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Abstract 
Guidance is offered for understanding and using the Legendre transformation 
and its associated duality among functions and curves. The genesis of this 
paper was encounters with colleagues and students asking about the trans-
formation. A main feature is simplicity of exposition, while keeping in mind 
the purpose or application for using the transformation. 
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1. Introduction 

The Legendre transformation is a topic that we have frequently been asked about 
by colleagues and students from departments such as physics, chemistry, and 
economics. They have found that most explanations and applications of the 
transformation are confusing because of strange notation and, often, depen-
dence on limiting procedures or integrals, which they thought were unintuitive 
or awkward. This paper was developed from our notes that we have used suc-
cessfully in those situations. It contains the main ideas and sufficient examples 
for them to go forward with their work. The nature of this paper is expository. It 
is illustrated with eight prototypical examples, including one from physics and 
one from economics. It is as succinct as possible and at the post-Calculus I level. 
Its purpose is to clarify the issues that our colleagues and students were facing. 

The main goal of the Legendre transformation is to change from coordinates 
and functions in one setting to different coordinates and functions in another 
setting. The portrayals are equivalent, but different insights might be gained 
from them. The Legendre transformation is a powerful mathematical tool that 
has the potential to convert one set of variables to another, potentially leading to 
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simpler equations, deeper insights, and aids in the development of various con-
cepts in mathematical and applied fields. In applications, both sets of coordi-
nates and functions and their settings are meaningful in their field of study, but 
in differing ways. Generically, the coordinates in one setting or space are x and y, 
the independent variable is x, and the function of interest is ( )f x . In the other 
space, the generic coordinates are s and t, the independent variable is s, and the 
function is ( )g s . 

In Example 3.2, which is about a topic in economics, x represents the amounts 
of something that is produced and ( )f x  represents the total cost of each of 
those amounts. The related set of quantities or variables are s, which is the sell-
ing price of each item, and ( )g s , which is the maximum possible profit at that 
price. Determining the best quantity to produce and selecting the selling price to 
be set are related through the transformation. 

Contrary to some appearances, the transformation is not difficult to under-
stand or implement. Consider the differentiable curve: ( )y f x= , which is ei-
ther strictly concave up or down on an open and connected interval I. (These 
stringent conditions of differentiability and concavity are relaxed in Section 4.) 
The curve C is determined on I as the envelope of its tangent lines, i.e., knowing 
the tangent lines is equivalent to knowing the identity of the points on the curve. 
See Figure 1. The tangent line to C at a I∈  is ( ) ( ) ( )( )y f a x af a f a′ ′= − − . 
Because of the strict concavity, as a varies over I, the set of tangent lines is in 
one-to-one correspondence with the points on C. 

A non-vertical tangent line can be determined by its slope and the negation of 
its y-intercept, which are the coordinates of a new curve K. One reason to con-
sider strictly concave functions is that there are no vertical tangents for these 
curves defined on open intervals. Additionally, many applications, such as  

 

 

Figure 1. Each tangent line corresponds to exactly one point of the strictly concave differentiable curve 2: 2 2C y x x= − + . 
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Examples 3.1 and 3.2, contain functions that are strictly concave up. The reasons 
for the negation are discussed in Section 5. 

Definition 1.1. The Legendre transformation K of the strictly concave, diffe-
rentiable curve ( ):C y f x=  on a connected, open interval is 

( )s f a′=  and ( ) ( ) ( )t h a af a f a′= = −              (1) 

with parameter a. It is in a new space with coordinates ( ),s t . 
The transformation is a way to catalog or record the tangent lines, and, in 

turn, the points of C. The points of C and the points of K correspond. 
If the inverse function 1f −′  can be found, then from (1), ( )1a f s−′=  and 

an explicit equation for K is 

( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( )

1

1 1 1

1 1 .

t g s h f s

f s f f s f f s

sf s f f s

−

− − −

− −

′= ≡

′ ′ ′ ′= −

′ ′= −

               (2) 

The function ( )g s  is said to be the Legendre transformation of ( )f x  or 
the function that is dual to ( )f x , and is written 

( ) ( )( ) ( )g s f x s=  . 

The term dual curve is used as well. Here is a mathematical example, where 
the initial curve is a semicircle. 

Example 1.1. The curves ( ) 2: 1C y f x x= = −  for 1 1x− < <  and  
( ) 2: 1K t g s s= = − +  for s∈  are dual curves. See Figure 2 and Figure 3. 

The tangent line at point ( )2, 1a a−  of C is 

2 2

1:
1 1

aL y x
a a

−
= − −

− −
. 

Thus, 
 

 
Figure 2. The original curve for Example 1.1. 
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Figure 3. The dual curve for Example 1.1. 
 

( )
21

as s a
a

= = −
−

 and ( )
2

1

1
t h a

a
= = −

−
 

is a parametric depiction of K. Solving 21s a a= − −  for ( )2 2 21a s s= +  
and substituting 2a  into ( ) 21 1h a a= − −  yields the dual curve  

( ) 2: 1K t g s s= = − +  explicitly. 
Section 2 discusses three properties of the Legendre transformation that are 

used subsequently and presents two more mathematical examples to display 
typical derivations. Section 3 contains a discussion of many applications, which 
exhibit both the practical and theoretical utility of the transformation. Examples 
3.1 and 3.2 are key to physics and economics. Extensions to curves that are non-
differentiable and not strictly concave up or down are shown through three ex-
amples in Section 4. Concluding remarks are in Section 5. 

2. Properties and Examples 

The following properties are among the many well-known ones of the Legendre 
transformation ([1], pp. 61-65, [2] [3]). 

Property 2.1. The Legendre transformation is reflexive or involutive, i.e., 
( )( )( ) ( )f x f x=  . 

Proof. Replacing ( )1a sf −′=  with x in (1), shows that (2) can be expressed 
as ( ) ( )g s sx f x= −  or 

( ) ( ) .g s f x sx+ =                        (3) 

The symmetry of this equation in the variables s and x implies that f and g are 
dual functions of one another. 

https://doi.org/10.4236/jamp.2023.1111222


S. J. Kilner, D. L. Farnsworth 
 

 

DOI: 10.4236/jamp.2023.1111222 3509 Journal of Applied Mathematics and Physics 
 

Property 2.2. The curves C and K have the same concavity. 
Proof. Assume that f is twice differentiable. From (3), ( )g s x′ = , so that 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

2 2 2 2

d d d d d dd d d d1 .
d d d d d dd d d d

g s g s g s f x g s f xx s
x x s x x xs s s x

= = = = =
 

Thus, the second derivatives of the functions for C and K share the same sign. 
The next property illustrates the impact that translation has on a function’s 

Legendre transformation. 
Property 2.3. ( )( ) ( )( ) ( )1 2 1 2f x c c f x s c s c+ + = − −  , where 1c  and 2c  

are independent of x. 
Proof. Take the derivative of f to be invertible. The tangent line at x a=  is 

( ) ( ) ( )( )1 1 1 2 ,y f a c x af a c f a c c′ ′= + − + − + −
 

So that ( )1s f a c′= +  and ( )1
1a f s c−′= − . Thus, 

( ) ( )
( )( ) ( )( )
( )( )( )

1 1 2

1 1
1 2

1 2

–

.

t af a c f a c c

f s c s f f s c

f x s c s c

− −

′= + − + −

′ ′= − −

= − −
 

 
To further illustrate the implementation of the definition of the dual curve, 

the present example shows that exy =  for x∈  and ( )ln 1t s s= −  for 0s >  
are Legendre-transformation pairs of curves or functions. The function in the 
second example is the only function whose transformation has the same func-
tional form point-by-point, i.e., ( ) ( )2 22 2x s s=  for x and s∈ . Exam-
ples 1.1, 2.1, and 2.2 illustrate Property 2.2 that concavity is preserved. 

An extensive table of properties and dual pairs of curves appears in [2]. 
Example 2.1. The curve ( ): exC y f x= =  for x∈  and the curve  

( ) ( ): ln 1K t g s s s= = −  for 0s >  are dual curves. See Figure 4 and Figure 5. 
The tangent line at point ( ), eaa  of C is 

( )e e 1 .a ay x a= − −  

From the slope and negation of the y-intercept, the corresponding point of the 
dual curve is ( )( )e , e 1a a a − , which supplies a parametric representation of K 
with parameter a. Setting eas =  yields lna s=  for 0s >  and from (2) the 
explicit form 

( ) ( )ln 1 .t g s s s= = −  
Slightly more efficiently, but perhaps more opaquely, the tangent line need 

not be displayed. From the slope of C, exs y ′= = , obtain lnx s= , and from 
(3), obtain ( ) ( )g s sx f x= − , so 

( ) ( )lnln e ln 1 .st g s s s s s= = − = −  

Example 2.2. The curves ( ) 2: 2C y f x x= =  for x∈  and  
( ) 2: 2K t g s s= =  for s∈  are dual to each other. Since ( )s y x x′= = , from 

(3), ( ) ( ) 2 2 22 2t g s sx f x s s s= = − = − = . 
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Figure 4. The original curve for Example 2.1. 

 

 
Figure 5. The dual curve for Example 2.1. 

3. Applications 

Example 3.1 from classical mechanics and Example 3.2 from economics demon-
strate important historical applications of the Legendre transformation. They 
reveal the fundamental nature and importance of the transformation. In the 
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economics example, two different ways of addressing a decision in terms of sell-
ing price and quantity are shown to be equivalent. In the physics example, the 
transformation is seen to be the bridge between two different foundational re-
presentations of mechanics. 

One huge benefit of the transformation is practical. It can change variables 
from those that might be hidden from direct measurement or be theoretical to 
those that are measurable or amenable to control. In the example from econom-
ics, price may be set by the economic system or a governmental agency, but the 
quantity variable in the other space may be at the discretion of the company. An 
actuary might face the opposite situation of needing to find the correct selling 
price for insurance policies. 

The tactic of utilizing the Legendre transformation to change variables to 
those that are measurable, consequential, or controllable appears in many areas. 
It is used as a tool in [4], where biochemical thermodynamical variables are 
transformed from those that are in the units of energy to variables in the more 
accessible units of pH. In a study of rainfall in [5], the transformation is used to 
show that high values of a parameter associated with one variable are linked to 
extreme outcomes of another variable. To determine the probabilities of detect-
ing small birds by using various equipment, [6] used a Legendre transformation 
to obtain variables that are independent. 

In Examples 3.1 and 3.2, the symbols are renamed from (x, y) and (s, t) in or-
der to closely match the applications. 

Example 3.1. The Lagrangian function is 

( ) ( )21,
2

L x x mx V x= − 

 
for a particle of mass m constrained to the x-axis, where its speed or velocity is 

d dx x t= , its kinetic energy is 21
2

mx , and its potential energy is ( )V x . The  

location x, which is independent of the speed x , is treated as a constant in this 
Legendre transformation, so that it does not participate in the transformation. 
Symbols x  and L replace x and f, respectively, in the generic set up. For brevity 
for finding the dual function, use the more efficient method, which was em-
ployed in Example 2.1. The slope of L is s mx=  , which is designated p and is 
the independent variable replacing the generic s. It is the particle’s momentum.  

From (3), obtain ( ) ( )21
2

g s sx mx V x = − − 
 

  . By replacing the generic ( )g s  

with ( ),H x p  and substituting x p m=  = p/m and s p= , obtain the dual 
function 

( ) ( ), .
2
pH x p V x
m

= +
 

This is the Hamiltonian function, which is the conserved total energy. See 
[[1], pp. 65-67] and [3]. 

Example 3.2. The total cost as a function of quantity and the maximum total 
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profit as a function of selling price per item are dual curves. For a manufacturer 
of a particular item that can be shipped in arbitrarily sized lots, consider two 
formulations. In one, the variables are the quantity of items q in a lot and the 
cost c to the manufacturer of making the q items, thus ( )c c q= . These replace 
the notation x and ( )y f x= . In the other one, the variables are the selling price 
per item s that the market allows for that lot and the maximum total profit p for 
the lot. Thus, ( )p p s= , where this replaces the notation for the generic 

( )t g s= . 
Assume that ( )c c q=  is strictly concave up over the open interval of q-values 

of interest, which is a reasonable assumption. Also assume that ( )c q  is twice 
differentiable so 0c′′ >  and that c′  is invertible. 

A lot’s profit is the selling price per item times the number of items in the lot 
minus the cost of the lot, i.e., 

( )Profit .sq c q= −  
For each possible selling price s, ( ) ( )d d Profitq s c q′= −  and  

( ) ( )2 2d d Profit 0q c q′′= − < . The maximum profit p is obtained at sq q= , 
where ( )1

sq c s−′=  is the solution to ( )d d Profit 0q = , and hence ( )ss c q′= . 
This is a one-to-one correspondence between s and q. Thus, 

( ) ( ) ( ) ( )( )1 1
s sp s sq c q sc s c c s− −′ ′= − = −

. 

Comparing with (2), this expression ( )p s  is the Legendre transformation of 
c. 

4. Extending the Definition and the Applicability of  
( )( )f x  

In most applications, such as to cost ( )c q  in Example 3.2, the functions are 
either strictly concave up or concave down. Occasionally, more complicated sit-
uations arise. The curve may be partly concave up and partly concave down, bi-
valued, and even have self-intersections and cusps. There could be linear por-
tions and corners. The Legendre transformation can be used for analyzing many 
of these functions and curves as the following three examples reveal. 

Example 4.1 contains a function that is concave up in one part and concave 
down in the other part. Each part can be transformed separately, then combined 
for the transformed curve. The cusp in the transformation is an artifact of the 
vanishing second derivative of f at the origin. Because of reflectivity in Property 
2.1, the inverse Legendre transformation of its transformation illustrates the abil-
ity of the Legendre transformation to handle the occurrence of a doubled-back 
curve and a cusp. 

Example 4.1. Consider 

( )
3

3
xy f x= =

 
for x∈ . See Figure 6, which shows that f is concave down for 0x <  and  
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Figure 6. A curve with concave up and concave down parts in Example 4.1. 
 

concave up for 0x > . The Legendre transformation is double valued for posi-
tive slopes s, because each value for slope of f applies to one tangent line for 

0x <  and one for 0x > . At 0x a= > , the tangent line is 2 32
3

y a x a= − . 

Then, 2s a= , a s= , and 3 22
3

t s= . Similarly, for 0x < , 3 22–
3

t s= . The 

point ( ) ( ), 0, 0x y =  of f gives the single point ( ) ( ), 0, 0s t = , which is a cusp. 
See Figure 7. 

The periodic function in Example 4.2 has concave down parts that are similar 
to each other and might come about in an application with a rectified wave. 

Example 4.2. Consider 

( ) ( )( )2
1 2 1y f x x n= = − − −

 
for 2 2 2n x n− < <  and 1, 2, 3,n =  . See Figure 8. Applying Example 1.1 and 
Property 2.3 with ( )1 2 1c n= − −  and 2 0c =  to each period gives function 

( ) ( )( ) ( ) ( )21 2 1 .t g s f x s s n s= = = − + + −             (4) 

For each value of n, the domain of the branch (4) is  , because the slope 
takes all real values in each period of f. The end points where 0, 2, 4,x =   
have vertical tangents, thus go to the points at infinity of each branch in the 
transformation. Each branch contains the point ( ) ( ), 0, 1s t = − , because the 
maximum in each period of f has slope 0s =  and a tangent line with 
y-intercept 1. As n becomes very large, t in (4) approaches the t axis. See Figure 
9. The self-intersection of ( )t g s=  in a point (which is ( )0, 1−  in this exam-
ple) and the appearance of the branches as curves rotating about that point is a  
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Figure 7. A curve that doubles back and contains a cusp in Example 4.1. 

 

 
Figure 8. The periods for n = 1, 2, and 3 are displayed for the rectified wave in Example 4.2. 
 

signature of such a wave f. 
Supporting lines are generalizations of tangent lines. A line of support to a 

curve intersects the curve locally in exactly one point or else in a line segment. 
Tangent lines are examples. Curves are determined by their lines of support in 
the same way that differentiable curves are by their tangent lines ([7], pp. 41-43, 
205-212; [8], p. 34). Using supporting lines allows an extension of the Legendre 
transformation to piecewise linear curves, as shown in Example 4.3, which exhibits  
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Figure 9. Moving counterclockwise about (0, −1), the branches for n = 1 though 6, respectively, for the dual curve in Example 4.2. 
 

how linear portions (corner points) of a curve correspond to corner points (li-
near portions) of its Legendre transformation. 

Example 4.3. Consider the following piecewise linear function consisting of 
three line-segments 

( )
4 6 1

1 1 1
3 3 1

x x
y f x x x

x x

− − < −
= = − − ≤ <
 − ≤ . 

See Figure 10. The three linear portions give the three points  
( ) ( ) ( ), 4, 6 , 1,1s t = −  and ( )3, 3 . 

For example, for 4 6y x= − − , 4s = −  and 6t = . Each of the two corners at 
( ) ( ), 1, 2x y = − −  and ( )1, 0  produce a linear segment in the transformation. 
The corner at ( )1, 2− −  transforms to a line segment from the pencil of its sup-
porting lines ( ) ( )1 2 2y s x sx s= + − = − − +  for 4 1s− ≤ ≤ , so that 2t s= − + . 
Similarly, the supporting lines at (1, 0) are ( )1 0y s x= − + , so that t s=  for 
1 3s≤ ≤ . Thus, 

( ) ( )( ) ( )
2 4 1

1 3
f x s

s s
t g s

s s
− + − ≤ <

= =
≤ ≤

=  . 

See Figure 11. 
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Figure 10. Piecewise linear curve in Example 4.3. 

 

 
Figure 11. Dual curve consisting of line segments in Example 4.3. 
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5. Conclusions 

The Legendre transformation is basically a simple idea: A second curve is created 
that has the same information as the original curve. Going back and forth be-
tween the curves is easy, since the parametrizations are functions of each other. 
The second curve uses coefficients from tangent and supporting lines of the oth-
er curve. In applications, the advantage of having the two curves is that different 
insights may be obtained from either one. In Example 3.2, selling price and 
quantity are functionally related but thinking in terms of one or the other might 
be preferable. 

Alternative duality transformations can be based upon other pairs of coeffi-
cients that are in standard forms for lines. For the slope-intercept form 

,y mx b= +  

the new variables are m and ( )b b m= . This transformation introduces a minus 
sign, compared to the Legendre transformation. In Examples 3.1 and 3.2, physi-
cal measurements would have been made negative in this transformation. This 
duality does not possess Property 2.2 of maintaining concavity because the mi-
nus sign reverses concavity. Going through any one of the proofs or examples 
with b, instead of g, illustrates how the minus sign moves through the process. 

The standard form of a line that is based on the dot product, 

( ) ( ), , 1,ux vy u v x y+ = =  
is widely used, especially in Minkowski geometries, that is, real normed vector or 
Banach spaces, where the variables are u and ( )v v u=  [8] [9]. 

The concepts in the Legendre transformation are similar to those in other 
duality transformations, so studying it is helpful for understanding the others. 
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