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Abstract 
This study focuses on investigating the optimal investment strategy for an op-
timization problem with delay using the uncertainty theory. The financial 
market is composed of a risk-free asset and a risk asset with an uncertain 
price process described by an uncertain differential equation. An optimiza-
tion problem is assumed that its objective is a nonlinear function of decision 
variable. By deriving the equation of optimality, an analytical solution is ob-
tained for the optimal delay investment strategy, and the optimal delay value 
function. Finally, an economic analysis and numerical sensitivity analysis are 
conducted to evaluate the research results. 
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1. Introduction 

In actual decision-making processes, investors tend to refer to historical data 
and information to some extent. When investing in stocks, they not only con-
sider the current price of the stock but also pay attention to relevant information, 
such as the price trend over a certain period. If a stock has recently performed 
well (exhibiting an upward trend), investors are more likely to increase their in-
vestment proportion in that stock, using a “buying high” strategy. This further 
attracts more investors to invest in such stocks, leading to further price increases. 
Conversely, if a stock has recently performed poorly (showing a downward 
trend), investors are more likely to withdraw funds due to “stop-loss” behavior. 
This lack of investor attraction results in a further decrease in the stock price. 
For certain institutions, such as insurance companies, good historical perfor-
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mance brings in more profits, allowing them to distribute part of the income to 
shareholders. Conversely, poor historical performance may require additional 
capital infusion to maintain normal operations. Therefore, incorporating histor-
ical information into models can help make more reasonable decisions. Based on 
this, researchers have explored issues related to delay. For instance, [1] [2] [3] [4] 
discussed stochastic control problems with delay using stochastic maximum 
principle or dynamic programming methods. [5] considered optimal investment 
and consumption problems for general investors, assuming that past price in-
formation affects future price fluctuations. [6] studied pension fund manage-
ment problems with delay and derived optimal control strategies under the in-
fluence of performance-related additional cash flows. [7] investigated a class of 
stochastic recursive optimal control problems with delay and solved them using 
dynamic programming and maximum principles. [8] studied mean-field type 
stochastic optimal control problems with delay and derived explicit expressions 
for efficient investment portfolios and efficient frontiers under certain condi-
tions. [9] introduced delay information into the optimal reinsurance and in-
vestment problem, obtaining analytical expressions for the optimal strategy, 
value function, and efficient frontier. [10] researched the maximum principle for 
time-delay stochastic differential equations and its applications. [11] considered 
the problem of optimal excess loss reinsurance with delay and derived analytical 
expressions for the CRRA utility optimal strategies and optimal value functions. 
[12] studied the optimal excess loss reinsurance problem with delay under the 
CEV model and obtained closed-form expressions for the optimal strategies and 
optimal value functions. [13] analyzed the optimal investment and proportional 
reinsurance problem with delay under the CEV model, deriving analytical ex-
pressions for the optimal strategies and value functions in both reinsurance and 
pure investment scenarios. [14] investigated the dynamic continuous-time assets 
and liabilities management problem with delay in the mean-variance framework, 
and derived analytical expressions for the pre-commitment strategies of the 
mean-variance assets and liabilities management problem with delay. [15] used 
the conjugate duality approach to study a class of stochastic optimal control 
problems with delay of state systems described by stochastic differential equa-
tions and obtained expressions for the corresponding dual problem. [16] consi-
dered the optimal expected-variance reinsurance problem with delay under the 
dependent-risk model, obtaining analytical expressions for the optimal strategies. 
[17] proposed an optimal investment portfolio problem with delayed effects on 
the assets and characterized the optimal strategies using decoupled quadratic 
forward-backward stochastic differential equations. [18] studied the investment 
portfolio optimization problem with a new model describing stock price beha-
vior with delayed effects over an infinite time horizon. [19] investigated the 
time-consistent optimal investment and reinsurance problem in the presence of 
default risk. And [20] discussed the reinsurance investment problem for insurers 
as well, but focused on funding requirements associated with historical perfor-
mance and derived analytical expressions for optimal strategies under specific 

https://doi.org/10.4236/jamp.2023.1110187


J. Long, S. Y. Zeng 
 

 

DOI: 10.4236/jamp.2023.1110187 2850 Journal of Applied Mathematics and Physics 
 

conditions. [21] studied the robust optimal excess loss reinsurance and invest-
ment problem for ambiguity-averse insurers with delay and dependence on risks, 
obtaining explicit expressions for the optimal excess loss reinsurance and in-
vestment strategies. [22] investigated the two-dimensional correlated claims 
composite Poisson risk model and analyzed the optimal time-consistent invest-
ment and reinsurance problem with delay under the expected-variance reinsur-
ance premium principle, obtaining analytical expressions for the optimal 
time-consistent investment and reinsurance strategies and their corresponding 
value function. [23] studied the mean-variance investment and reinsurance 
problem with delay, default risk, and dependent shocks, and solved the problem 
by using the stochastic control and time consistency theories, deriving explicit 
expressions for the optimal time-consistent investment and reinsurance strate-
gies, the value function, and the efficient frontier. [24] investigated the robust 
optimal excess loss reinsurance and investment problem with delay under Val-
ue-at-Risk constraints, and derived expressions for the value function and Nash 
equilibrium strategies. [25] discussed the value function of a state-switching 
jump-diffusion with delay and derived expressions for the corresponding sto-
chastic optimization problem. [26] studied the zero-sum stochastic control 
problem with delayed stochastic differential equations in the context of invest-
ment and reinsurance, obtaining explicit expressions for the equilibrium in-
vestment and reinsurance strategies. [27] examined the optimal investment 
portfolio problem with delay under the Mean-Variance criterion in a risk-related 
stochastic volatility model, deriving explicit formulas for the optimal control and 
corresponding value function. [28] investigated the optimal insurance problem 
with delayed effects using the stochastic optimal control framework and derived 
analytical expressions for the optimal strategy of the considered problem. 

However, all the aforementioned studies fall within the domain of probability 
theory. As stated by the founder of uncertainty theory, if there is a lot of histori-
cal data and its distribution function is close enough to its frequency, we should 
use probability theory. However, probability theory cannot be applied if the dis-
tribution function deviates significantly from its frequency, or the data is limited, 
such as a newly formed company or a recently listed stock. Additionally, in cases 
such as the 2008 financial crisis, recent outbreaks like the COVID-19 pandemic, 
or even during times of war, where historical data may be abundant, using 
probability theory for analysis would yield highly inaccurate results. When va-
riables such as stock prices, market demand, or product lifetimes are considered 
in real-world situations, statisticians have recognized that the obtained distribu-
tion may deviate significantly from the assumed distribution function. To ad-
dress this issue, [29] and [30] introduced the concept of uncertainty theory. Af-
ter more than a decade of development and refinement, uncertainty theory [31] 
has become an important branch of mathematics and finds broad applications 
across various fields, including economics and finance. Statisticians’ recognition 
that “distribution functions may lack sufficient proximity to their frequencies, 
leading to unreliable results” is an important reason for our interest in combin-

https://doi.org/10.4236/jamp.2023.1110187


J. Long, S. Y. Zeng 
 

 

DOI: 10.4236/jamp.2023.1110187 2851 Journal of Applied Mathematics and Physics 
 

ing delayed information with uncertainty theory. To our knowledge, there has 
been no study on this specifically. Notably, [32] stands as the pioneer in intro-
ducing uncertainty theory to optimal control problems within the realm of 
finance. Building upon this work, [33] extended the application of uncertainty 
theory by incorporating jump processes into optimal control problems. Since 
then, there have been many studies, see, [34]-[39], and so on. In recent years, an 
increasing number of scholars have been applying uncertainty theory to address 
various financial issues. For instance, [40] developed an uncertain optimal con-
trol model to minimize the quadratic loss function in DC pension plans. [41] 
employed a multi-period mean-variance model to explore DC pension problems 
considering uncertain returns and wages. In their subsequent work, [42] inves-
tigated background-dependent uncertain optimal control systems, applying 
them to DC pension plans. [43] employed the criterion of uncertain optimistic 
values to study the optimal control problem of DC pension plans. 

However, to the best of our knowledge, no previous studies have focused on 
financial problems with delay under the framework of uncertainty theory. This 
research gap has motivated our work. Our study presents several novel contribu-
tions. Firstly, we consider a financial market that includes both a risk-free asset 
and a risk asset with uncertain prices, which are described by an uncertain diffe-
rential equation. Secondly, we introduce a delay optimization problem with 
nonlinear decision variables in its objective function and derive the equation of 
optimality. Thirdly, we provide an analytical solution for the optimal delay in-
vestment strategy and the optimal delay value function. Lastly, we discuss the 
economic implications of our research findings and conduct sensitivity analysis. 

The remainder of this paper is structured as follows. Section 2 provides the 
necessary background on uncertainty theory. Section 3 constitutes the core of 
our work, where we describe the fundamental assumptions, establish the model, 
and derive the analytical solution. Section 4 discusses the economic implications 
and sensitivity analysis, supplemented by numerical examples. Finally, in Section 
5, we present our conclusions. 

2. Preliminary 

In order to enhance comprehension of this paper, it is imperative to review key 
concepts related to uncertainty theory as introduced in [31]. Let Γ denote a non-
empty set, and   represent a σ-algebra over Γ. Each individual element Λ∈  is 
referred to as an event. 

Definition 1. A set function   defined on the σ-algebra   over Γ is 
called an uncertain measure if it satisfies the following four axioms: 

(i) (Normality) { } 1Γ = ; 
(ii) (Monotonicity) { } { }1 2Λ ≤ Λ   whenever 1 2Λ ≤ Λ  for 1 2,Λ Λ ∈ ; 
(iii) (Self-Duality) { } { } 1cΛ + Λ =   for any event Λ;  
(iv) (Countable Subadditivity) { } { }11 i iii

∞ ∞

==
Λ ≤ Λ∑

  .  
Definition 2. Let Γ be a nonempty set,   the σ-algebra over Γ, and   be 
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an uncertain measure. Then the triplet ( ), ,Γ    is said to be an uncertainty 
space.  

Definition 3. An uncertain variable is a measurable function ξ  from an un-
certainty space ( ), ,Γ    to the set of real numbers; that is, for any Borel set of 
real numbers, the set  

 { } ( ){ }| ,B Bξ γ ξ γ∈ = ∈Γ ∈                       (1) 

is an event.  
Definition 4. The uncertainty distribution [ ]: 0,1Φ →  of an uncertain 

variable ξ  is defined by  

 ( ) { }.x xξΦ = ≤                         (2) 

is an event.  
Definition 5. A canonical process, denoted as ( )C t , is considered uncertain 

if it satisfies the following conditions: 
(i) ( )0 0C =  and almost all sample paths are Lipschitz continuous; 
(ii) ( )C t  exhibits stationary and independent increments; 
(iii) Each increment ( ) ( )C s t C s+ −  is a normal uncertain variable with an 

expected value of 0 and a variance of 2t . The uncertainty distribution of this va-
riable is denoted as  

 ( )
1

1 exp , .
3
xx x
t

−
π  −

Φ = + ∈ 
 




                   (3) 

Theorem 1. ([30]) Let ξ  and η  represent independent uncertain variables 
with finite expected values. For any real numbers a and b, the following rela-
tionship holds:  

 [ ] [ ] [ ].E a b aE bEξ η ξ η+ = +                    (4) 

Theorem 2. ([44], Integration by Parts) Suppose tX  and tY  are general Liu 
processes. Then  

 ( )d d d .t t t t t tX Y Y X X Y= +                      (5) 

This theorem, along with Definition 5(iii), informs us that the operations of 
Uncertainty Differential Equations (UDEs) in the framework of uncertainty theory 
differ from those of Stochastic Differential Equations (SDEs) in the framework of 
probability theory. UDEs do not involve the product term d dt tX Y , which is 
present in SDEs. Consequently, the optimality equation in uncertainty theory 
does not contain second-order partial derivative information, unlike the HJB 
equation in probability theory, which does include such information. 

Theorem 3. ([45]) Let 1 2 1 2, , ,t t t tu u v v  be sample-continuous uncertain processes. 
Then the linear uncertain differential equation  

 ( ) ( )1 2 1 2d d d ,t t t t t t t tX u X u t v X v C= + + +                (6) 

has a solution  

 2 2
0 0 0

d d ,
t ts s

t t s
s s

u vX U X s C
U U

 
= + + 

 
∫ ∫                 (7) 
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where  

 ( )1 10 0
exp d d .

t t
t s s sU u s v C= +∫ ∫                      (8) 

3. An Optimal Control Problem with Delay 

This section is the core part of this paper. Firstly, we describe the basic assump-
tions for the optimization problem with delay, and then establish the model 
whose objective function includes nonlinear decision variables, which helps in 
the derivation of optimal strategy. In the end, we derive the concrete form of the 
analytical solution. 

3.1. Financial Market 

In this study, we examine a financial market that comprises two assets: a 
risk-free asset (e.g., a bank account or bond) and a risk asset (e.g., stocks). 

The price of the risk-free asset at time t, denoted as ( )0S t , follows an uncer-
tain process described by the equation:  

 
( )
( )

0
0

0

d
d .

S t
r t

S t
=                            (9) 

Here, 0r  represents the constant risk-free interest rate. 
The price of the risk asset at time t, denoted as ( )S t , also follows an uncer-

tain process outlined by the equation:  

 
( )
( ) ( )

d
d d ,S S

S t
t C t

S t
µ σ= +                      (10) 

where Sµ  and Sσ  denote the appreciation rate and volatility rate of the risk 
asset, respectively. ( )C t  represents a canonical process. Generally, we assume 

0 0S rµ > >  and 0Sσ > . 

3.2. Wealth Process 

Suppose that in the process of fund management, if the past performance is poor, 
the fund manager may need to seek further financing to adjust the loss so that 
the final performance target can still be reached. Instead, if past performance has 
been good, fund managers can pay some of the proceeds to shareholders as bo-
nuses for management or in the form of dividends. The presence of inflows and 
outflows related to historical information of the wealth gives rise to an optimiza-
tion problem with delay. 

We assume that the fund manager can invest in both the risk-free and risky 
assets described by Equations (9) and (10), respectively. Let ( )W t  denote the 
wealth of the fund at time t, 0w  represent the initial wealth, and tπ  represent 
the investment proportion in the risky asset at time t. We further define the 
pointwise performance of the wealth as ( ) ( )Z t W t h= −  over the past horizon 
[ ],t h t− , and the average wealth ( )Y t  over the period [ ],t h t−  can be ex-
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pressed as  

 ( ) ( )
0

,1 e ds
h

Y t
Y t

s
h

δ
−

=

∫
                         (11) 

where  

 ( ) ( )0
e d ,s

h
Y t W t s sδ

−
= +∫                       (12) 

and 0δ ≥  represents the average parameter, while 0h >  represents the delay 
parameter. 

For convenience, we denote the average value of a function ( )Y t  as ( )Y t  
by using a short line above it. Therefore, based on the fact that  

( ) ( )1
1 0 01 1e d e ds s

h h

Y t GG Y t
s s

h h
δ δ

− −

=

∫ ∫
, we have  

 ( ) ( )1 1 ,G Y t G Y t=                          (13) 

which may be used in Equation (15). 
In order to derive the equation of optimality in Theorem 5 which needs the 

first moment information ( )ew y zδδ −− −  of ( )Y t , we give the following re-
sult.  

Lemma 1. For any real functions F and H, if ( ) ( )0
e ds

h
F t H t s sδ

−
= +∫ , then  

 
( ) ( ) ( ) ( )

d
e .

d
hF t

H t F t H t h
t

δδ −= − − −              (14) 

The proof can be seen in Appendix A. 
Let the function ( ) ( ) ( ) ( )( ), ,G t W t Y t W t Z t− −  represent the amount of 

capital inflow/outflow, which depends on the past performance of the wealth. 
( ) ( )W t Y t−  represents the average performance of the wealth between t h−  

and t, and ( ) ( )W t Z t−  indicates the absolute performance of the wealth in the 
time horizon [ ],t h t− . 

Since the optimization problem with delay is generally infinite-dimensional, 
we introduce certain assumptions to make the problem solvable. Following the 
works of [9] [11] and [12], we assume that the amount of capital inflow/outflow 
is proportional to the past performance of the fund wealth, i.e.  

 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2

1 1 2

1 1 2

, ,

.

G t W t Y t W t Z t

G W t Y t G W t Z t

G W t G Y t G W t Z t

G W t G Y t G W t Z t

− −

= − + −

= − + −

= − + −

                (15) 

Furthermore, we make the assumption that 1G  and 2G  satisfy the follow-
ing parameter conditions.  

 
2

1

2

,

e .h

G

G δ

δ

δ −

=

=
                            (16) 

If we satisfy the condition stated in Equation (16) and set 0hδ = = , we can 
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conclude that the control system (18) will not have any delay. 
The condition (16) ensures that the optimality equation has a closed-form so-

lution, which is one of the sufficient conditions for optimizing the control prob-
lem with delay. Although these two assumptions may restrict the generality, they 
make the delayed control problem solvable in a finite-dimensional context. 

Hence, when considering a capital inflow/outflow function, the wealth process 
( )W t  can be described by the equation:  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

1 2

0 0 1 2 1 2

0 0 1 2

d d
d 1 , , d

1 d d d

d

d

d ,

: d d ,

t t

t t S S

t S

t S

t S t S

S t S t
W t W t W t G t W t Y t W t Z t t

S t S t

W t r t W t t C t

G W t Y t G W t Z t t

r W t r G G W t G Y t G Z t t

W t C t

r W t G W t G Y t G Z t t W t C t

π π

π π µ σ

π µ

π σ

π µ π σ

= − + − − −

 = − + + 
 − − + − 

 = − + − − + + 
+

 = − + + + + 

(17) 

where 0 0 1 2G r G G= − − . 

3.3. Optimization Model 

In the context of investment management, the managers concerns extend beyond 
the final wealth at the end of the investment horizon. The manager also takes 
into account the investment results at different moments, as these outcomes can 
influence the perception of both team members and superiors. Hence, the fund 
manager takes into account not only the utility derived from the wealth ( )W T  
at the final time T and the average wealth ( )Y T  in the period [ ],T h T− , but 
also the utility derived from investing the funds in the stock market during their 
tenure. As the interest earned on bank deposits does not contribute to their per-
formance, it is not considered in our model at present. Therefore, our model can 
be formulated as follows.  

 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

0 0 1 2

, , max , d ,

s.t. d d

           d ,

, , ,

t

T
st

t S

t S

J t w y E U W s s V T

W t r W t G W t G Y t G Z t t

W t C t

W t w Y t y Z t z

π
π

π µ

π σ

∈Π

 = +  

 = − + + + 
+

= = =

∫

    (18) 

where U represents the utility gained during the investment period, V 
represents the utility at the terminal moment, and ρ  is the discount rate. 
Since the optimality equation in the uncertainty theory framework does not 
incorporate second-order information just like the HJB equation in the proba-
bility theory framework, we need to assume that the objective function is a 
function containing nonlinear decision variables. For example, we can use  

( )( ) ( )( )1, e t
t tU W t W t

γρπ π
γ

−=  with the risk aversion coefficient γ , and  
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( ) ( ) ( ) ( ) ( ) ( )e 1 e eT h TV T W T Y T W T Y T
h

γ
γρ δ ρδ δ− − −   = + − = +   

. 

3.4. The Solution to the Model 

Expanding upon the scholarly contributions by [32], we present the optimality 
principle and optimality equation for the context of uncertain optimal control.  

Theorem 4. (Principle of Optimality). For any ( ) [ ], , 0,t w y T R R∈ × × , and 
0t∆ > , we have  

 ( ) ( ) ( )( ), , max d , , ,
t

t t

t
J t w y E U s J t t w W t y Y t

π

+∆

∈Π

 = + + ∆ + ∆ + ∆  ∫    (19) 

where ( ) ( )w W t W t t+ ∆ = + ∆ , ( ) ( )y Y t Y t t+ ∆ = + ∆ , and Π is an admissible 
strategy.  

Furthermore, by incorporating the first moment information of ( )Y t  as 
discussed in Lemma 1, it becomes evident that  

Theorem 5. (Equation of Optimality) Let ( ), ,J t w y  be twice differentiable 
on [ ]0,T R R× × . Then we have  

( ) ( ) ( ){ }0 0 1 20 max e ,
t

h
t w t S yU J J r W t G y G y G z J w y zδ

π
π µ δ −

∈Π
 = + + − + + + + − −  (20) 

where ( ) ( ), , , , ,t wJ t w y J t w y  and ( ), ,yJ t w y  are the partial derivatives of the 
function ( ), ,J t w y  in t, w and y, respectively.  

To successfully determine the value of ( )B t  within the optimal delay value 
function (as detailed in Theorem 6), we present the subsequent lemma as a solu-
tion-oriented approach.  

Lemma 2. The solution of the following ODE  

 ( ) ( ) ( ) ,f t kf t g t′ − =                       (21) 

can be expressed as  

 ( ) ( ) ( ) ( ) ( )e e d .
Tk T t k s t

t
f t f T g s s− − − −= − ∫               (22) 

The proof can be seen in Appendix B. 
Theorem 6. In relation to the optimization problem (18), the optimal strategy 

for making delay investments can be expressed as:  

 ( ) ( )
1

1
0e 1 ,T t

t S
yr
w

κ γπ γ µ δ− −   = − +    
               (23) 

nd the optimal value function for delay is provided as:  

 ( ) ( )( ) ( ) ( ), , e e e d .
TT t T s
t

J t w y w y g s sγκ ρ ρ ρδ+ − − −= + − ∫         (24) 

where  

 ( )
( )

( )( ) ( )( )
1

1 1
0 0e ,

T s

S Sg s r r w y
γ κ γγ γγ µ µ γ δ

−
− −= − − − +       (25) 

with ( )
2

0 1 e 1hr
h

δδκ ρ γ δ −  
= − − − −  

  
. 

The proof can be seen in Appendix C. 
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4. Analysis of Sensitivity and Illustration of Figures 

In order to assess the preference level of investors or managers for investment 
portfolios, we utilize the power utility function as a metric for both economic 
analysis and numerical sensitivity analysis. Our economic analysis methodology 
involves utilizing a mathematical model based on portfolio theory within the 
framework of uncertainty theory to analyze optimal control problems. Our nu-
merical sensitivity analysis approach entails systematically altering the parameter 
values to observe their impact on the results, while also providing a detailed dis-
cussion on the impact of model returns, risk factors, and time delays on optimal 
investment strategies. 

In this section, we provide numerical analyses to illustrate the dynamic beha-
vior of the optimal delay investment strategy and the optimal delay value func-
tion. Additionally, we offer numerical examples to demonstrate the effects. Un-
less specified otherwise, in this section, we show the investment behavior of 
risk-averse managers, i.e., 0.05 1γ = < , and the fundamental parameters are 
presented as: 10T = , 1t = , 0.3Sµ = , 0 0.03r = , 1.5δ = , 1w = , 0.3ρ = , 

1h = . For simplicity but without loss of generality, we only provide the evolu-
tion of the optimal delay investment strategy and the optimal delay value func-
tion at three levels of delay wealth 0.1 / 2 / 3y = . 

4.1. Analysis of Optimal Investment Strategy 

In this subsection, we provide some sensitivity analysis on the effect of the pa-
rameters , , , ,St wγ µ δ , and h on the optimal delay investment strategy. Mean-
while, some numerical examples are provided to illustrate our results. 

According to Equation (23) and the risk averse manager hypothesis, 0 1γ< < , 
we have  

( )( ) ( )0

10, 0, 0.
1 1

t t t
t t t

S S

y
t r w w w y
π π πγ δκπ π π

γ µ γ µ δ
∂ ∂ ∂

= − > = < = − >
∂ − ∂ − − ∂ +

(26) 

In the case of 0 1γ< < , 0t

t
π∂

>
∂

, the optimal delay investment strategy tπ  

increases over time t. However, when the manager is risk-seeking with 1γ >  

and 0t

t
π∂

<
∂

, the optimal delay investment strategy tπ  decreases over time t.  

From Figure 1(a), it can be observed that as time progresses, investment portfo-
lio decisions gradually increase, and a larger proportion of investment is allo-
cated to the stock market as more historical information about wealth is consi-
dered. This implies that investors become more proactive in adjusting their in-
vestment portfolios in response to changing market conditions, the emergence 
of new information, and evolving economic environments. It reflects the dy-
namic nature of investment decision-making, wherein investors continually 
reassess their investment strategies to maximize returns and manage risks. Addi-
tionally, having access to a greater amount of historical wealth data enables bet-
ter evaluation of the risks and returns associated with stock market investments,  
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Figure 1. The effect of parameters t and γ on the optimal strategy. 

 
potentially leading to a higher proportion of investment in stocks. Figure 1(a) 
highlights the importance of time and historical information in investment deci-
sion-making. It suggests that fund managers tend to adjust their investment 
portfolios over time, and managers with a greater amount of historical wealth 
information are more likely to allocate a larger proportion of their investments 
to the stock market, indicating a potentially higher risk preference and confi-
dence in the long-term performance of the stock market, which is evident in 
multiple figures below. In Figure 1(b), we observe that the higher the risk aver-
sion coefficient, the smaller the proportion of investment in the stock market. 
The risk aversion coefficient measures the level of risk that fund managers are 
willing to accept, and when the coefficient is higher, they are more reluctant to 
take on risks. Managers with high risk aversion tend to gravitate towards low-risk 
investment options to avoid losses and preserve capital safety. They may have a 
preference for stable fixed-income instruments such as bonds or time deposits 
while reducing their investment allocation in high-risk assets such as stocks. 
This is because the stock market typically exhibits higher volatility and uncer-
tainty, thereby increasing the risk and potential for losses for investors. Manag-
ers with a high degree of risk aversion prioritize capital protection against risks 
rather than pursuing higher returns. In summary, Figure 1(b) reveals the in-
vestment behavior of managers with high risk aversion when facing risks. They 
tend to decrease the proportion of investment in the stock market, seeking low-
er-risk investment alternatives. This highlights the emphasis fund managers 
place on risk protection in their decision-making process while balancing the 
pursuit of returns and capital safety. 

In the case of 0 1γ< < , 0t

S

π
µ
∂

<
∂

, the optimal delay investment strategy de-

creases as the stock return rate Sµ  increases, as shown in Figure 2(a). In Fig-
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ure 2(a), it is observed that the higher the stock returns, the smaller the propor-
tion of investment in the stock market. This reflects that higher stock returns 
may lead risk-averse fund managers to anticipate higher risks associated with 
stocks. Although higher stock returns can yield higher returns, they also imply 
greater potential volatility and risk. Therefore, some risk-averse fund managers 
may reduce the proportion of investment in the stock market and seek more sta-
ble assets to mitigate risks. Additionally, higher stock returns may also indicate 
that the stock market is perceived to be overbought, where market prices have 
already exceeded reasonable levels. In such cases, managers may exercise more 
caution and reduce their investment proportion in the stock market. In conclu-
sion, Figure 2(a) reveals the investment behavior of risk-averse fund managers 
when faced with higher stock returns. They tend to decrease the proportion of 
investment in the stock market, driven by concerns over higher risks or recogni-
tion of an overbought state in the stock market. This emphasizes the complexity 
of decision-making for risk-averse managers when balancing risks and returns.  

Conversely, when 1γ >  and 0t

S

π
µ
∂

>
∂

, the optimal delay investment strategy  

increases as the stock return rate Sµ  increases. This observation may explain 
the risk-seeking behavior observed during bull markets, consistent with the 
principles of behavioral finance. In Figure 2(b), it is observed that the larger 
the wealth, the smaller the proportion of investment in the stock market. This 
has also indirectly led to a reduction in the value of the fund (see Figure 4(b)). 
This reveals the investment behavior of fund managers on the stock market as 
wealth increases. With the growth of wealth, they tend to reduce the proportion 
of investment in the stock market and instead pursue asset diversification and 
risk diversification. This highlights the complexity faced by fund managers in 
considering capital protection and risk management in their decision-making 
processes. 
 

 
Figure 2. The effect of parameters Sµ  and w on the optimal strategy. 
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In Figure 3(a), it is observed that as the average parameter of historical wealth 
information increases, the proportion of investment in the stock market initially 
increases and then decreases. This indicates that in the initial stage, as the aver-
age parameter of historical wealth information increases, fund managers tend to 
increase the proportion of investment in the stock market. This is because they 
believe that increasing the average parameter can enhance their understanding 
of the stock market and improve their ability to achieve higher returns. However, 
with further increases in the average parameter, they may observe a potential 
neutral or decreasing trend. This suggests that as the parameter increases, fund 
managers become less confident in the proportion of investment in the stock 
market and place more emphasis on capital protection and risk management, 
resulting in a reduction in the proportion of investment in the stock market. In 
conclusion, Figure 3(a) reveals the impact of the average parameter of historical 
wealth information on the investment behavior of fund managers in the stock 
market. It indicates that fund managers tend to increase the proportion of in-
vestment in the stock market in the initial stage as the parameter increases, but 
this proportion gradually decreases with further increases in the parameter. This 
emphasizes the importance of information consideration and capital protection, 
as well as the complexity of decision-making in balancing risks and returns for 
fund managers. In Figure 3(b), it is observed that the more historical wealth in-
formation is considered, the larger the proportion of investment in the stock 
market, which eventually stabilizes at a certain level. This indicates that as the 
consideration of historical wealth information increases, fund managers gain a 
deeper understanding of the risks and returns associated with stock market in-
vestments. Through analysis and evaluation of historical information, their 
comprehension of the stock market gradually deepens. Consequently, they may 
be more willing to allocate a larger proportion of funds to the stock market to  
 

 
Figure 3. The effect of parameters δ and h on the optimal delay investment strategy. 
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pursue higher returns. After evaluating the risks and returns, they develop a 
clear understanding of the suitable investment proportion and maintain portfo-
lio stability at that level. In conclusion, Figure 3(b) reveals the impact of histor-
ical wealth information on the investment behavior of fund managers in the 
stock market. It suggests that with the increase in consideration of historical 
wealth information, fund managers tend to increase the proportion of invest-
ment in the stock market, eventually stabilizing at a certain level. It emphasizes 
the importance of historical information in the decision-making process of fund 
managers and highlights the potential for the investment proportion to reach a 
relatively stable level after evaluation. 

4.2. Analysis of Optimal Value Function 

In this subsection, we investigate the influence of the parameters , , ,t w hδ , and 
γ  on the optimal value function. 

In Figure 4(a), it is observed that the fund’s value function exhibits an in-
verted U-shaped pattern as time progresses, and considering more historical 
wealth information leads to a lower value function. This indicates that in the ini-
tial stages of investment, the fund faces higher uncertainty and risk, leading to a 
decrease in its value. However, with the accumulation of experience and im-
provement in investment strategies by the fund manager, the fund’s value in-
creases, resulting in higher returns. On the other hand, considering more histor-
ical information reveals greater risks and challenges, resulting in a lower value 
for the fund. This suggests that the additional historical information exposes 
more risks and consequently lowers the value of the fund. Other figures below 
reflect this trend. Overall, Figure 4(a) reveals the complex economic relation-
ship between the fund’s value function, time, and the consideration of historical 
wealth information. As time progresses, the fund’s value function exhibits dif-
ferent stages of changes, while considering more historical wealth information  
 

 
Figure 4. The effect of parameters t and w on the optimal value function. 
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negatively affects the fund’s value. This highlights the interplay between the 
fund’s value function, time, and historical wealth information and underscores 
the challenges faced by fund managers in their decision-making processes. 

In Figure 5(a), we observe that the valuation of funds decreases as the average 
parameter considering wealth history information increases. The increase in the 
average parameter signifies a greater focus on historical information, which may 
limit the flexibility and adaptability of funds. In rapidly changing financial mar-
kets, historical data is inadequate in fully predicting future changes and risks. 
Excessive reliance on historical information can result in funds missing out on 
new opportunities or being unable to adapt to new market conditions, thus im-
pacting their value. Additionally, the increase in the average parameter consi-
dering wealth history information may also heighten the sensitivity of funds to 
market risks. As the parameter increases, funds may become more susceptible to 
market volatility and adverse events, potentially negatively affecting their value. 
Overall, Figure 5(a) reveals the relationship between the value of funds and the 
consideration of wealth history information. When the average parameter con-
siders wealth history information increases, the value of funds may decrease. 
This underscores the importance of flexibility in incorporating new information 
and opportunities and emphasizes the need for fund managers to weigh historical 
information against the uncertainty of future markets in their decision-making. 
From Figure 5(b), it can be observed that while historical data is crucial for un-
derstanding asset price fluctuations and market trends, the value of funds is not 
sensitive to the consideration of the time span for wealth historical information. 
This time lag parameter can only reflect one aspect of the fund value, and fund 
managers need to integrate other factors to comprehensively assess and make 
decisions in order to enhance the value of the fund. 

From Figure 6(a), it can be observed that for fund managers who are 
risk-averse ( 0 1γ< < ), the higher the risk aversion coefficient, the greater the  
 

 
Figure 5. The effect of parameters δ and h on the optimal value function. 
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Figure 6. The effect of parameters 0 1γ< <  and 1γ >  on the optimal value function. 

 
value of the fund, and the more sensitive it is to risk aversion coefficients close to 
0 or 1. This implies that fund managers who exhibit a more cautious attitude 
towards risk and are more inclined to avoid it tend to have higher-value funds. 
When the risk aversion coefficient approaches 0, fund managers strongly dislike 
risk and adopt a more conservative and asset-protective investment strategy to 
ensure the safety and stability of capital. This can have a positive impact on the 
value of the fund. Conversely, when the risk aversion coefficient approaches 1, 
fund managers are closer to risk neutrality, and they may choose more aggres-
sive investment strategies in pursuit of higher returns. The higher sensitivity of 
fund managers to the risk aversion coefficient indicates their greater focus on 
risk management and return control, aiming to maximize the value of the fund. 
Therefore, in risk management and investment decision-making, the risk aver-
sion coefficient is one of the primary factors that decision-makers need to con-
sider. From Figure 6(b), it can be observed that for fund managers with risk 
preferences ( 1γ > ), the value of the fund exhibits a U-shaped pattern with in-
creasing risk aversion coefficient. This can be explained by the fact that fund 
managers, with higher risk aversion coefficients, tend to adopt more aggressive 
investment strategies to pursue higher returns. However, as the risk aversion 
coefficient continues to increase, fund managers’ risk tolerance gradually reaches 
its limit, and they become unwilling to take on excessive risk. As a result, the 
value of the fund decreases to a minimum at a certain point and then begins to 
rise. This U-shaped relationship reveals the impact of adjusting risk aversion le-
vels on the value of funds for risk-seeking fund managers. An appropriate level 
of risk aversion coefficient allows fund managers to seek higher returns while 
avoiding excessive risk, thereby maintaining a favorable value for the fund. 
However, excessively high or low risk aversion coefficients can lead to a decrease 
in the value of the fund. Therefore, fund managers need to carefully evaluate the 
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impact of risk aversion coefficients in their investment decisions in order to 
maximize the value of the fund at the optimal risk level. 

5. Conclusions 

Suppose that in the process of fund management, if the past performance is poor, 
the fund manager may need to seek further financing to adjust the loss so that 
the final performance target can still be reached. Instead, if past performance has 
been good, fund managers can pay some of the proceeds to shareholders as bo-
nuses for management or in the form of dividends. The presence of inflows and 
outflows related to historical information of the wealth gives rise to an optimiza-
tion problem with delay. Inspired by [9] [11] and [12], we study the time-delay 
optimal portfolio problem under the framework of uncertainty theory. This 
study assumes a financial market consisting of risk-free assets and risky assets, 
with the price process of risky assets following a general uncertain process model. 
As the optimality equation in the uncertainty theory framework which is not 
similar to the HJB equation in the probability theory framework, does not in-
corporate second-order information, which may pose a challenge to the optimi-
zation problem aimed at terminal wealth, we assume that the objective function 
is a nonlinear function of decision variable. We hypothesize that a fund manag-
er’s primary concern lies in the immediate utility of wealth invested in the stock 
market during their tenure, potentially impacting the perception of their team 
members or leadership towards them. Furthermore, as the interest accrued from 
bank deposits does not contribute to their performance, we will temporarily ex-
clude the interest gained from bank deposits from our analysis. Therefore, we let  

( )( ) ( )( )1, e t
t tU W t W t

γρπ π
γ

−=  in problem (18) with the boundary condition  

( ) ( ) ( )e TV T W T Y T
γρ δ−  = +  . Subsequently, we derive the optimal equation 

with delay and provide the optimal investment strategy and value function. Fi-
nally, we conduct sensitivity analysis and numerical demonstrations. 

The results of this study have some practical significance and guiding signi-
ficance. First, in terms of the practical significance of the research findings, pre-
vious studies on delayed information within the framework of probability theory 
may produce unreliable results if there is limited historical data or if the data’s 
distribution function is not sufficiently close to its frequency. However, con-
ducting the research using the uncertainty theory can address these issues. Thus, 
this study contributes to and complements the existing research on delayed in-
formation within the probability theory framework. Second, in relation to the 
guidance implications in practical applications, 1) The findings of this study 
provide valuable guidance for decision-making by investors and fund managers. 
2) The results of this study have significant implications for areas such as risk 
management, asset allocation, and investment decisions involving delayed in-
formation. Finally, concerning future improvements and expansion, we believe 
that within the uncertainty theory framework, the integration of delayed infor-
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mation with DC pension plans, insurance and reinsurance issues, and asset lia-
bility management can be explored, among other potential areas of study. 
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Appendix A: The Proof of Lemma 1 

Let u t s= + , then,  

 

( ) ( )
( ) ( )

( ) ( )

0

0 0

e d

e d

e e d e d

s
h

t u t

t h

t t ht u u

F t H t s s

H u u

H u u H u u

δ

δ

δ δ δ

−

−

−

−−

= +

=

 = −  

∫

∫

∫ ∫

           (27) 

By the derivation method of the integral upper limit function, it can be obtained  
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d ed
e d e d

d d
de e d e d
d

e e d e d

e e e

e .

t
t t hu u

t t ht u u
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F t
H u u H u u

t t

H u u H u u
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H u u H u u

H t H t h

H t F t H t h

δ
δ δ

δ δ δ

δ δ δ

δδ δ

δ

δ

δ

−
−

−−

−−

−−

−

 = −  

 + −  

 = − −  
 + − − 

= − − −

∫ ∫

∫ ∫

∫ ∫          (28) 

Appendix B: The Proof of Lemma 2 

Firstly, we solve the ODE  

 ( ) ( ) 0.f t kf t′ − =                        (29) 

It is easy to get  

 ( ) e ,ktf t P=                          (30) 

where P is any real number. 
Secondly, transform P into a function of t, and assume that  

 ( ) ( )e .ktf t P t=                        (31) 

Taking the derivative, we have  

 ( ) ( ) ( )e e .kt ktf t P t kP t′ ′= +                    (32) 

Substituting Equations (31) and (32) into Equation (21) yields that  
( ) ( )e ktP t g t−′ = . Further, it is easy to see that  

 ( ) ( ) ( )e d .
T ks
t

P t P T g s s−= − ∫                  (33) 

Plugging Equation (33) into Equation (31), we have  

 ( ) ( ) ( )e d e .
T ks kt
t

f t P T g s s− = −  ∫                (34) 

Taking t T=  yields that ( ) ( )e kTP T f T −= . 
Therefore, we obtain  

 
( ) ( ) ( )

( ) ( ) ( ) ( )

e e d e

e e d .

TkT ks kt
t

Tk T t k s t

t

f t f T g s s

f T g s s

− −

− − − −

 = −  

= −

∫

∫
            (35) 
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Appendix C: The Proof of Theorem 6 

By the first-order conditions of (20), we obtain the optimal solution for problem 
(18)  

 ( )
1

1
0

1 e .t
t w SJ r

w
ρ γπ µ − = −                       (36) 

Substituting Equation (36) into Equation (20), we get 

( ) ( ) ( )

( ) ( )

1
1 1

0 0 0

0 1 2

10 e e e
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t t t
t w S w S w S

h
w y

J J r J r J r

J G w G y G z J w y z

γ
ρ ρ ργ γ

δ

µ µ µ
γ

δ

− − −

−

   = − − + − −   

+ + + + − −
   (37) 

We conjecture that ( ) ( )( ) ( ), , e tJ t w y A t w y B tγ ρδ − = + +  , then  
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1
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δ ρ δ ρ

γ δ

γδ δ

−

− −

− −

 ′ ′= + + − + − 

= +

= +

          (38) 

Substituting Equation (38) into Equation (36), we have  

 ( ) ( )
1

1
0 .t Sw A r w yγπ γ µ δ− = − +                   (39) 

By substituting Equation (38) into Equation (37), we have  
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( )( ) ( )( )

( ) ( ) ( ) }

0

1
1 1

0 0

1 2
1 2

0 e
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t

S S

h
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γρ
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ρ γ δ δ
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γ δ δ δ

−
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− −

 ′= − − + + 

′ − − − − − +

 + + − + − 

        (40) 

By assumption condition (16), i.e., 2
1 0G δ− =  and 2 e 0hG δδ −− = , the up-

per formula becomes  

 
( )( ) ( )

( )( ) ( )( )

0

1
1 1

0 0

0

.S S

A A G w y

B B A r r w y

γ

γ
γγ γ

ρ γ δ δ

ρ γ µ µ γ δ− −

 ′= − − + + 

′+ − − − − − +
       (41) 

In order to ensure the above formula to be true for any w and y, we assume 
that  

 ( )( )0 0,A A Gρ γ δ′ − − + =                     (42) 

and  

 ( )( ) ( )( )
1

1 1
0 0 .S SB B A r r w y

γ
γγ γρ γ µ µ γ δ− −′ − = − − − +          (43) 

From Equation (42) we can derive that  

 ( ) ( ) ( )0e .G T tA t ρ γ δ − + − =                       (44) 

Substituting Equation (44) into Equation (43), the ODE (43) can be expressed 
as  
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 ( ) ( ) ( ) ,B t B t g tρ′ − =                      (45) 

where  

 ( )
( ) ( )

( )( ) ( )( )0 1
1 1

0 0e .
G T t

S Sg t r r w y
γ ρ γ δ γγ γγ µ µ γ δ

 − + − − −= − − − +     (46) 

By Lemma 1, we have  

 ( ) ( ) ( ) ( ) ( )e e d .
TT t s t

t
B t B T g s sρ ρ− − − −= − ∫                 (47) 

Notice that Equation (16) 2
1G δ= , 2 e hG δδ −= , and 1

1 01 e ds
h

GG
s

h
δ

−

=

∫
, we 

have  
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                    (48) 

Plugging 0G  into Equations (44) and (46) yield  
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where  

 ( )
2

0 1 e 1 .hr
h

δδκ ρ γ δ −  
= − − − −  

  
                (50) 

Combining Equation (39) with Equation (41) yields  

 ( ) ( )
1

1
0e 1 ,T t

t S
yr
w

κ γπ γ µ δ− −   = − +    
                (51) 

Plugging Equations (49) and (41) in to ( ) ( )( ) ( ), , e tJ t w y A t w y B tγ ρδ − = + +  , 
we get the optimal value function  

 ( ) ( )( ) ( ) ( ) ( ), , e e e e d .
TT t T T s
t

J t w y w y B T g s sγκ ρ ρ ρ ρδ+ − − − −= + + − ∫    (52) 

By the boundary condition  

( ) ( ) ( ) ( ) ( ) ( )e 1 e eT h TV T W T Y T W T Y T
h

γ
γρ δ ρδ δ− − −   = + − = +   

 of problem 

(18), we have ( ) 0B T = . Therefore, the value function can be rewritten as  

 ( ) ( )( ) ( ) ( ), , e e e d .
TT t T s
t

J t w y w y g s sγκ ρ ρ ρδ+ − − −= + − ∫         (53) 

The proof is completed.                                            
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