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Abstract 
The relationship between mountain height and rank in height for a moun-
tainous region is examined. A stochastic differential equation model is de-
rived for the evolution of mountain elevations. The derivation is based on 
simple assumptions about tectonic and erosion processes in mountain eleva-
tion dynamics. At any given time, the model yields a CIR-type probability 
density for mountain heights. As data are often available for mountains of 
greatest elevation in a region, the tail of the CIR density is studied and com-
pared with mountain height data for the highest mountains in the region. The 
tail density is proportional to the product of a power of height and an expo-
nential function of height, i.e., ( )1 expbh ah− −  where h is mountain height 
and a and b are constants. The inverse distribution function of the tail proba-
bility density leads to a formula that relates rank in height to the correspond-
ing mountain height. The formula provides, for example, a decreasing se-
quence of theoretical mountain heights for the region. The derived formula is 
tested against mountain height data sets for several mountainous regions in 
the British Isles, Continental Europe, Northern Africa, and North America. 
The derived formula provides an excellent fit to the mountain height data 
ranked by height. 
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1. Introduction 

It has been hypothesized that mountains experience several phases including an 
initial growth phase caused by plate interactions and other tectonic events, a 
second stage where denudation processes and uplift interact against each other 
possibly at times balancing each other, and a final phase where mountain eleva-
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tions gradually decline through erosion processes [1]. For example, it is esti-
mated that, as the Alps erode at the top and regenerate from the earth’s mantle, 
the Alps lose and gain about a millimeter per year of elevation [2]. Rates of tec-
tonic and denudation processes and the relative importance of tectonic versus 
climatic processes, erosion, and other denudation processes are currently un-
dergoing much study and discussion [3]-[10]. In the present investigation, it is 
assumed that mountains are growing and declining through tectonic and denu-
dation processes. 

Mountain height distributions are of interest to geologists and naturalists as 
well as to mountaineering enthusiasts [2] [11]-[16]. As erosion and uplifting 
processes interact, some mountains disappear into the background as their 
heights decline below a certain level. However, data for the mountains of great-
est elevation are thoroughly and accurately recorded with most of these moun-
tains having unique identifying names. Through examination of the data availa-
ble for the mountains of greatest elevation in a mountainous region, models of 
dynamic mountain growth and decline can be studied and compared. 

In the present investigation, an Itô stochastic differential equation (SDE) 
model is derived for mountain elevation dynamics where it is assumed that the 
mountains are growing and declining through tectonic and climatic processes. 
The SDE model indicates that the mountain height distribution for long time af-
ter initial formation is approximately a type of Cox-Ingersoll-Ross (CIR) distri-
bution. It is shown that the tail of the CIR distribution for the greatest mountain 
heights has the form ( )1 expbh ah− −  where a and b are constants and h is 
mountain height. The inverse cumulative distribution function of the tail proba-
bility density leads to a specific function that relates rank in height to mountain 
height. The formula is tested against mountain height data sets for several 
mountain classifications in the British Isles, Continental Europe, Northern Afri-
ca, and North America, where thorough, well-documented data are available. 
The derived formula provides an excellent fit to mountain height data ranked by 
height. 

Original contributions of the present investigation include the following. 
• Based on a physical argument, a new formula is derived for mountain height 

as a function of rank in height for a mountainous region. 
• The derivation follows from simple assumptions on tectonic and deundation 

processes in mountain elevation dynamics. 
• The derived formula agrees very well with mountain height data of Europe, 

Africa, and North America. 
In addition, for convenience, many of the mathematical symbols used in present 

investigation are tabulated and described in the Appendix. 

2. Derivation of Formula for Height versus Rank 
2.1. Height Probability Density and Tail Approximation 

After the earliest phase of mountain growth dynamics, it is hypothesized that 
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erosion events and uplift events determine rates of change of mountain eleva-
tions. These processes are considered here in modeling the growth dynamics of 
mountain height h. For a small interval of time, erosion events are assumed to 
occur randomly with probability proportional to the length of the time interval 
and to the difference between the height of the mountain [1] and a background 
base elevation hL. Height changes due to tectonic drift and uplift are assumed to 
occur continually with a constant rate of rate of growth. The changes and proba-
bilities for a small time interval Δt are summarized in Table 1 which defines a 
discrete stochastic model for mountain height dynamics. 

Before analyzing the stochastic model of Table 1, it is pointed out that the 
model assumes that uplift occurs in a deterministic manner while erosion events 
occur randomly. This assumption is consistent, however, with several previous 
investigations where erosion processes are considered random in nature while 
tectonic uplifting processes are inferred or modeled as being steady with time 
(see, e.g., [17]-[25]). Also, there appear to be other possible physically reasonable 
model assumptions than those described in Table 1. For example, instead of a 
constant rate of uplift r, the rate of uplift could be assumed to approach zero as 
height h approaches an upper elevation hU, i.e., the rate of uplift could be as-
sumed to equal ( )1 Ur h h− . The resulting discrete stochastic model, however, 
leads to the same approximate tail distribution as the stochastic model of Table 
1 as inferred through consideration of an approximate Kolmogorov backward 
equation [26]. Models involving more complicated hypotheses about mountain 
height changes due to denudation and tectonic processes, however, are left to 
future investigations. In particular, randomly occurring uplifts are not consi-
dered in the present investigation. 

In Table 1, an erosion change of height η  occurs with probability 0 if height 
h is less than mountain “base” or “background” elevation hL. That is, if moun-
tain height h is less than hL, an erosion change is not considered possible. An 
erosion change of height η  occurs with probability ( )Lh h tγ − ∆  when height 
h is greater than hL. An uplift of magnitude rΔt occurs for each time interval Δt 
where r is the rate of rise. From the changes and probabilities in Table 1, the 
mean height change and variance in height change for small Δt and Lh h>  are 
equal to 

( ) ( ) ( ) ( ) ( )( )22and Var .L Lh h h t r t h h h t O tηγ η γ∆ = − ∆ + ∆ ∆ = − ∆ + ∆
 

Let the drift and diffusion coefficients of an Itô SDE be equal to  
 

Table 1. A discrete stochastic model defined by hypothesized height changes and proba-
bilities for erosion and uplifting processes for small time interval Δt. 

Change Δh Probability of change in time interval Δt 

η−  ( )( )1 max 0, Lp h h tγ= − ∆
 

r t∆  2 1p =  

https://doi.org/10.4236/jamp.2023.1111225


E. J. Allen 
 

 

DOI: 10.4236/jamp.2023.1111225 3568 Journal of Applied Mathematics and Physics 
 

( )( )Lh H t rηγ − +  and ( )( )( ) 22 1

LH t hη γ − , respectively, where ( )H t  is sto-
chastic mountain height at time t. With these coefficients, the SDE’s probability 
distribution approximates that of the discrete stochastic model for small Δt and 
η  as inferred through similarities in the forward Kolmogorov equation of the 
SDE model and the Chapman Kolmogorov equation of the discrete stochastic 
model (see, for example, [27] [28] [29]). The Itô SDE corresponding to the dis-
crete stochastic model of Table 1 is given by 

( ) ( )( ) ( ) ( ) ( ) 0d d d , 0 ,e L LH t h H t t H t h W t H h hα β= − + − = ≥     (1) 

where α ηγ= , β η γ= , e Lh h r α= + , and ( )W t  is a standard Wiener 
process. The value of eh  is the asymptotic mean mountain height for large time 
t. Equation (1) is a form of Cox-Ingersoll-Ross (CIR) SDE [30] [31] [32]. Since 
the solution of SDE (1) satisfies ( ) 0LH t h− ≥  with probability one for any 

0t ≥ , the mountain height ( )H t  does not decrease below background height 

Lh  as is physically reasonable. 
The mean and variance of the solution to stochastic differential Equation (1) 

satisfy ( )( ) ( ) ( )0 expe eH t h h h tα= + − −  and 

( )( ) ( ) ( ) ( ) ( ) ( )( )
2

0 0Var 2 2 exp 2 exp 2
2 e L e e LH t h h h h t h h h tβ α α
α

= − + − − + − + −
 

for any time t [30]. The probability density of height, ( )H t , at any fixed time t 
is equal to 

( ) ( )
2

e 2 for ,u v
q

q

L
vp h c I uv h h
u

− − = ≥ 
 

             (2) 

where 

( ) ( ) ( ) ( )
0 22

22 , e , , 1,
1 e

e Lt
L Lt

h h
c u c h h v c h h qα

α

αα
ββ

−
−

−
= = − = − = −

−
 

and ( )qI z  is the modified Bessel function of first kind of order q [31] [33]. For 
large z, ( )qI z  is asymptotically proportional to ( )exp 2z zπ  [34]. Thus, for 
height much greater than Lh  and fixed time t, the tail of the mountain height 
probability density is approximately 

( ) ( )2
1 3expcp h c h c h≈ −                      (3) 

for constants 1c , 2c , and 3c . This follows from the fact that  
( ) ( )exp 2qI z z z∝ π  for large z where Lz h h∝ − . The tail density (3) has 

the same form as that of a gamma probability density function [35]. 

2.2. Probability Density for the Greatest Heights 

In this subsection, time is fixed and mountain height data for the greatest heights 
in a region are examined. For mountain heights in the data ranging from hmin to 
hmax, it is assumed that the data values lie in the tail of the probability density (2) 
indicating that min Lh h . The tail approximation (3) is converted to a probabil-
ity density for the interval [ ]min max,h h  to obtain the density 
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( ) ( )
( )

1

min max

exp
for ,

,

b bh a ah
p h h h h

a bφ

− −
= ≤ ≤              (4) 

where a and b are two positive parameters, ( ),a bφ  is defined here for conven-
ience as 

( ) ( ) ( ) ( ) ( )1
max min 0

, , , and , exp d
z ba b b ah b ah b z t t tφ γ γ γ −= − = −∫  

is the lower incomplete gamma function [36]. For probability density function 
(4), the first two moments are calculated to be equal to 

( ) ( ) ( )( ) ( ) ( ) ( )( )2 2, 1 , and , 2 , .h a b a a b h a b a a bφ φ φ φ= + = + 
 

The cumulative distribution function corresponding to density (4) is given by 

( ) ( ) ( ) ( )
( )min

min, ,
d

,
h

h

b ah b ah
P h p z z

a b
γ γ

φ
−

= =∫              (5) 

where ( )0 1P h≤ ≤  and ( ) 0P h′ >  for min maxh h h< < . Values of the parame-
ters a and b in probability density (4) are determined in the present investigation 
for each set of mountain height data using maximum likelihood estimation 
(MLE) [35] [37]. 

For a specific mountainous region, let minih h≥  for 1,2, ,i N=   be ordered 
heights for the mountains of greatest elevation in the region where  

max 1 2 1 minN Nh h h h h h−= > > > > = . (For this discussion, it is convenient to as-
sume distinct heights of the mountains in the data set.) The ranks of these N 
mountain heights are defined as 1,2,3, ,i N=   where i is the ith highest moun-
tain in the region. In addition, it is useful to define a decreasing sequence of values 

ix  on [ ]0,1  that are related to rank i by ( )1ix N i N= + −  for 1,2, ,i N=   
where 1 2 31 1Nx x x x N= > > > > = . To see how the ranked data points ( ), ii h  
are related to the cumulative distribution function (5), the empirical cumulative 
distribution function [38] is considered. The empirical distribution function, 

NP , is defined by the data points ( ),i ih x  for 1,2, ,i N=  . Specifically, ( )NP h , 
is defined as the piecewise constant function that satisfies  

( ) ( )1N i iP h N i N x= + − =  for 1,2, ,i N=   [35] [38]. The first two moments 
of the empirical cumulative distribution are 

2 2

1 1
and .

N N

i i
i i

h h N h h N
= =

= =∑ ∑
 

Importantly, the points ( ),i ih x  lie on the curve of the empirical cumulative 
distribution function for 1,2, ,i N=  . To relate these points to the model cu-
mulative distribution curve ( )x P h= , the Glivenko-Cantelli Theorem [38] [39] 
states that the empirical cumulative distribution function converges with proba-
bility one to the exact cumulative distribution function as the number of points 
N goes to infinity. This implies that the model cumulative distribution function, 
( )P h  of (5), will provide a good fit to the data points ( ),i ih x  for large N if 
( )P h  is a good approximation to the exact distribution of mountain heights. 

That is, if ( )P h  is a good approximation to the exact distribution, then  
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( )i iP h x≈  for 1,2, ,i N=  . 
Based on the above discussion, it is hypothesized that ( )P h  approximates 

the exact probability distribution of mountain heights. In particular, ( )i iP h x≈  
for 1,2, ,i N=   with ( )1

i iP x h− ≈ . The inverse of the cumulative distribution 
function is considered in order to extend the model to ranked mountain heights 
and to compare the model’s approximations with previous research [40] on ranked 
mountain heights. Let N be the total number of ordered data points ( ),i ix h , 

1, 2, ,i N=   for mountain heights in a region where ( )1ix N i N= + −  for 
1, 2, ,i N=  . By Equation (5), the inverse cumulative distribution function, 
( )1P x− , is given by 

( ) ( ) ( )( )1 1
min, , ,P x b x a b b ah aγ φ γ− −= +               (6) 

where the inverse lower incomplete gamma function satisfies ( )1 ,b z yγ − =  if 
( ),z b yγ= . Notice that for 0 1x≤ ≤ , ( )1

min maxh P x h−≤ ≤ , and ( )1P x−  in-
creases to maxh  as x increases to unity. In particular, ( )1

i iP x h− ≈  for  
1, 2, ,i N=  , and ( ) ( ) ( )1 1 1

max 1 2 minNh P x P x P x h− − −= > > > ≥ . 
Define now the function, G, as 

( ) ( )( )1 1 for 1 .G z P N z N z N−= + − ≤ ≤              (7) 

Function G provides, for example, a sequence of N theoretical mountain heights 
( ) ( )1

i iG i P x h−= ≈  for 1,2, ,i N=  , ranked by height, which can be compared 
with the data values ih  for 1,2, ,i N=  . Specifically, for 1,2, ,i N=  , 

( ) ( ) ( )( ) ( )1
min, , , , with 1 ,i iG i b a b x b ah a x N i Nγ φ γ−= + = + −     (8) 

gives a sequence of ranked mountain heights for the region based on the derived 
cumulative distribution ( )P h  with ( ) ( ) ( )max 1 1 2h h G G G N= = > > >

. Fur-
thermore, the curve ( )h G z=  for 1 z N≤ ≤  provides a curve that approx-
imately fits the mountain height data points ( ), ii h  for 1,2, ,i N=  . It is 
noted that the values, ( )( ),b aG iγ , satisfy the arithmetic sequence 

( )( ) ( )( ) ( ), , 1 , for 2,3, , .b aG i b aG i a b N i Nγ γ φ= − − =        (9) 

In addition, by Equations (6) and (7), ( )G z  satisfies the initial-value prob-
lem 

( ) ( )( ) ( )( ) ( ) ( ) ( )1
max

d
exp , with 1 ,

d
bG z

aG z aG z a b aN G h
z

φ
−

= − =    (10) 

for 1 z N≤ ≤ . By using, for example, an explicit Runge-Kutta numerical me-
thod, initial-value problem (10) provides an efficient way to calculate ( )G i  for 

2,3, ,i N=  . 
Given a particular data set of ordered heights, , 1, 2,ih i =  , the value of hmax 

is set equal to the largest height in the data set, i.e. max 1h h= . However, there are 
many possible ways to estimate hmin and, corresponding, data set size N. One 
approach is based on the assumption that the tail density is approximately equal 
to probability density (4) when hmin is sufficiently large and the tail density ap-
proximation eventually becomes less accurate as hmin decreases. In the approach, 
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hmax is fixed and, as hmin is allowed to decrease, the accuracy of the tail approxi-
mation is assessed by calculating the mean squared error ( )( )2

1
N

ii G i h N
=

−∑ . 
(Assuming that the errors can be decomposed into independent random errors 
and tail approximation errors, i.e., ( ) , ,i r i t iG i h ε ε− = +  where the random er-
rors have a mean of zero, then ( )( )2 2 2

, ,1 1 1
N N N

i r i t ii i iG i h ε ε
= = =

− ≈ +∑ ∑ ∑  and the 
mean squared error increases when the tail density approximation becomes less 
accurate.) Specifically, in the approach, a starting value of hmin is selected such as 
the height corresponding to a data set size of 250N = . For this value of hmin, 
the parameters a and b are estimated by MLE and the mean squared error is 
calculated using model (8). Next, the value of hmin is decreased by 50 ft, and the 
parameters a and b and the mean squared error are calculated for the new hmin. 
This procedure is continued until the mean squared errors are clearly increasing. 
The value of hmin is then selected, along with the data set size N, that gives the 
least value of the mean squared error in the calculations. It is pointed out, how-
ever, that there are many other possible procedures to estimate hmin. In a second 
possible procedure, hmin is estimated to be sufficiently large so that hmin is in the 
tail of the mountain height distribution, yet hmin is chosen sufficiently small so 
that the data set size 250N ≥ . By inspecting the mountain heights listed for a 
region, the value of hmin is selected, for example, so that at least 65% of the eleva-
tions listed for the region are less than hmin. (In lists of mountain elevations, 
however, there is a cutoff elevation below which the mountains in a region are 
not listed. As a result, the actual percentage of mountains in a region with eleva-
tions below hmin may far exceed 65%.) In addition, the value of hmin is assumed to 
be sufficiently large so that the slope of the tail density ( )p h  of (4) is negative 
for minh h>  (or, equivalently, that ( )G z  is concave up for 1 z N< < ). That 
is, hmin satisfies the inequality ( )min 1h b a> − . This last condition on the tail 
approximation requires a trial-and-error approach as the values of a and b de-
pend on the values of hmin and hmax. 

After hmax and hmin are selected, a maximum likelihood method (MLE) is used 
to estimate the two positive parameters a and b in the probability distribution 
function (5) for the data values , 1, 2, ,ih i N=  . The MLE parameters are then 
compared with values obtained using least squares estimation and the method of 
moments. In the maximum likelihood estimation procedure [35] [37], a and b 
are calculated that maximize the function ( ),a b  where 

( ) ( ) ( )( ) ( )( )
1

, 1 log log , .
N

b
i i

i
a b b h ah N a a bφ

=

= − − +∑         (11) 

Existence and uniqueness of a maximum of ( ),a b  for 0 ,a b< < ∞  is not 
known and is not proved in the present investigation. In the present investigation, a 
computational approach is applied to estimate values of a and b that maximize 
( ),a b  on the closed bounded region [ ] [ ]0.0004,0.00160 0.4,40R = ×  for each 

data set studied. For the mountain height data sets described in the third section, 
a and b that maximize ( ),a b  on R are computed using a basic grid search 
optimization method with coarse-to-fine grid refinement [41] where the initial 
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coarse grid points are ( )0.0004 ,0.4i j  for 1,2, , 40i =   and 1,2, ,100j =  . 
For each of the six data sets, distinct specific values for a and b are found com-
putationally in the interior of the region R using the grid-search approach. The 
computed MLE values for a and b are then compared against estimates of a and 
b calculated using least squares estimation and using the method of moments. 

2.3. Mathematical Approach to Approximate the Tail Density 

In the previous two subsections, the mountain height probability density is de-
rived from a physical argument which is based on several simple assumptions 
about mountain height dynamics. The argument leads to a CIR-type distribution 
for mountain heights, the tail of which is approximated by (3). In this subsec-
tion, for completeness and comparison, a second approach is employed to ap-
proximate the tail distribution that is based solely on a mathematical argument. 

If the true distribution is unknown but belongs to a large class of distribu-
tions, the Pickands-Balkema-De Haan theorem [42] [43] [44] implies that the 
tail of the distribution above a large threshold value is well-approximated by a 
generalized Pareto distribution. For the present problem, as hmin is the threshold 
value and mountain heights are restricted to the interval [ ]min max,h h , the gene-
ralized Pareto distribution PGP has a finite right endpoint and has the form [42] 
[44]: 

( ) min
min max

max min

1 1 , for ,GP
h hP h h h h

h h

α
 −

= − − ≤ ≤ − 
         (12) 

where 0α >  is a parameter. As in the derivation described in the previous 
subsection, the function GGP is readily derived for distribution (12) and is given 
by 

( ) ( ) ( )( )( )1
min max min 1 1GPG i h h h i N

α
= + − − −            (13) 

where ( )GP iG i h≈  for 1,2, ,i N=  . 
Function GGP that relates rank in height to mountain height is closely related 

to a function proposed by Miškinis [40]. To see this, let ( ) ( )1 expz z− ≈ −  for z 
small be substituted into (13) where ( )( )11z i N

α
= −  to give the approxima-

tion 

( ) ( ) ( )( )( )
( )( )( )

1
min max min

1
max

exp 1

exp 1 for near unity.

GPG i h h h i N

h i N i

α

α

≈ + − − −

≈ − −
         (14) 

Miškinis [40] in 2011 proposed the function 

( ) ( )( )1
max exp 1MG i h i αβ= − −                  (15) 

where α  and β  are parameters. From (14) and (15), ( )GPG i  is closely re-
lated to ( )MG i  in the special case when 11 N αβ = . The two approximations 
GGP and GM are compared in the next section with the proposed model G of (8). 
To compare the proposed model (8) for a given data set with the generalized Pa-
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reto model (13) and the Miškinis model (15), the threshold value hmin selected 
for model (8) is used for all three models. 

In the next section, six data sets are studied for different mountain classifications 
for regions in the British Isles, Continental Europe, Africa, and North America. It is 
shown that ( )P h  approximates well the empirical distribution function ( )NP h . 
In particular, the model points, ( )( ),i G i  with ( ) ( )1

iG i P x−= , provide an ex-
cellent fit to the data points ( ), , 1, 2, ,ii h i N= 

. As a preliminary exercise, 
though, chi-square goodness-of-fit tests are performed on the data sets. The tests 
show that it cannot be concluded that the data are not samples from a popula-
tion having probability distribution P. 

3. Comparisons with Mountain Height Data 

The derived probability density is studied for several mountain height data sets 
for mountainous regions of Continental Europe, the British Isles, Africa, and 
North America. Mountain height data are generally given for the highest hills or 
mountains in a region. There is excellent data on mountain heights for many of 
the world’s mountains such as those in the British Isles, Europe, Africa, and 
North America. The mountain data are classified or categorized in lists under 
several characteristics, the most important being elevation or height and topo-
graphical prominence. In Britain, to be classified as a mountain rather than a 
hill, an elevation of at least 2000 feet is necessary [45]. In many classification lists 
of mountains, a minimum topographical prominence is required. Topographical 
prominence is a measure of the independence of a mountain’s summit and is the 
vertical distance from the mountain’s summit to the lowest contour line that en-
circles the summit such that the contour line does not contain a higher summit 
within it [11] [46]. 

For the British Isles, there are several different classifications of mountains. 
Important classifications of mountains for the present investigation are Simms 
and Humps. Simm is an acronym for Six-hundred Meter Mountain and Hump 
is an acronym for Hundred-and-upwards Meter Prominence. A Simm is a 
mountain in the British Isles over 600 meters high with a topographical promi-
nence of at least 30 m [45]. There are 2755 Simms, 834 are over 2750 feet high 
and 476 are over 3000 feet high. Elevations of the 1000 highest Simms are tabu-
lated in the Appendix. A Hump is a mountain or hill in the British Isles that has 
a topographical prominence of at least 100 m. There are 2984 Humps with 524 
over 2650 feet high [47]. Information about Simms and Humps with their eleva-
tions is given, for example, in references [12] [13] [16] [45] [47] [48]. 

The Alps lie within continental Europe and stretch approximately 750 miles 
through the alpine countries of Austria, France, Italy, Germany, Liechtenstein, 
Slovenia, and Switzerland. The International Climbing and Mountaineering 
Federation [11] defines a summit in the Alps as independent if it has a promi-
nence of 30 m. In Switzerland itself, though, there are over 3300 such summits 
exceeding 2500 m [49] and there are over 6645 peaks with elevations exceeding 
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1500 m with no prominence requirement [14]. Traditionally, however, in order 
for a mountain to be classified as independent, a prominence of at least 300 m is 
used. There are 1545 Alps over 6560 ft high with 300 m prominence and 493 are 
over 10,000 ft high [49]. 

Arizona has 194 mountain ranges with 3463 peaks over 2500 ft in elevation 
[14]. The highest mountain is Humphreys Peak with an elevation of 12,633 feet. 
The Appalachian Mountains pass through Tennessee and North Carolina with 
the highest peaks in Tennessee and North Carolina having elevations 6643 ft and 
6684 ft, respectively. There are 3975 peaks in Tennessee and North Carolina with 
elevations above 1000 ft [14]. Morocco has several mountain ranges, including 
the Rif, High Atlas, and Middle Atlas Mountains, with 7609 peaks listed above 
2500 ft. Jebel Toubkal is the highest peak in Morocco with an elevation of 13,671 
feet [14]. 

Six data sets are studied. For each data set, as noted earlier, the value of hmax is 
selected as the highest elevation in the mountainous region and hmin is selected 
so that the data set has a small mean squared error ( )( )2

1
N

ii G i h N
=

−∑  and 
size N greater than 250. The first data set is based on British Isles mountain 
heights under the Simms classification with min 2750h =  ft. For Simms moun-
tains, 70% are below 2750 ft in elevation. The second set is for Humps moun-
tains in the British Isles with min 2650h =  ft. For Humps mountains, 82% are 
less than 2650 ft. The next data set is for Alps with prominence 300 m and 

min 10000h =  ft. The percentage of Alps with prominence 300 m that are above 
6560 ft but less than 10,000 ft is 68%. The fourth data set is for mountains in 
Morocco with min 7750h =  ft. For Morocco, 89% of the mountains above 2500 
ft are less than 7750 ft. The fifth data set is for the 1027 mountains of North Car-
olina and Tennessee with elevation above min 3950h =  ft. For North Carolina 
and Tennessee, 74% of the mountains that exceed 1000 ft are less than 3950 ft. 
The 796 mountains of Arizona with min 7000h =  ft comprise the sixth data set. 
For Arizona, 77% of the mountains that exceed 2500 ft are less than 7000 ft. In-
formation about these mountain height data sets is summarized in Table 2. 

For each of the six sets of mountain height data, the values of a and b are cal-
culated by MLE [35] [37], i.e., by maximizing ( ),a b  in Equation (11). For  

 
Table 2. Six data sets of mountain heights studied in the present investigation. 

Data Set 
Topographical 

Prominence 
Data Set 
Size N 

Height 
hmin 

Height 
hmax 

h  
2h  

Simms 30 m 834 2750 ft 4411 ft 3115 9.792e6 

Humps 100 m 524 2650 ft 4412 ft 3103 9.735e6 

Alps 300 m 493 10,000 ft 15,770 ft 11,170 1.258e8 

Morocco 0 853 7750 ft 13,671 ft 9366 8.925e7 

NC + TN 0 1027 3950 ft 6684 ft 4739 2.288e7 

Arizona 0 796 7000 ft 12,633 ft 7924 6.362e7 
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comparison, values of a and b calculated by least squares and the method of 
moments are within 33% of the calculated MLE values. The calculated values of 
a and b are listed in Table 3 for the six data sets. (Values of the model parame-
ters a and b are similar for most of the data sets except, in particular, the data set 
involving mountains in Arizona.) The data sets are tested for goodness-of-fit to 
probability distribution (5) using the chi-square test [35] [37]. The null hypothe-
sis is that (5) is the probability distribution of the population from which the 
data values are samples. The calculated values of χ2 are listed in Table 3 for each 
of the six data sets. In the tests, ten intervals in height are used with each interval 
having an expected probability equal to 0.1. With seven degrees of freedom and 
significance level 0.10, ( )2

0.10 7 12.02χ =  which implies that the null hypothesis 
should not be rejected for any data set. The chi-square tests, however, do not re-
veal how accurately the inverse cumulative function (6) fits the data points. The 
accuracy of the inverse cumulative function is illustrated in the remainder of this 
section. It is shown that the model points (8) fit well the data points for the six 
different mountain classifications. 

To study how well the inverse cumulative distribution function (6) approx-
imates the data, a curve through the model points ( )( ),i G i  is compared to the 
data points ( ), , 1, 2, ,ii h i N= 

 for each data set where i is the rank in height. 
In the present investigation, if two values of height in a data set are identical, 
their ranks are set one unit apart. The values of the parameters a and b used in 
function G are listed in Table 3 for the six data sets. Graphs of the data points 
( ), ii h  for 1,2, ,i N=   are shown separately in the left-hand sides of Figures 
1-6 for the six data sets. In the right-hand side of each of the Figures 1-6, a 
curve through the points ( )( ),i G i  for 1,2, ,i N=   is presented along with 
the data points. (The data points are first shown separately on the left-hand sides 
of Figures 1-6 as the model curves closely fit the data points.) To further ex-
amine how closely a curve through the model points ( )( ),i G i  fits the data 
points, least squares polynomial fits to the data points are calculated for poly-
nomials of degrees 2 through 15. Least squares fits to the data points are also 
calculated for the Miškinis function ( ) ( )( )1

1 exp 1MG i h i αβ= − −  with parameters  
 

Table 3. Values of Model Parameters a and b for the Eight Data Sets, χ2 Values, and Per-
centages of Model Points with Relative Errors Greater than 0.01 and 0.02. 

Data 
Set 

a (ft−1) b 
χ2 

Value 
Model Points With 

Rel. Error > 0.01 
Model Points With 

Rel. Error > 0.02 

Simms 0.01227 32.8 1.71 0.0% 0.0% 

Humps 0.01386 39.7 1.95 0.57% 0.0% 

Alps 0.00242 19.9 7.22 0.81% 0.0% 

Morocco 0.00246 20.0 4.17 6.68% 1.52% 

NC+TN 0.00169 4.20 4.81 0.0% 0.0% 

Arizona 0.00096 0.091 7.29 4.52% 0.88% 

https://doi.org/10.4236/jamp.2023.1111225


E. J. Allen 
 

 

DOI: 10.4236/jamp.2023.1111225 3576 Journal of Applied Mathematics and Physics 
 

 
Figure 1. Left: Simms height data for 834 mountain heights above 2750 ft, Right: Curve through model 
points (8) shown along with the 834 data points. 

 

 
Figure 2. Left: Humps height data for 524 mountain heights above 2650 ft, Right: Curve through model 
points (8) shown along with the 524 data points. 

 

 
Figure 3. Left: Alps height data for 493 mountain heights above 10,000 ft, Right: Curve through model 
points (8) shown along with the 493 data points. 

 
α  and β , and with the generalized Pareto function  

( ) ( ) ( )( )( )1
min max min 1 1GPG i h h h i N

α
= + − − −  with parameter α . The root 

mean square errors (RMSEs) of these least squares fits are listed in Table 4 along 
with the RMSEs for the model curve points ( )( ),i G i  of Equation (8), e.g., 
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( )( )( )1

12 2
RMSE N

ii G i h N
=

−= ∑ . For the Simms data set, model (8) with two 
parameters has a lower RMSE than the RMSE value of 6.33 achieved by the 
15th-degree least squares polynomial with sixteen parameters. 

In summarizing Table 3 and Table 4, recall that the model function G, of  
 

 

Figure 4. Left: Morocco height data for 853 mountain heights above 7750 ft, Right: Curve through model 
points (8) shown along with the 853 data points. 

 

 
Figure 5. Left: North Carolina and Tennessee height data for 1027 mountain heights above 3950 ft, Right: 
Curve through model points (8) shown along with the 1027 data points. 

 

 

Figure 6. Left: Arizona height data for 796 mountain heights above 7000 ft, Right: Curve through model 
points (8) shown along with the 796 data points. 
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Table 4. RMSEs for least-square polynomials of degrees 2, 6, 10, for least-square points 
( )( ), Mi G i , for least-square points ( )( ), GPi G i , and for the model points ( )( ),i G i  of Eq-

uation (8). 

Data 
Set 

LS Poly. 
Deg. 2 

LS Poly. 
Deg. 6 

LS Poly. 
Deg. 10 

LS Pts. 
( )MG i

 

LS Pts. 
( )GPG i

 

Mod. Pts. 
( )G i

 

Simms 65.41 20.14 11.20 14.12 16.48 6.16 

Humps 66.12 22.58 10.67 22.74 25.40 8.56 

Alps 251.8 77.3 42.03 80.46 103.0 40.31 

Morocco 253.8 44.25 26.67 119.2 110.2 60.91 

NC + TN 87.34 14.49 11.72 51.01 74.66 14.38 

Arizona 284.1 111.7 36.50 118.3 158.6 44.98 

 
Equation (8), is determined by the values of only two parameters a and b where 
the values are calculated by MLE. However, the model points ( )( ),i G i  have 
smaller RMSEs than 10th-degree least squares polynomials for three of the data 
sets. In comparison, the RMSEs of the GM and GGP approximations are all at least 
80% larger than those of model (8). Furthermore, the relative errors for the 
model curve points, i.e., ( )( )i iG i h h−  for 1,2, ,i N=  , are less than 1% for 
over 99% of the points for four data sets. The percentages of relative errors 
greater than 0.01 and greater than 0.02 for the model points are listed in Table 3 
for the six data sets. For four of the six data sets, fewer than 1% of the model 
height values ( )G i  differ by more than 1% from the data values ih  for  

1, 2, ,i N=  . Furthermore, for five data sets, less than 1% of the model height 
values differ by more than 2% from the data values. 

4. Summary and Conclusions 

A brief summary of the investigation is given in this section. Equations (4) and 
(8) are repeated as they help to unify and clarify the main results. 

An SDE model is derived for the evolution of mountain height. The model 
yields a CIR-type probability distribution for mountain heights in a mountain-
ous region. As data are often available for mountains of greatest heights in a re-
gion, the tail of the CIR distribution is compared with the mountain height data. 
From the SDE model derivation, it follows that the tail is proportional to the 
product of a power of height and an exponential function of height. For moun-
tain height data between the heights hmin and hmax, the model probability density 
has the form 

( ) ( )
( )

1

min max

exp
for ,

,

b bh a ah
p h h h h

a bφ

− −
= ≤ ≤

 
where a and b are positive parameters, ( ) ( ) ( )max min, , ,a b b ah b ahφ γ γ= − , and 
( ) ( )1

0
, exp d

z bb z t t tγ −= −∫  is the lower incomplete gamma function. Let ( ), ii h  
for 1,2, ,i N=   be N ordered mountain height data points where i is the rank 
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in height. For the N data points, values of a and b are determined using maxi-
mum likelihood estimation. Specifically, a and b are found that maximize func-
tion ( ),a b  in (11). The model leads to an inverse cumulative distribution 
function that gives theoretical heights ( )G i  with rank i of the form 

( ) ( )( ) ( )( )1
min, , 1 , for 1,2, , .G i b a b N i N b ah a i Nγ φ γ−= + − + = 

 
The inverse cumulative distribution function is tested against mountain 

height data sets for six mountain classifications in the British Isles, Continental 
Europe, North Africa, and North America. An excellent fit is found between the 
mountain height data and the theoretical heights of the inverse cumulative dis-
tribution function. For Simm mountain heights of the British Isles, the physical-
ly-derived model (8) with two parameters has a lower root mean square error 
than that of the 15th-degree least squares polynomial with 16 parameters. For 
four of the six data sets, fewer than 1% of the model height values ( )G i  differ 
by more than 1% from the data values ih  for 1,2, ,i N=  . 
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Appendix—Mathematical Symbols and A Data Set 
A1. Mathematical Symbols 

Summarized in Table 5 are descriptions of many of the mathematical symbols 
used in the present investigation. 

A2. Simm Mountain Height Data Set 

Model (8) agrees very well, for example, with the height data of the Simm 
mountains in the British Isles. For the data to be readily available for study and 
comparison, the elevations of the highest 1000 Simms are duplicated in Table 
6 from reference [45]. Each Simm is well-known with a unique identifying 
name and with an elevation that is accurately measured and recorded. For 
example, the 40th highest Simm mountain is named An Riabhachan, is located 
at 57.362438˚N 5.104728˚W in Scotland, and has an elevation of 3704 ft. 

 
Table 5. Mathematical symbols and descriptions. 

Symbol Description 

h Mountain elevation 

η  Possible erosion height change in time interval Δt 

r Rate of uplift 

Lh  Mountain base elevation 

( )Lh h tγ − ∆
 

Erosion probability in time interval Δt 

( )p h
 

Probability density of mountain heights, ( ) ( )1 exp ,b bh a ah a bφ− −  

a and b Model parameters 

( ),b zγ
 Lower incomplete gamma function, ( )1

0
exp d

z bt t t− −∫  

( ),a bφ
 ( ) ( )max min, ,b ah b ahγ γ−

 

( )1 ,b zγ −

 
Inverse lower incomplete gamma function, ( )1 ,b z yγ − =  if ( ),z b yγ=  

ih  Value of ith height in data set of size N where 1 2 Nh h h≥ ≥ ≥  

maxh  Maximum height in data set, 1h  

minh  Minimum height in data set, Nh  

h  1

N
ii

h N
=∑  

2h  
2

1

N
ii

h N
=∑  

( ),a b
 Likelihood function, ( ) ( )( ) ( )( )1

1 log log ,N b
i ii

b h ah N a a bφ
=

− − +∑  

( )G i
 

Theoretical model height for mountain of height rank i, 

 ( ) ( )( )1
min, , ,ib a b x b ah aγ φ γ− +  with ( )1ix N i N= + −  
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Table 6. Elevations (in feet) of the highest 1000 Simm mountains in the British Isles. 
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