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Abstract 
In this paper, which serves as a continuation of earlier work, we generalize 
the idea of inequalities in metric spaces and use them to demonstrate that the 
incomplete metric space can be used to obtain a Banach space. 
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1. Introduction 

This paper aims to generalize some inequalities in metric spaces by providing an 
explanation for the fact that every normed space is a metric space, while the 
converse is not always true. We also present applications of these concepts in 
metric spaces, supported by relevant results. The utilization of the parallelogram 
law, a fundamental property of Hilbert spaces, has enabled several researchers, 
including Kirk [1], Reich [2], Lim [3], Zalinescu [4], Poffald and Reich [5], Prus 
and Smarzewski [6], Xu [7], Gornicki [8], and Takahashi [9], to establish equali-
ties and inequalities in metric spaces and successfully solve various problems. 

We present an introduction to some of the fundamental properties of a metric 
space. In essence, a metric space is defined as a non-empty set X such that to 
each ,x y X∈  there corresponds a non-negative number called the distance 
between x and y. The concept of a metric space was initially introduced in 1906 
and further developed in 1914. Additionally, a general inequality concerning 
polygonal inequality that holds true in metric spaces was established in [10]. 

A distance on a non-empty set X is defined as a function [ ]: 0,d X X× → ∞  
if the following properties are satisfied: 

(i) ( ), 0d x y =  iff x y= . 
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(ii) ( ) ( ), ,d x y d y x=  for all ,x y X∈  (symmetry). 
(iii) ( ) ( ) ( ), , ,d x y d x z d z y≤ +  for any , ,x y z X∈  (triangle inequality). 
When these properties are met, the pair (X, d) forms a metric space. One of 

the main goals of this article is to define metric spaces for specific types of spaces, 
ensuring that all requirements of a metric space are fulfilled. 

2. Basic Definitions 

We begin by recalling certain fundamental properties of real numbers.  
For all , ,x y z∈ , 
i) 0x y− ≥ ; 0x y− =  iff x y= ; 
ii) x y y x− = − ; 
iii) x y x z z y− ≥ − + − . 
To generalize these properties, let ( ),X d  be a metric space and  

1 2, , , mx ξ ξ ξ=  . Then, we have. 

( ) ( ) ( ) ( )1 1 2, , , ,md x y d x d d yξ ξ ξ ξ≤ + + +                (1) 

( ) ( ) ( )1 1, , ,d x y d x d yξ ξ≤ +                       (2) 

( ) ( ) ( )1 1 2 2,, ,d y d d yξ ξ ξ ξ≤ +                      (3) 

( ) ( ) ( ) ( ) ( )1 1 1 1 2 2, , , , ,d x d y d x d d yξ ξ ξ ξ ξ ξ+ ≤ + +             (4) 

( ) ( ) ( ) ( )1 1 2 2, , , ,d x y d x d d yξ ξ ξ ξ≤ + +                  (5) 

( ) ( ) ( )2 2 3 3, , ,d y d d yξ ξ ξ ξ≤ +                     (6) 

Thus, ( ),d x y  satisfies the properties of a metric space.  
Definition 1.2. Let : X Xα → . A point x is said to be an α-fixed point of a 

mapping of :F X X→  if ( )x F xα α=  . 
Definition 2.2. (α-weakly isotone increasing) Let ( ),X ≤  be a partially or-

dered set, : X Xα → , and ,F G  be two self-mappings of X. The mapping F is 
said to be G, α-weakly isotone increasing if for all x X∈ , we have  
( ) ( ) ( )( )( )F x G x F G F xα α α α α≤ ≤     . 

3. Some Concepts to Prove a Metric Space 

Let X be a set of ordered pairs of real numbers ( ){ }1 2, : ix ξ ξ ξ= ∈ ; we define a 
metric d on 2  as  

( ) ( ) ( )2 2
1 1 2 2,d x y ξ η ξ η= − + −                    (7) 

where ( )1 2,x ξ ξ=  and ( ) 2
1 2,y η η= ∈ . Moreover, for Euclidean space n , 

( ){ }1 2: , , ,n
ix ξ ξ ξ=  , iξ  are real. Additionally, for ( ){ }1 2: , , ,n

iC z µ µ µ=  , 

iz  are complex numbers, and  

( ) ( ) ( ) ( )2 2
1 1 2 2, n

n nd x y ξ η ξ η ξ η= − + − + + −  on n       (8) 

and 

( ) ( ) ( ) ( )2 2
1 1 1 2 2, n

n nd x y ξ η ξ η ξ η= − + − + + −  on nC       (9) 
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where 1 2, , , nx ξ ξ ξ=  , 1 2, , , ny η η η=  . Then, ( )1 1 1 2 2,d x y ξ η ξ η= − + − . To 
satisfy the triangle inequality, let ( )1 2,z µ µ= ; then,  

( )

( ) ( )

1 1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 2

1 1

,

, ,

d x y

d x z d z y

ξ µ µ η ξ µ µ η

ξ µ ξ µ µ η µ η

= − + − + − + −

≤ − + − + − + −

= +

           (10) 

Therefore, ( )2
1,d  is also a metric space. Let  

( ){ }1 2: , , , : orn iX x Cξ ξ ξ ξ= ∈   be a set of bounded sequences of real or 
complex numbers  such that j Mξ ≤  j∀ , which are all bounded. Then, we 
also say j xMξ ≤  j∀ ; hence, ( ){ }1

: supi i ii
L x ξ ξ∞∞

=
= = < ∞ . 

We define the distance as ( ), supi i id x y ξ η= − , where ( ) 1i i
x Lξ ∞ ∞

=
= ∈  and 

( ) 1i i
y Lη ∞ ∞

=
= ∈ . Let ( ) 1i i

z Lµ ∞ ∞
=

= ∈ , 

( )

( ) ( )

, sup sup

sup sup , ,

i i i i i i
i i

i i i i
i i

d x y

d x z d z y

ξ η ξ µ µ η

ξ µ µ η

= − = − + −

≤ − + − = +
        (11) 

Thus, ( ),L d∞  is a metric space.  
Example 1.3. Suppose that S consists of the set of all bounded and unbounded 

sequences of complex numbers. Let the metric d be defined as  

( ) 1

1,
12

i i
ii

i i

d x y
ξ µ
ξ µ

∞

=

−
=

+ −∑ , which is convergent and finite. To prove  

( ) ( ) ( ), , ,d x y d x z d z y≤ + , let iz Sµ= ∈ . We consider the function  

( )
1

tf t
t

=
+

, where t∈ . Since ( )
( )2 0
1

tf t
t

′ = >
+

, the function ( )f t  is in-

creasing. Based on the inequality, a b a b+ ≤ + , we have  

( ) ( )f a b f a b+ = + , which implies  

1 1 1 1
a b a b a b

a b a b a b
+ +

≤ ≤ +
+ + + + + +

 

Setting i ia ξ η= −  and i ib µ η= − , we obtain 

1

1 1

1
1 1 1 12

1 1
1 12 2

i i i i i i i i
ii

i i i i i i i i

i i i i
i ii i

i i i i

ξ η ξ µ µ η ξ η
ξ η ξ µ µ η ξ η

ξ µ µ η
ξ µ µ η

∞

=

∞ ∞

= =

− − − −
≤ + =

+ − + − + − + −

− −
≤ +

+ − + −

∑

∑ ∑
     (12) 

Because ( ) ( ) ( ), , ,d x y d x z d z y≤ + , we conclude that ( ),S d  is a metric space.  
Example 2.3. Consider the bL  space for 1p ≥ , where  

( ){ }1 2: , , , ,b
iL x ξ ξ ξ=    such that 1

b
ii ξ∞

=
< ∞∑  and iξ  are scalars. 

Result 1. (Holder’s inequality). Let b
jx Lξ= ∈  and b

jy Lη= ∈ . Then, the 
product of these sequences satisfies 

( ) ( )
1 1

1 1 1
p qp q

j j k mj k mξ η ξ η∞ ∞ ∞

= = =
≤∑ ∑ ∑             (13) 

where 1p >  and 
1 1 1
p q
+ = . 
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Proof. Let jξ  and jη  be two sequences such that 1 1
p

jj ξ∞

=
=∑  and  

1 1
q

jj η∞

=
=∑ . Taking jα ξ=  and jβ η=  as real positive numbers, we use 

the inequality 
p q

p q
α βαβ = +  to obtain  

1 1 1

1 1 1 1 1
p q

j jj j jp q p q
ξη ξ η∞ ∞ ∞

= = =
≤ + ≤ + =∑ ∑ ∑           (14) 

Let us derive Holder’s inequality. Suppose that b
jx Lξ= ∈  and b

jy Lη= ∈  are 
non-zero elements with  

( )
1

1

j
j

p p
kk

ξ
ξ

ξ∞

=

=

∑
 and 

( )
1

1

j
j

q q
mm

η
η

η∞

=

=

∑
            (15) 

Clearly, the sequences jξ  and jη  satisfy (13). Hence, using (13), we obtain  

( ) ( )
1 1

1 1 1
p qp q

j j k mj k mξ η ξ η∞ ∞ ∞

= = =
≤∑ ∑ ∑ , which is finite. 

Result 2. (Minkowski inequality). Let b
jx Lξ= ∈ , b

jy Lη= ∈ , and 1p ≥ . 
Then,  

( ) ( ) ( )
1 1 1

1 1 1

p p pp p p
j j k mj k mξ η ξ η∞ ∞ ∞

= = =
+ ≤ +∑ ∑ ∑  

Proof. By setting 1p =  and j j j jξ η ξ η+ ≤ +  and applying the triangle 
inequality, we obtain 

1 1 1j j j jj j jξ η ξ η∞ ∞ ∞

= = =
+ ≤ +∑ ∑ ∑                 (16) 

For simplicity, let j j jξ η ω+ = ; then,  
1 1 1p p p p

j j j j j j j j jω ξ η ξ η ξ ω η ω
− − −

= + = + ≤ +          (17) 

By choosing 1,2, ,j n=   (any fixed value of n), b
jx Lξ= ∈  and 

1p q
j Lω

−
∈  

because 

( ) ( )1 1qp p q
j jω ω

− −
=                       (18) 

Because 
( )1

1 1

p q p
j jj jω ω

−∞ ∞

= =
= < ∞∑ ∑ , we can apply the Holder’s inequality to 

obtain  

( ) ( ) ( ) ( )
11 1 1

1 1
1 1 1 1 1

n n n qp qp p p pp p q
j j k m k mj k m

n n
k mξ ω ξ ω ξ ω

− −

= = = = =
 ≤ = 
 

∑ ∑ ∑ ∑ ∑  

( ) ( )
1 1

1

1 1 1

p p pp q
j j k mj k

n
mξ ω ξ ω

− ∞ ∞

= = =
≤∑ ∑ ∑             (19) 

Then, we obtain 

( )

( ) ( ) ( )

1

1 1

1 1 1

1 1 1

p pn n
j j j jj j

p p pn n np p q
k k mk k m

ω ξ η ω

ξ η ω

−

= =

= = =

≤ +

 
≤ +  
 

∑ ∑

∑ ∑ ∑
    (20) 
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Taking the limit as n →∞ , we obtain  

( ) ( ) ( )
1 1 11

1 1 1

p p pq p p
j k kj k kω ξ η

−
∞ ∞ ∞

= = =

 
≤ +  
 

∑ ∑ ∑           (21) 

Thus, 

( ) ( ) ( )
1 1 1

1 1 1

p p pp p p
j k kj k kω ξ η∞ ∞ ∞

= = =

 
≤ +  
 

∑ ∑ ∑           (22) 

Finally, we conclude that  

( ) ( ) ( )
1 1 1

1 1 1

p p pp p p
j j k kj k kξ η ξ η∞ ∞ ∞
+= = =

≤ +∑ ∑ ∑           (23) 

Theorem 3.3. A mapping T of a metric space ( ),X d  into a metric space 
( ),X d  is continuous if and only if the inverse image of any open subset of Y is 
an open subset of X. 

Definition 3.4. (Complete metric space) A continuous metric space ( ),X d  
is said to be complete if every Cauchy sequence in X converges to an element of 
X. 

Example 3.5. Let ( ),n d  be a complete metric space.  

( ) 2
1, i

n
iiL d x y ξ µ∞ =

= −∑                    (24) 

where 1 2, , , nx ξ ξ ξ=  , 1 2, , , n
ny η η η= ∈  . Now, we are ready to state our 

main result. 

Example 3.6. A Banach space under the norm defined by 
1

2 2
12 ii

nx ξ
=

 =  ∑ , 

where ( ) ( )1 21
, , ,n n

i ni
x ξ ξ ξ ξ

=
= = ∈  , iξ ∈  for all i.  

Proof. To prove that 2x  is a normed linear space, we prove the properties 
of a norm: 

(i) 
1

2 2
1 0n

iix ξ
=

 = ≥ ∑ , iξ ∈  for all i. 0x =  implies that  

1
2 2

1 0ii
n ξ
=

  = ∑ ; then, 2
1 0ii

n ξ
=

=∑ , 2 0iξ = , 0iξ = , and 0iξ = . 

(ii) 
1

22 2
1 1

n n
i i i i i ii ix y ξ η ξ η ξ η

= =
 + = + = + + + ∑ ∑ .  

( )
( ) ( )

2
1 1 1

1 1

i i i i i i i i i ii i i

i i

n n n

n n
i i i ii i

x y

x x y y x y

ξ η ξ η ξ ξ η η ξ η

ξ ξ η η ξ η
= = =

= =

+ ≤ + + = + + +

= + + + ≤ + + +

∑ ∑ ∑
∑ ∑

 implies that 

( )2x y x y x y+ ≤ + + . Then, x y x y+ ≤ + . 

(iii) 
1 1 1

2 2 222 2 2
1 1 1

n n
i i ii i i

nx xα αξ α ξ α ξ α
= = =

     = = = =     ∑ ∑ ∑ . Hence, 

it is a normed space. 
Proof of completeness: Let mx  be a Cauchy sequence in 2 . Then, for 

any 0ε > , 0n N∃ ∈  such that m nx x ε− <  0,m r n∃ ≥  and 2,m rx x ∈ . 
( ) ( ) ( ) ( )( )1 2, , , , ,m m m m

m i nx ξ ξ ξ ξ=    and ( ) ( ) ( ) ( )( )1 2, , , , ,r r r r
n i nx ξ ξ ξ ξ=   ,  
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( ) ( ),m r
i iξ ξ ∈ , i∀  so ( ) ( )

1
2 2

1
n m r

i ii ξ ξ ε
=

 − <  
∑ , 0,m r n∀ ≥ . 

( ) ( ) 2
2

1
m r

i ii
n ξ ξ ε
=

− <∑ , 0,m r n∀ ≥  

( ) ( ) 2
2m r

i iξ ξ ε− <
, 0,m r n∀ ≥  

( ) ( )m r
i iξ ξ ε− <

, 0,m r n∀ ≥  

Because ( )m
iξ  is a Cauchy sequence in  , ( )m

i iξ ξ→ ∈ , and   is complete. 

Let 1 2, , , , ,i nx ξ ξ ξ ξ= ∈   , iξ ∈ , i∀ . Now, ( )
1

2 2

1
m

m i ii
nx x ξ ξ
=

 − = −  
∑ ,  

where ( )m
i iξ ξ→ , i∀ ; then, ( ) 0m

i iξ ξ− →  as m →∞ , and 0mx x− →  as  
m →∞  implies that 2

mx x→ ∈ , so n  is a complete space. 
Lemma 3.7. Let ( ),L d∞ ∞  be a complete metric space  

( ){ }: , or : supn
i i i iL x Cξ ξ ξ∞ = ∈ < ∞ . ( ), supi i id d x y ξ µ∞ = − , where  

( ) 1i i
x ξ ∞

=
=  and ( ) 1i i

y Lη ∞
∞=

= ∈ . 
Claim. We consider L∞ . Given ( )

1

m
m i i

x ξ
∞

=
=  as a Cauchy sequence in L∞ , 

for given 0ε > , ( )N ε∃  such that for n N≥ , ( ),m nd x x ε∞ < , ,m r N∃ ≥ ,  
( )sup r

i m ix µ ε− < . For each fixed ( ) ( )m r
i iξ µ ε− < , we consider ( ) ( )( )1 2, ,i iξ ξ  . 

ix  behaves as a real or complex Cauchy sequence because ( )1 2, , , ,m nx η η η=   . 
To show x L∞∈ , we obtain ( ) ( )sup m r

i i iξ µ ε− <  for ,m r N≥ , each i, and let 
r →∞ . Thus, ( ) ( ) ( ), sup m r

m i i id x x ξ µ ε∞ = − < , mx x→  because  
( ) ( )m m

i i i i mkξ ξ ξ ξ ε= − + < +                   (25) 

where ( )sup m
m i ik ξ= < ∞ , mx L∞∈ . ( ),L d∞ ∞  is a complete metric space. Al-

ternative proofs do exist. 
Result 3. Every normed space is a metric space, but the converse need not be 

true in general. 
Let S be s set of sequences (bounded or unbounded) of real or complex num-

bers and define ( ) 1

1,
12

i i
ii

i i

d x y
ξ η
ξ η

∞

=

−
=

+ −∑ , where ( ) 1i i
x Xξ ∞

=
= ∈  and  

( ) 1i i
y Xη ∞

=
= ∈ . Clearly, ( ),S d  is a metric space. The question is whether it is a 

normed space? The answer is no. If it were a normed space, we could define 

( ) 1

1,0
12

i
ii

i

x
x x

x
∞

=
= =

+∑ . In that case, we would have the following: 

1

1
12

i
ii

i

x
x x

x
α

α α
α

∞

=
= =

+∑                  (26) 

x xα α≠  which fails to satisfy the norm property. So, ( ), .S  is not a 
normed space, but it is a metric space.  

Lemma 3.8. Consider pL  space and 1p > :  

( ){ }1
: , or : sup pp

i i i ii
L x ξ ξ ξ∞

=
= ∈ < ∞  . Define ( )

1

1p
p p

iiLx ξ∞

=
= ∑ . There-
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fore, ( ),p
pL ⋅  is a normed space, so  

( ) ( )
1

1, p
p p

i ii Ld x y x yξ η∞

=
= − = −∑                 (27) 

where ( ) p
ix Lξ= ∈  and ( ) p

iy Lη= ∈ . Thus, ( ),pL d  is a complete metric 

space. Hence, ( ),p
pL ⋅  is a Banach space. 

Theorem 2.9. Let ( ),X ≤  be a partially ordered set and suppose that there ex-
ists a metric d on X such that ( ),X d  is a complete metric space. Let : X Xα →  
and F and G be two self-mappings of ( ),X d  such that for comparable ,x y X∈ , 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

, , ,

min , , ,

1max , , , , , , ,
2

d F x G y d F x x d y G y

d F x y d G y x

k d x y d F x x d y G y d F x y

ξ α α η α α µ α α

α α α α

α α α α α α α α

+ +

−

  ≤   
  

   

 

  

 

For , , 0ξ η µ > , 0k > , and kξ > , we assume the following: 
(i) F is G,α-weakly increasing and 
(ii) X is regular. 
Then, F and G have a unique α-fixed point. 
Proof. Let 0x X∈ . From the sequence nx  with respect to α , we obtain 

( ) ( )2 2 2 1 2 1n n nx F x F xαα+ + += =  and ( ) ( )2 1 2 2n n nx G x G xαα+ = =  for  
1,2,n =  . Let ( )( )n nd d xα=  , ( )( )1 0nxα + > , 1,2,n =  . Because Gα  is 

Fα -weakly increasing, we have 

( ) ( )( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

1 0 0 1 2 0

1 2 3 1 2

3 4 2 3 5

x G x F G x F x x G F G x

G F x G x x G x F G x

F x x G F G x G F x x

α α α α α α α

α α α α α α

α α α α α α

≤ ≤ = = ≤

= = = ≤ ≤

= = ≤ = =

      

     

     

(28) 

By continuing this process, we obtain 1 2 3 1n nx x x x x +≤ ≤ ≤ ≤ ≤ ≤   so  

2 2 1n nx x +≤ , 1,2,n∀ =  . Now, with 2 1nx x +=  and 2ny x= , we have  

( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( ){ }

( ) ( )( ) ( ) ( )( )

2 1 2 2 1 2 2

2 2 2 1 2 2 2 1

2 1 2 2 1 2 1 2 2 2 1 2

, ,

, min , , ,

1max , , , , , , ,
2

n n n n

n n n n n n

n n n n n n n n

d F x G x d F x x

d x G x d F x x d G x x

k d x x d F x x d x G x d F x x

ξ α α η α

µ α α α

α α α

+ + +

+ +

+ + + +

 + 

+ −

  ≤   
  

  

  

  

(29) 

or  

( ) ( ) ( )
( ) ( ){ }

( ) ( ) ( ) ( )

2 2 2 1 2 2 2 1 2 2 1

2 2 2 2 1 2 1

2 1 2 2 2 2 1 2 2 1 2 1 2

, , ,

min , , ,

1max , , , , , , ,
2

n n n n n n

n n n n

n n n n n n n n

d x x d x x d x x

d x x d x x

k d x x d x x d x x d x x

ξ η µ+ + + + +

+ + +

+ + + + +

 + +
− 

 ≤  
 

    (30) 

or 

{ } ( )2 1 2 1 2 2 2 1 2 2 1 2 2 1
1min , ,0 max , , ,
2n n n n n n n n nd d d d d k d d d dξ η µ+ + + + +

 + + − ≤  
 

 (31) 
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Letting { }2 2 1max ,n nH d d += , we have 2nd H≤ , and 2 1nd H+ ≤  implies that 

( )2 2 1
1 ,
2 n nd d H+ ≤ . Therefore,  

( ) { }2 2 1 2 2 1 2 2 1
1max , , , max ,
2n n n n n nd d d d H d d+ + +

  ≤ = 
 

. From Equation (30),  

( ) { }2 1 2 2 2 1max ,n n n nd d k d dξ η µ+ ++ + ≤  if 2 2 1n nd d +≤ . Then,  

( ) 2 1 2 2 1n n nd d kdξ η µ+ ++ + ≤ , so ( ) 2 1 2n nk d dξ η µ++ − ≤ − , 2 1 2n nd gd+ ≤ , where  

1g
f

µ
ξ η

−
= ≤

+ −
, and if 2 1 2n nd d+ ≤ , then ( ) 2 1 2 2n n nd d gdξ η µ++ + ≤  implies 

that 2 1 2n n
gd dµ
ξ η+
−

≤
+

 and 2 1 2n nd gd+ ≤ , where 2 1n
fg dµ
ξ η
−

= <
+

. Therefore,  

2 2 1
2 1 2 2 1 0 0n

n n nd gd g d g d+
+ −≤ ≤ ≤ ≤ →  as n →∞ . Thus, { }nx  is a Cauchy 

sequence in X, X is complete, and there exists a point z X∈  such that { }2nx  

converges to z. Hence, ( )( )2 1 2 1lim n nF x x zα + += =  and ( )( )2 1lim nF x zα + = . 

Because { }2nx  is a nondecreasing sequence, if X is regular, it follows that 

2nx z≤ , n∀ . Now, if we put 2 1nx x +=  and y z= , we obtain  

( ) ( )( ) ( )( ) ( )( )
( )( )( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ) ( )( )( )

2 1 2 1 2 1

2 1 2 1

2 1 2 1 2 1 2 1

, , , ,

min , , ,

1max , , , , , , , .
2

n n n

n n

n n n n

d F x G z d x F x d z G z

d G x z d G z x

k d x z d F x x d z G z d F x z

ξ α α η α µ α

α α

α α α

+ + +

+ +

+ + + +

 + +
− 

  ≤   
  

   

 

  

 

Finally, we arrive at the following conclusion: 

( )( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( ) ( )

, , , min , , ,

1max , , , , , , , .
2

d z F z d z z d z G z d z z d z G u

k d z z d z z d z G z d z z

ξ α η µ α α

α

+ + −

  ≤   
  

  



 

Alternatively, we can simplify it as ( ) ( )( ), 0g d z G zξ µ α+ − ≤  or  
( )G z zα = , given that 1 gξ > + . Thus, z is a fixed point of G. Additionally, 

using similar reasoning with x z= , 2ny x= , we obtain ( )z F zα α=  . Hence, 
z is a common α-fixed point of F and G. 
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