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Abstract 
This work examines the flow of a micropolar fluid over a vertical porous 
plate at the MHD stagnation point under viscous dissipation, convective 
boundary conditions, and thermal radiation. The governing partial differen-
tial equations and a set of similarity parameters were used to transform them 
into ordinary differential equations. The Runge-Kutta fourth-order algorithm 
is used in conjunction with the Newton Raphson shooting technique to nu-
merically solve the generated self-similar equations. Results were tabulated 
both numerically and graphically, and examples for different controlling fac-
tors are quantitatively analyzed. According to the study, the vortex viscosity 
parameter (k) causes the velocity profiles to rise while the magnetic parame-
ter, suction parameter, and radiation parameter cause them to fall. In con-
trast, as the flow’s suction and prandtl values rise, so do the magnetic para-
meter, radiation, and vortex viscosity, while the thickness of the thermal 
boundary layer decreases.  
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1. Introduction 

Fluids having microstructure are known as micropolar fluids. They fall under 
the category of fluids known as polar fluids, which have nonsymmetric stress 
tensors. Erigen [1] first proposed the fundamental continuum theory for this 
group of fluids and has been a well-liked subject of study. The movement of flu-
ids with suspensions, colloidal fluids, polymer, bodily fluids, blood, and liquid 
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crystals are all explained by this hypothesis. Incompressible micropolar boun-
dary layer flow over a semi-infinite plate was researched by Ahmadi [2]. In their 
investigation of the heat transfer on continuously rotating plates in micropolar 
fluids, Soundalgekar and Takhar [3] discovered the impact of surface tempera-
ture on the fluid dynamics. Similar to this, Hayat and Ali [4] explored the peris-
taltic flow of micropolar fluid in an asymmetric channel as well as the nature of 
the endoscope. Rees and Pop [5] studied the flow of a micropolar fluid on a con-
tinuously moving plate, whereas Sajid et al. [6] looked at the homotopy analysis 
for boundary layer flow of micropolar fluid via porous channels. The mixed 
convection flow of micropolar fluid across a non-linearly expanding surface was 
further investigated by Hayat et al. [7]. 

In many technical applications, such as the design of radial diffusers, thrust 
bearing, thermal oil recovery and transpiration cooling, stagnation point flow is 
crucial. Hiemenz [8] employed a similarity transformation method to convert 
the Navier-Stokes equations to nonlinear ordinary differential equations and 
made the discovery of stagnation point flow. Homann [9] expanded on this issue 
by incorporating the axisymmetric stagnation point scenario in both two and 
three dimensional instances. In addition to making a substantial contribution to 
the stagnation-point flow of micropolar fluid towards a stretched surface, Nazar 
et al. [10] also added to our understanding of the flow dynamics of stagnation 
point flow. 

The design of several inventive energy conversion devices that run at high 
temperature has a significant problem from thermal radiation. The emissions 
from heated walls and working fluid are principally caused by the effects of 
thermal radiation. Several research investigations, like those by Zhu et al. [11] 
and Pop et al. [12], have discussed the effects of radiation. While Seini and Ma-
kinde [13] looked at the impact of radiation on chemically reacting MHD boun-
dary layer flow via a vertical porous plate, Christian et al. [14] examined MHD 
stagnation flow with chemical reaction and radiation toward a heated shrinking 
porous surface. T. Ayando [15] also looked into the Blasius flow of MHD mi-
cropolar fluid caused by heat radiation through a permeable plate. 

Viscous dissipation’s function is to alter the temperature distribution by act-
ing as energy source, which impacts heat transfer rates. Whether the sheet is be-
ing heated or cooled determines the benefits of the viscous dissipation effect. 
The impact of viscous dissipation in a heated vertical plate with natural convec-
tion was examined by Pantokratoras [16]. The effects of suction and viscous dis-
sipation on MHD boundary layer flow in a porous material over a moving ver-
tical plate were also explored by Lakshmi et al. [17]. The effects of viscous and 
ohmic dissipation on heat transfer and viscoelastic MHD flow across a stretched 
sheet were next investigated by Subhas et al. [18]. Imoro et al. [19] investigated 
the presence of viscous dissipation and nth order chemical reaction on heat and 
mass transfer over a vertical surface with convective boundary conditions, whe-
reas Arthur et al. [20] examined the presence of radiation with viscous dissipa-
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tion and convective boundary condition chemically reacting hydromagnetic flow 
over a flat surface. Makinde [21] investigated internal heat generation and con-
vective boundary conditions on a moving vertical plate with natural convection 
using the similarity solution method. 

The stagnation point flow of an MHD micropolar fluid in the presence of 
melting processes and heat absorption was studied by Mamta et al. [22], who 
found that the heat transfer rate reduces with melting and heat absorption. He 
said that at the fluid-solid boundary, heat production parameters greatly rise, 
while Lok et al. [23] looked the mixed convection flow of micropolar fluid at the 
stagnation point on a vertical surface and Ramachandra et al. [24] studied the 
mixed convection stagnation point flows close to a vertical porous surface. 

Ghasemi et al. [25] investigated the effects of solar radiation on MHD stagna-
tion point flow and heat transfer across a stretched sheet. 

Lund et al. [26] investigated the dual similarity solution of MHD stagnation 
point flow of casson fluid with thermal radiation and viscous dissipation effects. 
Hsio [27] studied the stagnation electrical MHD nanofluid mixed convection 
with slip boundary on stretching sheet, while Bilal [28] examined the micropolar 
flow of electrical MHD nanofluid with nonlinear thermal radiation and slip ef-
fects. Both researchers discovered that increasing the magnetic parameter (M) or 
electrical parameter (E) results in an increase in temperature distribution at a 
specific point of the flow region. Furthermore, Shahzada et al. [29] also ex-
panded on Hsiao [27] research by looking at the stagnation point flow of an 
EMHD micropolar nanofluid with mixed convection and slip boundary. Recent 
studies by Ishak et al. [30] and Olanrewaju et al. [31] examined the effects of 
thermal radiation on magnetohydrodynamic (MHD) flow of micropolar fluid 
towards a stagnation point on a vertical surface and found that thermal radiation 
and absorption has greater impact on the velocity, angular velocity and temper-
ature field. 

To the best of the authors’ knowledge, there is no documentation of the inte-
raction of viscous dissipation, thermal radiation, and convective boundary con-
ditions of stagnation point flow of micropolar fluid via vertical porous plate in 
the literature that is currently accessible. 

This study investigates the impact of convective boundary condition, viscous 
dissipation, and thermal radiation on stagnation point flow of micro polar fluid 
through a vertical porous plate. The practical applications of this research in-
clude the extraction of polymers in melt-spinning processes, the cooling of nuc-
lear reactors during emergency shutdown, and the cooling of electronic devices, 
serve as the driving force behind it. 

2. Mathematical Model 

On a heated vertical surface, a constant laminar two-dimensional flow of a visc-
ous incompressible electrically conducting micropolar fluid through a porous 
media has been taken into consideration. Our research took into account the 
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tangential and normal velocity components, as well as the x-axis running parallel 
to the wall in the direction of the flow motion and y-axis perpendicular to it. We 
also failed to consider the generated magnetic field that the movement of the 
electrically conducting fluid caused. The following steps are taken to get the 
boundary layer equations representing the flow: 
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With boundary conditions: 
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where u and v are the x and y-axis velocity components, respectively, g is the ac-
celeration caused by gravity, T is the fluid temperature in the boundary layer, k 
is the vortex viscosity, μ is the dynamic viscosity, κ is the thermal conductivity, ρ 
is the fluid density, β is the thermal expansion coefficient, j is the microinertia 
density, H is the microrotation vector. 

We further assume that K k
µ

=  is the vortex viscosity parameter where the  

field of equations predicts proper behavior of the vortex when the microstruc-
ture effects are insignificant. 

Using Rosseland approximation for radiative, simplified the radiated heat flux 
to: 

44
3r

Tq
K y
σ ∗ ∂

= −
′ ∂

,                        (6) 

where K' and σ ∗  are mean absorption coefficient and Stefan-Boltzmann con-
stant. The term T4 may be expressed as a linear function of temperature differ-
ence within the flow. Hence, in a Taylor series expansion about T∞ and neglect-
ing higher order terms, we get; 

4 3 44 3T T T T∞ ∞≅ − .                       (7) 

Introducing the following dimensionless quantities: 
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where ψ, θ, h and υ are respectively stream function, temperature, dimensionless 
microrotation and kinematic viscosity. 
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Noting the usual relationship of the velocity components u
y
ψ∂

=
∂

, v
x
ψ∂

= −
∂

, 

satisfies the continuity Equation (1) identically. 
Equations (2)-(4) and the boundary conditions in (5) are transformed into 

non-linear higher order differential equations in the form: 

( ) ( ) 21 1 1,K f ff M f f Khλθ′′′ ′′ ′ ′ ′+ + + − − + + = −           (9) 
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The transformed boundary conditions are; 
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where j aυ=  is the characteristic length, ( ) 3 2
x T wGr g T T xβ υ∞= −  is the lo-

cal thermal Grashof number, ( )2
wBr U T Tµ κ ∞= −  term as Brinkmann number, 

Pr υ α=  Prandtl number, 2
0M B aσ ρ=  represents as magnetic field term, 

vfw
aυ

=  as suction term, 34Ra T Kσ κ∗
∞ ′=  represents the thermal radiation 

parameter, 2
x xGr Reλ =  term as the buoyancy, xRe Ux υ=  local Reynolds 

number, wh
Bi

a
υ

κ
=  represents convective heat transfer parameter. 

3. Numerical Procedure 

The higher order ordinary differential Equations (9) through (11) and the asso-
ciated transformed boundary conditions (12) are reduced to a coupled first order 
system of ODEs using the standard Newton-Raphson shooting method and the 
fourth-order Runge-Kutta integration algorithm to arrive at the numerical solu-
tion. We employ numerical shooting technique where the two ending boundary 
conditions are utilized to produce two unknown initial conditions at at η = 0. In 
this calculation, the step size ∆η = 0.001 was used while obtaining the numerical 
solution with ηmax = 10 and six-decimal (10−6) accuracy as the criterion for con-
vergence. 

The following reduction steps are allowed in order: 

1 2 3 4 5 6 7

8 9 10

, , , , , , ,
, ,

f x f x f x f x h x h x h x
x x xθ θ θ

′ ′′ ′′′ ′ ′′= = = = = = =
′ ′′= = =  

Therefore, equations (9) - (11) can be reduced as first order system as follows: 

1,f x=  

2 ,f x′ =  

3 ,f x′′ =  
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The local Nusselt number, couple stress, and plate surface shear stress, which 
are each represented by the numerical values f"(0), h'(0) and −θ'(0) are com-
puted numerically and results are shown in tabular form. 

For different prandtl number (pr) values, the studies of Ramachandran et al., 
Lok et al., Ishak et al., Olanrewaju et al. and the present study are presented in 
Table 1 and Table 2. The current study is in line with earlier published efforts in 
the field. The Nusselt number, couple stress, and shear stress values are shown 
numerically in Table 3. According to the results, the shear stress and the couple 
stress rise with increasing values of fw, Bi, M, Ra, Br and λ (λ > 0), whereas they 
decrease with rising values of K, Pr and λ (λ < 0). At the plate surface, the shear 
stress and couple stresses are reduced by momentum and angular momentum 
diffusion, while they are increased by the magnetic field intensity, suction, visc-
ous dissipation, convective heat transfer and thermal radiation. 

The correlation between rate of heat transfer and shear stress is seen in Table 4. 
The impact of buoyant forces results in an increase in shear stress and a decrease 
in the rate of heat transfer at the surface, as shown numerically in the table. 

 
Table 1. An example of f"(0) results for various values of Pr with λ = 1, Br = K = Ra = M = 0, and Bix = 107. 

Pr Ramachandran et al. (1988) Lok et al. (2005) Ishak et al. (2008) Olanrewaju et al. (2011) Present study 

0.7 1.7063 1.706376 1.7063 1.7063227120375 1.706322 

1 - - 1.6755 1.6754365718388 1.675436 

7 1.5179 1.517952 1.5179 1.5179126193762 1.517912 

10 - - 1.4928 1.4928386730384 1.492838 

 
Table 2. An example of –θ'(0) results for various values of Pr with λ = 1, Br = K = M = Ra = 0, and Bix = 107. 

Pr Ramachandran et al. (1988) Lok et al. (2005) Ishak et al. (2008) Olanrewaju et al. (2011) Present study 

0.7 0.7641 0.764087 0.7641 0.7640634014961508 0.7640628 

1 - - 0.8708 0.8707786011745782 0.8707778 

7 1.7224 1.722775 1.7225 1.7223816064916741 1.7223785 

10 - - 1.9448 1.9446173966286199 1.9446135 
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Table 3. Nusselt number, shear and couple stress numerical values. 

Pr M K Λ Ra Br Bi Fw F"(0) H'(0) -θ'(0) 

0.7 0.1 1.0 1.0 0.1 0.1 0.1 0.1 0.843868 −0.686483 0.082439 

1.0        0.830204 −0.693896 0.084694 

7.0        0.787947 −0.715068 0.093365 

10.0        0.784208 −0.716758 0.094455 

 0.5       0.953501 −0.636323 0.084577 

 1.0       1.089963 −0.572344 0.084395 

  2.0      0.105585 −1.692473 0.083509 

  3.0      −0.717965 −2.560938 0.066982 

   −2.0     −0.761830 −1.551959 0.012953 

   −1.0     −0.791814 −1.599856 −0.062955 

   2.0     0.886261 −0.666636 0.084642 

   3.0     0.941836 −0.639429 0.084577 

    0.5    0.838206 −0.689319 0.083668 

    1.0    0.846859 −0.684285 0.082544 

     0.5   0.899741 −0.659197 0.069059 

     1.0   0.995722 −0.611110 0.046300 

      0.5  0.919372 −0.650938 0.290082 

      1.0  0.972230 −0.625230 0.418305 

       0.5 0.967507 −0.683157 0.087347 

       1.0 1.169603 −0.606788 0.089586 

 
Table 4. Shear stress and Nusselt number numerical findings. 

Pr M Ra Br Bi Fw K λ F"(0) -θ'(0) 

1.0 0.1 0.1 0.1 0.1 0.1 0 −3 −1.758828 0.011217 

1.0 0.1 0.1 0.1 0.1 0.1 0 −2 −1.750451 −0.026879 

1.0 0.1 0.1 0.1 0.1 0.1 0 0 1.923517 0.088116 

1.0 0.1 0.1 0.1 0.1 0.1 0 1 1.977830 0.087991 

1.0 0.1 0.1 0.1 0.1 0.1 0 2 2.032881 0.087861 

1.0 0.1 0.1 0.1 0.1 0.1 1 −3 −1.651530 0.010201 

1.0 0.1 0.1 0.1 0.1 0.1 1 −2 −1.677709 −0.029515 

1.0 0.1 0.1 0.1 0.1 0.1 1 0 1.135961 0.089640 

1.0 0.1 0.1 0.1 0.1 0.1 1 1 1.169603 0.089586 

1.0 0.1 0.1 0.1 0.1 0.1 1 2 1.203345 0.089539 
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4. Discussion of Results 
4.1. Velocity Profiles 

Figures 1-7 shows the velocity curve with various regulating parameters. The  
 

 
Figure 1. Magnetic field parameter velocity profiles. 

 

 

Figure 2. Suction parameter velocity profiles. 
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Figure 3. Brinkmann Number velocity profiles. 

 

 

Figure 4. Biot number velocity profiles. 
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Figure 5. Radiation parameter velocity profiles. 
 
 

 

Figure 6. Material parameter velocity profiles (assisting flow). 

 

https://doi.org/10.4236/jamp.2023.1111221


A. Timothy et al. 
 

 

DOI: 10.4236/jamp.2023.1111221 3494 Journal of Applied Mathematics and Physics 
 

 

Figure 7. Vortex viscosity parameter velocity profiles (opposing flow). 

 
fluid velocity is typically lowest near the plate surface and rises to the free stream 
value, which meets the boundary criteria for the distant field. When the magnet-
ic field intensity is increased, the longitudinal velocity consistently decreases, 
and all profiles asymptotically approach the free stream value away from the 
plate. This effect is caused by the Lorenz force, which rises as the magnetic field 
intensity increases and creates more resistance to fluid flow. 

Figure 2 shows how the velocity field and suction (fw) values vary over 
boundary layer. Velocity decreases with increasing suction. Suction is a medium 
that creates flow resistance, slowing the flow velocity. As shown in Figures 3-5, 
the velocity boundary layer thickness decreases as the values of thermal radia-
tion, Brinkmann number (Br) and Biot number (Bi) on the velocity increase, 
respectively, due to viscous dissipation and convective heat transfer. Additional-
ly, as shown in Figure 6 & Figure 7, the thermal boundary layer thickness rises 
for varying values of the vortex viscosity parameter (k), improving the flow ki-
nematics of fluid flows due to an increase in angular momentum diffusion. 

4.2. Microrotation Profiles 

As seen in Figure 8 & Figure 9, the microrotation profiles decrease as the values 
of magnetic field (m) and suction (fw) parameter rise. The Lorenz force, which 
tends to work against the direction of the fluid flow when there is a magnetic 
field present, is a drag-like force. As the fluid temperature, magnetic field, and 
suction rise as result, the fluid velocity and microrotation decrease. Figure 10 &  
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Figure 8. Microrotation profiles for magnetic field parameter. 

 

 
Figure 9. Suction parameter microrotation profiles. 

 
Figure 11 show the microrotation profiles for the Brinkmann (Br) and Biot (Bi) 
numbers. 

Due to internal heat production from convective heat transfer and viscous 
dissipation, the microrotation profiles at plate surface decrease as Br and Bi 
number rise. Figure 12 & Figure 13 depict the microrotation profiles for the 
vortex viscosity parameter (k) for aiding and opposing flows. As the angular  
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Figure 10. Microrotation profiles for Brinkmann Number. 

 

 
Figure 11. Biot parameter microrotation profiles. 

 
velocity or microrotation rises close to the plate surface, the microrotation pro-
files rise with increasing values of R. 

4.3. Temperature Profiles 

Figures 14-21 show the changes in temperature profiles. The fluids temperature 
reaches its peak at the plate surface before decreasing to meet the boundary re-
quirements at free stream temperature. With an increase in the values of mag-
netic parameter, a drop in temperature profiles is seen. According to Figure 14  
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Figure 12. Microrotation profile for vortex viscosity parameter (assisting flow). 

 

 
Figure 13. Microrotation profiles for vortex viscosity parameter (opposing flow). 

 
& Figure 15, raising the magnetic parameter, causes a reduction in the thermal 
boundary layer thickness, and increasing suction has a similar effects. However, 
as seen in Figure 16, decreasing the prandtl number results in a thinner thermal 
boundary layer. Additionally, as demonstrated in Figures 17-19, increasing 
viscous dissipation, convective heat transfer, and thermal radiation, respectively,  
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Figure 14. Temperature profiles for magnetic field parameter. 

 

 

Figure 15. Profiles of temperature for the suction parameter. 
 

raises the temperature profiles. However, increase in the vortex viscosity para-
meter have the effect of improving temperature profiles and thickening the 
thermal boundary layer in the flow field, as seen in Figure 20 & Figure 21. 
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Figure 16. Profiles of temperature for the Prandtl number. 
 

 

Figure 17. Profiles of temperature for the Brinkman number. 

5. Conclusions 

1) The vortex viscosity parameter (K) causes a rise in the velocity profiles, 
while other parameters such as the magnetic parameter (M), suction (fw), Brink-
mann number (Br), Biot (Bi), and radiation parameter (Ra) cause a reduction. In  
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Figure 18. Profiles of temperature for the Biot number. 
 

 

Figure 19. Profiles of temperature for the radiation parameter. 
 

contrast, the thickness of the thermal boundary layer rises with the magnetic 
parameter (M), Brinkmann number (Br), Biot number (Bi), radiation (Ra) and 
vortex viscosity (K), whereas it decreases with increasing suction and prandtl. 

2) The microrotation profiles decreases with increasing magnetic parameter  

https://doi.org/10.4236/jamp.2023.1111221


A. Timothy et al. 
 

 

DOI: 10.4236/jamp.2023.1111221 3501 Journal of Applied Mathematics and Physics 
 

 
Figure 20. Profiles of temperature for the material parameter (assisting flow). 

 

 

Figure 21. Profiles of temperature for the material parameter (opposing flow). 
 

(M), suction (fw) and vortex viscosity (K) and increases with increasing Brink-
mann number (Br) and Biot number (Bi). 

3) Depending on whether the flow is aiding or opposing, the couple and shear 
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stresses at the surface are affected. 

6. Suggestion for Further Study 

It has been found that energy flux can be generated not only by temperature 
gradients but also by concentration gradients. The heat transfer caused by a 
concentration gradient is termed as diffusion thermo (Dufour) effect. On the 
other hand, mass transfer created by temperature gradients is called ther-
mal-diffusion (Soret) effect. Generally, in heat and mass transfer process, the 
Soret and Dufour effects are neglected because they are smaller order of magni-
tude than the effects described by Fourier’s and Fick’s laws. 

The Soret effect has been utilized for isotope separation and in mixture be-
tween gases of very light molecular weight and of medium molecular weight. 
Further research is recommended to include Soret and Dufour effects in the 
present study for a better analysis. It is also recommended that further research 
is done to investigate into this problem by varying the orientation of the flat 
plate. Particularly, an inclined plate will make this work more general. 
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