solution of the Stein equation − =AXB X F  exists, its general solution 
expression is shown in (25). 

4. The Solution of Problem 2 
4.1. Complex Representation 

Let n n×∈P Q  be a known quaternion circulant matrix, may be set up 

( ) 1 2

3 4

.L
 

= =  
 

R R
P R

R R  
Derived from (14) 
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( )( ) 1 2 3 4, [ , , , ] ,Tvec L r r r r r r= =P D
 

( ) ( ) ( ) ( )1 3 2 41: , 1: 2 , 2 1:3 , 3 1: 4 ,r r n r r n n r r n n r r n n= = + = + = +  
where 1n

ir
×∈C  is the last column elements of ( )1,2,3,4i i =R . Write down 

4 4

0 0 0
0 0 0
0 0 0

0 0 0

n n×

 
 − = ∈
 −
 
 

n

n

n

n

I
I

T
I

I

R                 (26) 

Theorem 3. Let the Ω ≠ ∅  in question 1, and n n×∈P Q  is a known circu-
lant matrix, then the solution X  exists in Ω  such that 

min− =X P  
holds and has the following expression 

( ) ( )1 4 2 3
1 1
2 2

j= + + −X Y Y Y Y                   (27) 

where 

( ) ( )( ) ( ) ( )4 0ny vec L z
+ + = + −  

WD F I WD WD  

 
( ) ( ) ( ) ( )1 3 2 41: , 1: 2 , 2 1:3 , 3 1: 4y y n y y n n y y n n y y n n= = + = + = +  

( )( )1 2, , , 1,2,3,4 .n n
i i i iy y y i− −= =Y D D 

 
Proof .When Ω ≠ ∅ , according to Theorem 1, the cyclic solution of the equ-

ation − =AXB X F  is shown in (17), and there is 

( ) ( )1 1 4 2 3
2 2

2 3 1 4

1 1
2 2n nL −  + −

= + =  − + + 

Y Y Y Y
X Y Q YQ

Y Y Y Y  
according to (14) and (26) 

( ) ( )1 4 3
2 2

2 1

, n nvec y vec vec y−  −
= = = − 

Y Y
Y D Q YQ DT

Y Y
   

and 

( )( ) ( )( ) ( )( )

( )( ) ( )

2
22

2 2

1 1 1 1
2 2 2 2

1 12 2
8 8

vec L vec L y y vec L

y y vec L y y r

− = − = + −

= + − = + −

X P X P D DT P

D DT P D T D

 

   

 
then 

( )
2

min 2 miny y r− = ⇔ + − =X P D T D               (28) 

that is when there is a unique minimum norm least square solution to the equa-
tion 2y y r+ =D DT D   , (28) is established. 

( ) ( )( ) ( ) ( )4ny vec L z
+ + = + −  

WD F I WD WD              (29) 

get after substitution 
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( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

4

4 2 .

n

n

vec L z

vec L z r

+ +

+ +

 + −  
  + + − =    

D WD F D I WD WD

DT WD F I WD WD D

    

    

      (30) 

We write 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

4 4, ,

2

n n

s r vec L vec L

+ +

+ +

  = − = −     

= − −

G D I WD WD H DT I WD WD

D D WD F DT WD F

     

    

 

then (30) can be transformed into 

,z z s+ =G H  
according to the real decomposition of the complex matrix and Lemma 2, it is 
obtained that there is a minimum norm least square solution for z z s+ =G H , 

4 1
0 1 2

nz z z i ×= + ∈C                       (31) 

where 1 1 1 2 2 1

2 2 2 1 1 2

z s
z s

++ −     
=     + −     

G H H G
G H G H

, ( ), , , 1, 2i i i iz s i =G H  are the real 

decomposition of , , ,z sG H  respectively, replace 0z  with (29), we have 

( ) ( )( ) ( ) ( )4 0.ny vec L z
+ + = + −  

WD F I WD WD  

 
From (31), there is a unique cyclic solution (27) for the problem 2. 

4.2. Parameter Transformation Method 

When the real decomposition of the circulant matrix n n×∈P Q  is  

0 1 2 3i j k= + + +P P P P P , where ( )0,1, 2,3n n
i i×∈ =P R  are real circulant ma-

trices, let 1n
ip ×∈R  be the last column element of iP , then 

( )( )1 2, , , 0,1,2,3n n
i i i ip p p i− −= =P D D 

 
put 

( ) 4 1
0 1 2 3, , , np vec p p p p ×= ∈R                  (32) 

because 10
1 0

n n n− × 
= ∈ 
 

I
D R  is a unitary matrix, according to the unitary 

product invariance of Frobenius norm, we obtain 
2 2 .s s

i i i ix q x q− = −D D                    (33) 

When ∈ΩX , from Theorem 2 and Equation ((31), (32)) 

( )

( ) ( )

( )

22
0 1 2 3 0 1 2 3

3 3 22 1 2 1 2

0 0
3 1 32 2 2

0 0 0
2

, , , , , ,

.

n n n n
i i i i i i i i

i i
n

s s
i i i i F

i s i

i j k i j k

x x x p p p

x p n x p n x p

n q

− − − −

= =

−

= = =

+ +

− = + + + − + + +

= − = −

= − = − = −

= + − −

∑ ∑

∑∑ ∑

X P X X X X P P P P

X P D D D D

D D

K L I K K V

 

 

  (34) 
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Therefore, with regard to the solution of problem 2, there are the following 
results. 

Theorem 4 Let the Ω ≠ ∅  of problem 1, n n×∈P Q  is a known circulant 
matrix, then solution X  exists in Ω  such that 

min− =X P  

holds and has the following expression 

0 1 2 3i j k= + + +X X X X X                    (35) 

where 

( )( ) ( ) ,q
x

++ + + + +

+ +

 + − − − ≠= 
 =

K L I K K I K K K L K K I

K L, K K I

       

  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

0 1 2 3

1 2

1: , 1: 2 , 2 1:3 , 3 1: 4

, , , , 1 , , 1 , 0,1,2,3n n
i i i i i i i

x x n x x n n x x n n x x n n

x x x C x n x n x i− −

= = + = + = +

= = − =X D D  

 

Proof. From (34), we have 

( ) 22 min minq+ +− = ⇔ + − − =X P K L I K K V  , 

according to Lemma 2, it is known that when + ≠K K I  , the above least square 
solution of V  is ( ) ( )ˆ x

++ += − −V I K K K L   , which can be obtained from 
Theorem 2, 

( )( ) ( )+
,

,

q
x

+ + + + +

+ +

 + − − − ≠= 
 =

K L I K K I K K K L K K I

K L K K I

       

  

 

Therefore, the exist ∈ΩX  such that minF− =X P  holds and the ex-
pression for X  is shown in (35). 

5. Solving Steps 

According to the results of Theorem 1 and Theorem 2, we give the following 
steps for solving problem 1 and problem 2 (taking the complex representation as 
an example). 
• For a given quaternion matrix , , n n×∈A B F Q , write their complex repre-

sentation matrix, that is ( ) ( ) ( ) 2 2, , n nL L L ×∈A B F C . 
• Write out , ,M D W  according to (11). 
• Test whether condition ( )( ) ( )( ) ( )( )vec L vec L

+
=WD WD F F   holds. If 

true, problem 1 has a solution, otherwise problem 1 has no solution. 
• According to the result of Theorem 1, the cyclic matrix (17) is written, that is, 

the cyclic solution X  of problem 1 is obtained. 
• When problem 1 has a solution, write the complex representation matrix of 

the circulant matrix P , write the vector y according to formula (14), and 
then write the best approximate solution X  to P  in Ω  according to 
formula (27). 
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6. Numerical Example 

Example. Given the matrices 3 3, , ×∈A B F Q  are as follows 

1 1 0 1 4 2 5 2 2 2 3
2 , 2 , 2 2 4 3 2 2 7 2

0 3 0 1 10 6 5 3 7 2 6

i j i i j k i j k i j
i k i j i j k i j k i k

i i k i j k i j k i k

− + + − − − − − −     
     = = = + + + − + + − − − −     
     + + + − + − − − + +     

A B F

 
(a) Discuss whether the cyclic solution of Stein equation exists or not. If it ex-

ists, find its solution X . 

(b) Given the quaternion circulant matrix 3 3

1
1

1

i j
j i
i j

×

 
 = ∈ 
  

P Q , try to find 

the optimal approximate solution of problem 2. 
Solution. (a) Write the complex representation matrices ( ) ( ) ( ), ,L L LA B F  

of the , ,A B F  by Definition 1, and then write the , ,M D W  by (11), Through 
calculation, shows that ( )( ) ( )( ) ( )( )vec L vec L

+
=WD WD F F  , therefore, ac-

cording to Theorem 1, the cyclic solution of the Stein equation − =AXB X F  
exists, and the expression of the cyclic solution is 

[ ] 31
3 3 6 6

3

1 ,
4

j
j

−   = − ⋅ + ⋅     

I
X I I Y Q YQ

I  
where 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

12 1
12

1 3 2 4

,

1:3 , 4 : 6 , 7 :9 , 10 :12 .

y vec L z z

y y y y y y y y

+ + × = + − ∀ ∈  
= = = =

WD F I WD WD   C

 
When the free quantity [ ] 12 11,0,0,0, ,0,0,0,1,0,0,0 Tz i ×= ∈C , the error value 

is 

Er( ) 1.49 14F e= − − = −X AXB X F  

(b) In the case of 3 3

1
1

1

i j
j i
i j

×

 
 = ∈ 
  

P Q , from (14) 

( ( )) , [0, ,1, 1,0,0,1,0,0,0, ,1]Tvec L r r i i= = − −P D  
By Theorem 2 

0 [ 1.4270 0.0340  ,1.5335 1.3657 ,0.1036 1.2215 ,0.3044 0.4378 ,
0.7416 - 0.2012 , 1.0251 0.0185 , 1.1574 0.1987 , 1.9251 0.3128

0.3828 1.4414 , 0.9442 0.4007 , 0.0589 1.3970 ,0.9935 0.7430 ]T

z i i i i
i i i i

i i i i

= − + + + +

− − + − + − +

− − − − − +  
Therefore, the optimal approximate solution of problem 2 is 

1.10 0.11 0.13 0.35 1.48 1.84 1.01 0.41 0.69 0.89 0.04 0.47
0.69 0.89 0.04 0.47 1.10 0.11 0.13 0.35 1.48 1.84 1.01 0.41
1.48 1.84 1.01 0.41 0.69 0.89 0.04 0.47 1.10 0.11 0.13 0.

i j k i j k i i k
i i k i j k i j k
i j k i i k i j

− + − − − + − + + +
= + + + − + − − − + −

− − + − + + + − + −
X

35k

 
 
 
    

The error value is Er( ) 3.998F= − =X X P . 
It is proved that the results obtained from this example using the parametric 
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transformation method are identical to the results of the complex representation 
method, and the process is omitted. 

7. Summary 

It is concluded that the Stein equation is a kind of matrix equation that is widely 
used, and its cyclic solution is discussed in quaternion field. For problem 1, by 
using the complex representation of the matrix , ,A B F  and the Kronecker 
product of the matrix, (1) is transformed into an unconstrained cyclic matrix 
equation equivalently, and the necessary and sufficient condition for the exis-
tence of cyclic structure solution of quaternion Stein equation and its expression 
are obtained. Aiming at problem 2, using the properties of circulant matrix and 
the formula of minimum norm least square solution, under the condition 
Ω ≠ ∅  of cyclic solution problem 1, the best approximation solution with 
minimum Frobenius norm is obtained with the given quaternion circulant ma-
trix P . The findings extend a new type of structural solution of the quaternion 
Stein equation. 
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