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Abstract 
In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann 
map corresponding to a radial potential for a hyperbolic differential equation 
in 3-dimensional. We show that the Dirichlet-Neumann operators corres-
ponding to a potential radial have the same properties for hyperbolic differen-
tial equations as for elliptic differential equations. We numerically implement 
the coefficients of the explicit formulas. Moreover, a Lipschitz type stability is 
established near the edge of the domain by an estimation constant. That is ne-
cessary for the reconstruction of the potential from Dirichlet-to-Neumann 
map in the inverse problem for a hyperbolic differential equation. 
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1. Introduction 

Let us consider a bounded domain 3Ω⊂   with smooth boundary and the pa-
rameters w and T in *

+ . The boundary value problem for a hyperbolic diffe-
rential equation in ( )0,TΩ×  is given as follows. 
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Assuming that ( )1 2f H∈ ∂Ω , ( )1
0v H∈ Ω  and ( )2

1v L∈ Ω  are given, veri-
fied the compatibility condition ( ) ( )0v x f x= , ( ) ( )1v x iwf x=  for all x∈∂Ω . 
The potential p is a given real-valued function satisfying ( )Lp ∞∈ Ω .  

• Let us suppose that the solution v has a fixed temporal frequency, then 
eiwtv u=  and the problem (1) is equivalent to the Schrödinger equation with w2 

energy.  

( ) 2 in
on

u p x u w u
u f
−∆ + = Ω


= ∂Ω
                (2) 

with ( )Lp ∞∈ Ω  is the potential and w∈  fixed, the pulsations.  
• The problem (2) is equivalent to the Schrödinger equation  

( )( )2 0 in

on

p w u

u f

 −∆ + − = Ω


= ∂Ω
               (3) 

with the function p satisfying ( )Lp ∞∈ Ω .  
• This problem direct is analogous to the problem studied by Ndiaye in [1] in 

the case where 0w = .  
• Our aim is to show that the Dirichlet-Neumann operators corresponding to 

a potential radial have the same properties for hyperbolic differential equations 
as for elliptic differential equations.  

• Our contribution in this paper is to determine an explicit formula for the 
Dirichlet-to-Neumann map for a piecewise constant radial potential for the 
Schrödinger equation with w2 energy in dimension three in a ball, using the me-
thod developed in [1] for the stationary case. A Lipschitz type stability is estab-
lished near the edge of the domain by giving an estimation constant. In this pa-
per, the results obtained in [1] are generalised.  

• Our motivation of this paper is to know the Dirichlet-to-Neumann map 

( )p wΛ , for a piecewise constant radial potential p in dimension three in a ball,  

for a fixed maximal time, from the knowledge of the Cauchy data , uf
ν
∂ 

 ∂ 
 to  

be able to solve the inverse problem of the hyperbolic differential Equation (1) in 
dimension three. The good knowledge of the characteristic properties of the Di-
richlet-to-Neumann map ( )p wΛ  allows to solve the inverse problem which 
consists to determine the potential p from the knowledge of ( )( ), pf wΛ  for a 
hyperbolic differential equation. And the study of this inverse problem also mo-
tivated us to study the Lipschitz type stability which will allow us to obtain a re-
sult at least at the edge of Ω  with an estimate constant to be determined for a 
hyperbolic differential equation.  

The paper is organized as follows. In Section 2, we define the Dirichlet-to- 
Neumann map for the Schrödinger equation with w2 energy, and then present 
the radial solutions of this equation in Section 3. In Section 4, we give an explicit 
formula for DDirichlet-to-Neumann map when the potential is radial, followed 
by some simulations. In Section 4, we study the stability of the map that asso-
ciates a Dirichlet-to-Neumann map to any potential. In Section 5, we present 
conclusions and perspectives. 
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2. Definition of the Dirichlet-to-Neumann Map for  
Schrödinger Equation with w2 Energy 

First, in this section, we define the Dirichlet-to-Neumann map pΛ , for the 
hyperbolic differential equation, formally as  

( ) ( )

( )

1 2 1 2:

e e ,

p

iwt iwt
p

H H

vf f
ν

−

∂Ω

Λ ∂Ω → ∂Ω

∂
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∂


                  (4) 

with eiwtv u=  and where ν  is the outer unit normal vector to ∂Ω . 
The map ( )e eiwt iwt

pf fΛ
 depends linearly on f for any fixed time t. Then, 

we have  

( ) ( )e e e .iwt iwt iwt
p p

uf f
ν ∂Ω

∂
Λ = Λ =

∂
 

This allows us to define the Dirichlet-to-Neumann map ( )p wΛ , for the 
Schrödinger Equation (2) with w2 energy, formally as  

( ) ( ) ( )

( )

1 2 1 2:

,

p

p

w H H

uf w f
ν ∂Ω

−Λ ∂Ω → ∂Ω

∂
Λ =

∂


                  (5) 

where ν  is the outer unit normal vector to ∂Ω . 
The map ( )pf w fΛ

 depends linearly on f. ( )p wΛ  encodes the mea-

surements of 
u
ν
∂
∂

 for all possible functions f on the boundary of Ω . 

Now, we have to determine an explicit formula for the Dirichlet-to-Neumann 
map ( )p wΛ  for a piecewise constant radial potential for the Schrödinger Equa-
tion (2) with w2 energy in dimension three in a ball, using the method developed 
in [1]. We need to assume that 0 is not a Dirichlet eigenvalue of ( )2p w−∆ + −  
in Ω .  

Now, we look more closely at the direct problem with the potential p. Let the 
unit ball { }3 : 1B x x= ∈ ≤  in 3 . 

We focus on ( )Lp B∞∈  with ( ) ( )p x p x=  is being radial, ( )
1
2f H B∈ ∂  

given and assuming that 0 is not eigenvalue of  

( )2 0 in 1,

on 1.

p w u x

u f x

 −∆ + − = <


= =
                (6) 

These choices guarantee the existence of a solution of (6) by the Fourier me-
thod and 0 is not an eigenvalue ensuring the uniqueness of the solution.  

Then the map ( )pf w fΛ

 is well defined. To obtain an explicit formula 
for the Dirichlet-to-Neumann map ( )p wΛ , defined in (5), we will consider that 
it verifies the following results (see [2]), which we’ll prove numerically:  

1) If ( ) 2p x w≠ , then ( )p wΛ  is diagonalisable in the sense that the spec-
trum is discrete, { }2

0,k p w kλ  − ∈   . 
In this case, if k  is the subspace of spherical harmonics of degree k, then  

https://doi.org/10.4236/jamp.2023.118145


F. Ndiaye et al. 
 

 

DOI: 10.4236/jamp.2023.118145 2234 Journal of Applied Mathematics and Physics 
 

( ) 2 .
kk

p kw p w Iλ  Λ = −  
 

2) If ( ) 2p x w=  and k kφ ∈  then ( )2 , 0,1,2,k kw
k kφ φΛ = =    

3) 2 0k p w kλ  − − →   if k →∞ .  
Then in the following, we give a recurrence relation for the explicit calculation 

of the spectrum in the case where ( )p x  is a step potential, to give an approxi-
mation of the spectrum of a general potential. For all this, we need to recall some 
properties that will be useful. 

3. Radial Solutions for the Schrödinger Equation with w2  
Energy 

In this section, we present some results obtained from writing the problem (6) in 
polar coordinates 0r > , 2θ ∈ . We want to obtain “complex geometrical op-
tics” solutions or solutions of Faddeev type, see [3].  

Lemma 3.1: If u is the solution of (6) and ( ) ( ),X r u rθ θ=  in terms of 
spherical harmonics, then the function X satisfies the problem  

( )
( ) ( ) ( )

2 2 2

0, 0

2 0,

lim , , 1, ,
S

r r

r X rX X p r w r X

X r X fθ θ θ
> →

  ′′ ′+ + ∆ − − = 


< ∞ =

            (7) 

where ( )1k k
SY Y−∆ = +
 

  , kY ∈
 

 .  
For the proof of Lemma 3.1, see [1].  

Lemma 3.2: If ( ) ( )
0

k
k

k
f f Yθ θ

∞

= =−

=∑ ∑


 

 

 in ( )21 2H  , then Equation (6) ad-

mits a unique solution of the form  

( ) ( ) ( )
0

, ,k
k

k
X r X r Yθ θ

∞

= =−

=∑ ∑


 

 

                 (8) 

where kX


 satisfies the problem  

( ) ( ) ( )
( ) ( )

2 2 2

0, 0

2 1 0, 0,1 ,

lim , 1 .
k k k k

k k kr r

r X rX X p r w r X r

X r X f
> →

  ′′ ′+ − + − − = ∈ 


< ∞ =

   

  

 

   (9) 

For the proof of Lemma 3.2, see [1].  
Lemma 3.3: If kX



 is the solution of (9), then we have  

( ) ( ) ( )
0

1 .k
p k

k
w f X Y θ

∞

= =−

′Λ =∑ ∑


 

 

              (10) 

For the proof of Lemma 3.3, see [1]. 
We note that the differential Equation in (9) does not depend on k, so we will 

eliminate the dependence on k. Then  
Lemma 3.4: If in (9) we take f Y=



, that is, the spherical harmonic of degree 
 , it follows that  

( ) ( )1 .p w Y X Y′Λ =
  

                  (11) 

Then ( )1lX ′  is an eigenvalue of qΛ  with multiplicity 2 1+  and its eigen-
functions are { }

, 1, , 1,

k

k
Y

=− − + −

    

. 
For the proof of Lemma 3.4, see [1].  
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In the next section, we will use these results to give an explicit formula for the 
Dirichlet-to-Neumann map when the potential is a radial function.  

4. Explicit Formula for the Dirichlet to Neumann Map 
4.1. The Case Where p Is a Piecewise Constant Radial Potential 

Let us introduce the theorem where the expression of the Dirichlet-to-Neumann 
map is presented when p is a piecewise constant radial potential, based on the 
results of the previous section. 

• In the following, for all ∈  , ( )mp r


 denotes the Bessel function of the 

first type ( )2
mj w rγ −



 or the Bessel function of the second type  

( )2
mi w rγ −



, and ( )mq r


 denotes the modified Bessel function of the first 

type ( )2
my w rγ −



 or the modified Bessel function of the second type  

( ) ( )1 21 mk w rγ+− −



, see Equations (29) and (30). 

• Theorem 4.1: Let the unit ball B in 3  and the scaled potential ( )Lp B∞∈  
with  

( ) ( )1,
1

, ,
m m

n

m r r
m

p r r xγ χ
−

=

= =∑                  (12) 

where 1n ≥ , ,m mrγ ∈ , with 1,2, ,m n= 
 and 0 1 10 1n nr r r r−= < < < < = , 

such that the Dirichlet problem for ( )2p w−∆ + −  is well-posed. 
Then there is an explicit formula for the Dirichlet-to-Neumann map defined 

as follows:  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
1

1 1

1 1 1
1 1 ,

1 1

n n n
n nk n n k

p w n n n

k p k q q
w Y C k p q Y

q q
−

− −

   −
Λ = − +      

  

   

 



 (13) 

1,2,= 
 with 1 1, , , ,n n n n

nk p p q q− −   

 and wC  depending on ,w n  and  . 
Remark 4.1 We assume that 2

m wγ ≠  to simplify the calculations. If we want 
to consider this case in the simulations, we approximate it by 2 0.01wγ = − .  

Proof of Theorem 4.1. p is a piecewise constant radial function, ( ) ( )p r p x= , 
defined by  

( ) ( )1,
1

, ,
m m

n

m r r
m

p r r xγ χ
−

=

= =∑  

with 0 1 10 1n nr r r r−= < < < < = , mγ ∈ , and there is no case where 1m mγ γ +=  
for all { }1,2, , 1m n∈ −

. 
We solve the Schrödinger Equation (2) with w2 energy, with kf Y=



 for a 
fixed  . Thus in Equation (9) we have 1kf =



. 
We look for a solution y of (9), of type  

( ) ( )
1

,
n

m
m

y r y r
=

= ∑                       (14) 
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where 1y  is the solution of  

( ) ( ) ( )
( )

2 2 2
1 1

0, 0

2 1 0, 0, ,

lim .
r r

r y ry y w r y r r

y r

γ

> →

 ′′ ′+ − + − − = ∈


< ∞

 

         (15) 

For 2,3, , 1m n= −
, we have a my  which satisfies  

( ) ( ) ( )2 2 2
12 1 0, , ,m m mr y ry y w r y r r rγ −′′ ′+ − + − − = ∈ 

       (16) 

and ny  in this equation  

( ) ( ) ( )
( )

2 2 2
12 1 0, ,1 ,

1 1,
n nr y ry y w r y r r

y

γ −
 ′′ ′+ − + − − = ∈


=

 

       (17) 

and the following compatibility conditions are satisfied  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1 2 1

1 1 2 1

2 2 3 2

2 2 3 2

2 2 1 2

2 2 1 2

1 1 1

1 1 1

n n n n

n n n n

n n n n

n n n n

y r y r
y r y r
y r y r
y r y r

y r y r
y r y r
y r y r
y r y r

− − − −

− − − −

− − −

− − −

 =
 ′ ′=
 =

′ ′=



 =
′ ′=

 =
 ′ ′=

                     (18) 

• The general solution of the equation  

( ) ( ) ( )2 2 2
12 1 0, , , 1,2, , ,m m mr y ry y w r y r r r m nγ −′′ ′+ − + − − = ∈ =  

 

• is  

( ) ( ) ( )2 2
m m m m my r A j w r B y w rγ γ= − + − 

 

, if 2
m wγ < , with ,m mA B ∈ 



, 

where j


 and y


 are the Bessel functions of the first and second type, respec-
tively, 

( ) ( )1
m m my r A r B r− += + 

   , if 2
m wγ = , with ,m mA B ∈ 



, 

• and  

( ) ( ) ( ) ( )12 21m m m m my r A i w r B k w rγ γ+= − + − −

 

 

, if 2
m wγ > , 

with ,m mA B ∈   , where i


 and k


 are the modified Bessel functions of the 
first and second type, respectively,  

For 1,2, ,m n= 
, let us introduce the functions , ,m m mz p s

  

, and mq


 such 
that  

• ( )mz r


 and ( )mp r


 will be denoted by ( )2
mj w rγ −



 or ( )2
mi w rγ −



 
depending on whether 2

m wγ <  or 2
m wγ > .  

• ( )ms r


 and ( )mq r


 will be denoted by ( )2
my w rγ −



 or  
( ) ( )1 21 mk w rγ+− −



 depending on whether 2
m wγ <  or 2

m wγ > .  
• Let pose 2

m mk wγ= − , 1,2, ,m n= 
.  
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As the functions ( )2
1y w rγ −



 or ( ) ( )1 2
11 k w rγ+− −



 go to −∞  when 
0r → , we have  

( ) ( ) ( )( )1 1
1 1 1, or .y r A z r A p r=  

 

 

For 1,2, , 1m n= −
, we have  

( ) ( ) ( ) ( ) ( )( )or ,m m m m
m m m m my r A z r B s r A p r B q r= + +   

   

 

and  

( ) ( ) ( ) ( ) ( )( )or , with 1.n n n n
n n n n n n ny r A z r B s r A p r B q r A B= + + + =     

   

 

We will need the following derivative formulas. 
If mf



 denotes mj


, my


, mi


, or ( ) 11 mk+− 



 with ( ) ( )m
mf r f k r=

 

, then 

( ) ( ) ( )m
m mf r k f k r′ ′=

 

, where f ′


 satisfies 31  

( ) ( ) ( )1
1 .f z f z f z

z−
+′ = −

  



 

From 18 and 4.1, we have the following system of ( ) ( )2 2 2 2n n− × −  equations  

( )
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

1 2 2
1 1 2 1 2 1

1 1 1 1 2 2 2 1 2 2 2 1

2 2 3 3
2 2 2 2 3 2 3 2

2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 2

1
1

1

2

m m m
m m m m m m m

A z r A p r B q r
S

A k z k r A k p k r B k q k r

A z r B s r A p r B q r
S

A k z k r B k s k r A k p k r B k q k r

A z r B s r A p r B
Sm

+
+ +

 = +


′ ′ ′= +
 + = +


′ ′ ′ ′+ = +

+ = +

  

  

  

  

   

   

   

   

  

  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1
1

1 1 1 1 1 1

2 2 1 1
2 2 2 2 1 2 1 2

2 2 2 2 2 2 2 2 1 1 1 2

m
m

m m m m m m m m m m m m m m m m

n n n n
n n n n n n n n

n n n n n n n n n n n n

q r

A k z k r B k s k r A k p k r B k q k r

A z r B s r A p r B q r

A k z k r B k s k r A k p k r

+

+ + + + + +

− − − −
− − − − − − − −

− − − − − − − − − − − −




′ ′ ′ ′+ = +

+ = +

′ ′ ′+ = +





   

   

   

   

  

  



( )

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 2

1 1
1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1

n n n n

n n n n
n n n n n n n n

n n n n n n n n n n n n n n n n

B k q k r

A z r B s r A p r B q r
S n

A k z k r B k s k r A k p k r B k q k r

− − − −

− −
− − − − − −

− − − − − − − − − −














 

 ′
  + = + −  ′ ′ ′ ′+ = +





   

   

   

   

(19) 

where nA  and nB  are related by  

( ) ( )1 1 1.n n
n nA p B q+ = 

 

                  (20) 

We recall (see 11) that our aim is to calculate ( )1y′  or ( )1ny′ . By condition 
20, we are only interesting in finding the unknown nA  of system 19. 

Our strategy is the same in see [1]. It will be to find the unknowns 2A  and 

2B  in terms of 1A  by solving ( )1S . And for 2,3, , 2m n= −
, solve ( )S m  

to obtain 1mA +
  and 1mB +

  in terms of 1A . Then transform the system ( )1S n −  
into a system of two unknowns 1A  and nA  and two equations. At this point 
we solve ( )1S n − .  

For this purpose, we will need the following formulas of the Wronskians W, 
see [4]. 

( ) ( ){ }

( ) ( ) ( ){ } ( )

2

1 2

, ,

1
, 1 .

2

W j z y z z

W i z k z z

−

+ −

=

−
− =

π

 





 

             (21) 
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The problem with including the 2
m wγ =  case is that the functions r  and 

( )1r− +  do not satisfy our system. Perhaps a linear combination of different types 
of functions would make it easy to take into account the case 2

m wγ =  in the 
general scheme. 

Then, according [1], we have to solve 

( )
( )
( )
( )

1
11 1 12

1
21 1 22

1

,
1

n
n

n n

n n n
n n

q r
M A M A

q

k q k r
M A M A

q

−

−


+ =




′ + =



 




 



               (22) 

where  

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 1
11 2 1 2 1

12 1 1

21 2 1 1 1 2 1 1 1

22 1 1

,

1
,

1

,

1
.

1

n n
n n n n

n
n n

n nn

n n n n n n n n

n

n n n n n nn

M C z r D s r

p
M p r q r

q

M C k z k r D k s k r

p
M k p k r k q k r

q

− −
− − − −

− −

− − − − − − − −

− −

 = +


 
= − −     


′ ′= +

   ′ ′= − −   
 

 



 



 



 



 

 

       (23) 

If the solution of this system is 1

n

A
A

 
 
 





, the 1−  eigenvalue is  

( ) ( ) ( ) ( )
( )1

(1) , with 1,2,
(1) 1

n
n n

n n n n nn n

k q kpw A k p k k q k
q q

λ −

′ 
′ ′= − + = 

 






  

 

   

Or  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
1

1 1 1

1 1 1
1 1 , 1,2,

1 1

n n n
n nn n

n n n n

k p k q q
w A k p q

q q
λ −

− − −

  −
= − + =  

 

  


  

 



 
(24) 

where nA  depends on ,n w  and  , for all pulsations fixed w. 
Taking w nC A=  , we have the result.   
Finally, we have obtained an explicit expression of the Dirichlet-to-Neumann 

map ( )p wΛ , for all pulsations fixed w.  
We will illustrate that ( )1 , 1wλ − ≥





 in (24) verify the proprieties 1 and 3 in 
Section 2 with various examples, for all pulsations fixed w. We will do some nu-
merical simulations for this.  

4.2. The Case Where the Potential p Is a Continuous Radial  
Function 

• In this section, we assume that the potential p is a continuous function with 
( ) 2p r w>  or ( ) 2p r w<  in the interval [ ]0,1 . 
Let introduce the theorems which gives us the expression of the Dirich-

let-to-Neumann map when the potential p is a continuous function, based on 
the results of a piecewise constant radial potential. 

For all ∈  , ( )mp r


 denotes the Bessel function of the first type 
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( )2
mj w rγ −



 or the Bessel function of the second type ( )2
mi w rγ −



, and 

( )mq r


 denotes the modified Bessel function of the first type ( )2
my w rγ −



 

or the modified Bessel function of the second type ( ) ( )1 21 mk w rγ+− −



.  

• Theorem 4.2: Let the unit ball B in 3  and a continuous radial potential 
function ( )Lp B∞∈  with ( ) ( )p r p x= , where ( ) 2p r w>  or ( ) 2p r w< , such 
that the Dirichlet problem for ( )2p w−∆ + −  is well posed. 

Let n be a large integer number such that [ ] [ ]1
1

0,1 ,
n

m mr r−=


 with 1, ,m n= 
 

and where 0 0r = , 1nr =  and 1
1

m mr r
n−− = .  

Let a denote ( ) 2
m mk p r w= − . 

There is, for n enough large integer numbers and 1,2,= 
, an explicit for-

mula for the Dirichlet-to-Neumann map is defined as follows:  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

* * *
1 1 1* *

1 1 1* *

1 1 1
1 1 .

1 1
k k

p w

k p k q q
w Y C k p q Y

q q
−

− −

   −
Λ = − +      

  

   

 



  (25) 

With * * * *
1 1 1, , , ,k p p q q− −   

 and wC  depending on w 

wC  depending  , ( ) ( )( )* 21 1p p p w= −
 

, ( ) ( )( )* 2
1 11 1p p p w− −= −

 

, 

( ) ( )( )* 21 1q q p w= −
 

 and ( ) ( )( )* 2
1 11 1q q p w− −= −

 

. 

Proof of theorem 4.2. Let introduce , 1,2ip i =  be piecewise constant radial 
functions, ( ) ( )ip r p x= , defined by  

( ) ( ) ( ) ( ) ( ) ( )1 1

2 2
1 1 2, ,

1 1
, , .

m m m m

n n

m mr r r r
m m

p r p r w p r p r w r xχ χ
− −−

= =

   = − = − =   ∑ ∑  

Then from theorem 4.1,  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )1

1 1
1 1 11 1

1 1 1

1 1 1
1 1 ,

1 1

n n n
n nk n n k

p w n n n

k p k q q
w Y C k p q Y

q q
− − −

− − −

   −
Λ = − +      

  

   

 



 

and  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )2

2 2
12 2

1 1

1 1 1
1 1 ,

1 1

n n n
n nk n n k

p w n n n

k p k q q
w Y C k p q Y

q q
−

− −

   −
Λ = − +      

  

   

 



 

for all 1,2,= 
 with 1

wC  and 2
wC  depending on ,w n  and  , for all pulsa-

tions fixed w. 
If p is increasing, then ( ) ( ) ( )1 2p r p r p r≤ ≤ ; if not, ( ) ( ) ( )1 2p r p r p r≤ ≤ .  
We have ( ) ( ) ( )2 1lim lim

n n
p r p r p r

→∞ →∞
= = , and then there is ( )wC   such that  

( ) ( ) ( )1 2lim , lim ,w w wn n
C n C n C

→∞ →∞
= =    .  

We know that ( ) ( )1n
np p k=

 

, ( ) ( )1 11n
np p k− −=

 

, ( ) ( )1n
nq q k=

 

,  
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( ) ( )1 11n
nq q k− −=

 

, and ( ) 21nk p w= − , then ( ) ( )( )* 21 1p p p w= −
 

, 
 

( ) ( )( )* 2
1 11 1p p p w− −= −

 

, ( ) ( )( )* 21 1q q p w= −
 

 and  

( ) ( )( )* 2
1 11 1q q p w− −= −

 

. 

Taking n going to ∞  in ( )
1p wΛ  and ( )

2p wΛ  and using theorem 4.1, we 
have result 25.    

4.3. Numerical Simulations 

In this section, we denote 1k = − , and then 0,1,2,k = 
 when 1,2,= 

, 
and then we write kλ  in the simulations. We will numerically compute the po-
tential p, kλ , kk λ− , and ( )log kk λ− , 0,1,2,k = 

. We will check numeri-
cally if the eigenvalues found in theorems (4.1) and (4.2) verify the properties 1 
to 3 introduced in section 2. We will use the Matlab trial version [2021b] for it 
and vary the pulsations w. 

We consider the case where the radial potential is defined by a piecewise con-
stant function  

( ) ( )1,
1

, ,
m m

n

m r r
m

p r r xγ χ
−

=

= =∑  

where 1n ≥ , ,m mrγ ∈ , with 1,2, ,m n= 
, 0 1 10 1n nr r r r−= < < ⋅ ⋅ ⋅ < < = .  

And the case where the radial potential is defined by a continuous function  
( ) , ,p r r x=  

with [ ] [ ]1
1

0,1 , , 1, ,
n

m mr r m n−= = 



 where n is a large integer number, 

0 0r = , 1nr =  and 1
1

m mr r
n−− = , such that the Dirichlet problem for  

2p w−∆ + −  is well-posed. 

We will choose potentials in different cases, such that when we take 0w = , 
we find the results found in [1]. 

For first, we consider two examples of piecewise constant radial potential 
functions where the length of the interval [ ]1,m mr r−  is arbitrary.  

• We denote Case 1 the case where the potential value at each interval is a 
random value between 22 w− +  and 22 w+  with w arbitrary choisen.  

Secondly, we consider an example of radial continuous potential function in 

[ ] [ ]1
1

0,1 , , 1, ,
n

m mr r m n−= = 



 where the length of the interval [ ]1,m mr r−  is con-

stant and equal to 
1
n

.  

• We denote this example Case 2 taking ( ) 2 2p r r w= + . We approximate it 
by two piecewise constant radial potential functions ( )1p r  and ( )2p r  such 
that ( ) ( ) ( )1 2p r p r p r≤ ≤ .  

Using the results of the above section for these cases, we obtain the following 
results.  
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4.3.1. Case 1 

First, we take 5T =  in this case then, 
2w
T

=
π

. In Figure 1 there is an example 

of the potential p and in Figure 2 we see the corresponding eigenvalues. As ex-
cepted, we confirm in Figure 3 and Figure 4.  

Secondly, we take 10T =  in this case then, 
2w
T

=
π

. We have the results 

from Figures 5-8.  

4.3.2. Case 2 

First, we take 5T =  in this case then, 
2w
T

=
π

. In Figure 9 we have the poten-

tial curve ( ) 2 2p r r w= +  in red and this with its approximation by a piecewise 
constant radial potential in black. In Figure 10 we see the corresponding eigen-
values. As excepted, we confirm in Figure 11 and Figure 12.  

 

 
Figure 1. Radial potential in Case 1 for T = 5. 

 

 

Figure 2. Eigenvalues associated with potential in Case 1 for T = 5. 
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Figure 3. (Eigenvalues-order)-limit in Case 1 for T = 5. 
 

 

Figure 4. Confirmation eigenvalues limit in Case 1 for T = 5. 
 

 

Figure 5. Radial potential in Case 1 for T = 10. 
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Figure 6. Eigenvalues associated with potential in Case 1 for T = 10. 
 

 

Figure 7. (Eigenvalues-order)-limit in Case 1 for T = 10. 
 

 

Figure 8. Confirmation eigenvalues limit in Case 1 for T = 10. 
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Figure 9. Continuous radial potential in Case 2 for T = 5. 
 

 

Figure 10. Eigenvalues associated with Continuous radial potential in Case 2 for T = 5. 
 

 

Figure 11. (Eigenvalues-order)-limit in Case 2 for T = 5. 
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Figure 12. Confirmation eigenvalues limit in Case 2 for T = 5. 
 

Secondly, we take 10T =  in this case then, 
2w
T

=
π

. We make the same si-

mulations and have the results from Figures 13-16.  
Remark 4.2 All these figures, in these different cases and for all 0T > , show 

that the eigenvalues defining the Dirichlet-to-Neumann map in theorem (4.2) 
verify the 1 to 3 properties considered in Section 2. Theorems are essential tools 
to determine the explicit expression of the DN map when f, defined in 2 , is  

usually written as Fourier series ( ) ( )
0

ˆ k
k

k
f f Yθ θ

∞

= =−

=∑ ∑


 

 

.  

These results are very essential for studying the inverse problem for our 
hyperbolic differential equation transformed into a Schrödinger equation with 
energy w2. We are interesting by the stability of the map that associates a Dirichlet- 
to-Neumann map to any potential. That is the purpose of the following section.  

4.4. Stability 

In this section, we are interested in the map  

( ) ( ) ( )( )
( )

2 21 22 1 2: ,

,

w

p

L H H

p w

∞ −Λ →

Λ

  
            (26) 

where the Dirichlet-to-Neumann map ( )p wΛ  is defined in theorem (4.1), see 
[1]. This is an important role in the inverse potential problem, which consists to 
study its inversion. In the mathematical literature, the Dirichlet to Neumann 
map is invertible on its range. Take into account how the measurements for the 
inverse problem for our Schrödinger equation with energy w2, are made at 2 , 
we know that there may be some noise in the measured Dirichlet-to-Neumann 
map and that the noisy version of the real Dirichlet-to-Neumann map may not 
be a Dirichlet-to-Neumann map corresponding to piecewise constant potentials. 
Therefore, the stability analysis of wΛ , possibly including a regularization strat-
egy useful for the numerical algorithm, would be interesting.  
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Figure 13. Continuous radial potential in Case 2 for T = 10. 
 

 

Figure 14. Eigenvalues associated with Continuous radial potential in Case 2 for T = 10. 
 

 

Figure 15. (Eigenvalues-order)-limit in Case 2 for T = 10. 
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Figure 16. Confirmation eigenvalues limit in Case 2 for T = 10. 
 

Let us consider the following map ( ):w pp wΛ Λ

. We are interested in a 
quantification of the difference of two potentials in the L∞  topology in terms of 
the distance of their associated Dirichlet-to-Neumann maps. This stability is ne-
cessary for all reconstruction algorithms to recover the potential from the Di-
richlet-to-Neumann map, see [3] [5]. Then we would like to estimate 1 2p p−  in 
a certain norm defined by  

( ) ( )
( )

( ) ( )( ) ( )

( )

21 2

1 2 2

1 2

1 2 1 2
1 2 22 1, 0

sup
p p H

p p H H
f H f H

w w f
w w

f

−

−→
∈ ≠

Λ − Λ
Λ −Λ =



 

 

There are stability results when the potential iq , in a Schrödinger equation 
without energy w2, has some smoothness. 

In [6], Joel and al. estimate the difference 1 2q q−  in a lower norm in terms 

of the difference of the Dirichlet-to-Neumann data maps for 
2
d s< ∈ , 3d ≥  

and 
,i sq M
Ω
≤ , with d the space dimension. 

In [7], for any 3d ≥  and 0m > , Mandache proved that there is 0α >  
such that for every 0M >  there is ( ) 0C M > , so that , 1,2mi Cq M i≤ =  
implies  

( ) ( ) ( )( )1 12 2 1 2

1

1 2 log 1 .q qL H H
q q C M

α

−∞

−−

Ω →
− ≤ + Λ −Λ         (27) 

He shows that (27) is optimal, in the sense that it cannot hold with  

( )2 1m d dα > − . 
According [7], for arbitrary potential q, the Lipschitz stability cannot be hold. 
In [3], M. Salo proved for ( )Liq ∞∈ Ω  that a log-stability estimate holds 

when ( )1
1 2q q H −− ∈ Ω , nΩ⊆   is a bounded open set with ∞  boundary, 

and dimension 3d ≥ . 
We work in the case of piecewise constant arbitrary potentials p. Let us intro-
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duce for 1n ≥  and finite, 1,2, ,m n= 
 and 0 1 10 1n nr r r r−= < < < < = , the 

space  

( ) ( ) ( ) [ ]
1,

1
L : , , 0,1 ,

m m

n

m m mr r
m

p B p r r x rγ χ γ
−

∞

=

 = ∈ = = ∈ ∈ 
 

∑   

In the case where 2
m wγ = , 1,2, ,m n= 

, we approximate it by 2 0.01w − . 
Here, we establish Lipschitz stability by giving a constant, which depends on n 

and   on the dimension n of the potential space.  
Our method follows the ideas in [1] [8] [9], where Alessandrini and al. consi-

dered special classes of piecewise constant conductivities, and the method of Be-
reta and al. in [10], for 2n ≥ . 

The Lipschitz stability of an inverse boundary value problem for a Schrödin-
ger type equation is proved by Bereta and al. in [10], for 2n ≥ .  

Here, we study the Lipschitz stability of the map that associates a Dirich-
let-to-Neumann map to any piecewise constant potential p, our approach is 
analogous with the ideas in [1].  

• Theorem 4.3 Let the unit ball B in 3  and the scaled potential , 1,2iq i =  
verifes  

( ) ( )1,
1

, 1,2, ,
m m

n
i

i m r r
m

p r i r xγ χ
−

=

= = =∑  

where 1n ≥ , ,i
m mrγ ∈ , with 1,2, ,m n= 

 and 0 1 10 1n nr r r r−= < < < < = , 
and 2i i

m mk wγ= − , such that the Dirichlet problems for ( )2
ip w−∆ + −  is 

well-posed. Assume that ( ) ( )1 2 2 2 0n nw wγ γ− × − >  and there is a positive con-
stant M such that  

( ) .i L Bp M∞ ≤  

Then there is a constant ( ), , ,C C n w M= 

 for all w, such that:  

( ) ( )( )1 21 2 1 2
1 2 .n n p p H H

C w wγ γ −→
− ≤ Λ −Λ              (28) 

The result gives us the Lipschitz stability near to the edge 2 .  
Proof of theorem 4.3. , 1,2iq i∈ = , then we can write  

( ) ( )1 1
1

1
1 ,

1 m m

n

m r r
m

p r γ χ
−=

= ∑  and ( ) ( )2 2
1

2
2 ,

1 m m

n

m r r
m

p r γ χ
−=

= ∑ , r x= ,  

for 1n ≥ , 1,2, ,m n= 
, 1 1 2 2, , ,m m m mr rγ γ ∈ , 1 1 1 1

0 1 10 1n nr r r r−= < < < < =

 and 
2 2 2 2

0 1 10 1n nr r r r−= < < < < =

. We assume that 1 2
m m mr r r= =  for all 0,1,2,m = 

 
We have for all ( )1 2 2 , 1kY H∈ ≥



 ,  

( )
( ) ( )( ) ( )1 2 1 2 1 2

1 2
21 2 1 22 , 1

sup
k

k
p p p pH H HY H

w w Y− −→
∈ ≥

Λ − Λ = Λ −Λ







 

From theorem (4.1), we obtain  

( ) ( )( ) ( ) ( ) ( )
2 11 2 2

2 21 2
1 1 for all 1k k

p p H
w w Y w w Yλ λ

− − −Λ − Λ = − ≥
   




 

where ( ) ( )1 2
1 1,w wλ λ− − 

 verify the relation (24) for all 1n ≥  and finite, 1≥ . 
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Then  

( ) ( )
1 2 1 2 1 2

1 2
1 1

1
supp p H H

w wλ λ− − −→ ≥
Λ − Λ = −

 



 

Let denote [ ] [ ] ( ) ( )
( ) ( ) ( )

( )

1
1 1 1 1
, 1

1
1

1 1

n
n

n n n nn nn

q kp
P p k A p k q k

q q

 ′ 
 ′ ′= − +     






  

 

 where  

[ ]
[ ]

1
1

1 n

A

A

 
 
 
 





 is the solution of 22 associated to 1p  and [ ]1
, 1nP p


 the 1−  eingen-

value associated to 1p . 

And [ ] [ ] ( ) ( )
( ) ( ) ( )

( )

2
2 2 2 2
, 2

1
2

1 1

n
n

n n n nn nn

q kp
P p k A p k q k

q q

 ′ 
 ′ ′= − +     






  

 

 where 
[ ]
[ ]

1
2

2 n

A

A

 
 
 
 





 

is the solution of 22 associated to 2p  and [ ]2
, 2nP p


 the 1−  eingenvalue as-
sociated to 2p . 

We have  

( ) ( ) [ ] [ ]1 2 1 2
1 1 , 1 , 2n nw w P p P pλ λ− −− = −

   

 

Then  

[ ] [ ]1 2 11 2 2
1 2
, 1 , 2p p n nH H

P p P p−→
Λ − Λ ≥ −

 

 

Let denote [ ] ( ) ( )
( ) ( ) ( )

( )

1
1 11

1
1 1

n
n

n nn nn

q kp
A A p k q k

q q

′ 
′ ′= − +  

 






 

 

,  

[ ] ( ) ( )
( ) ( ) ( )

( )

2
2 21

2
1 1

n
n

n nn nn

q kp
B A p k q k

q q

′ 
′ ′= − +  

 






 

 

 and ( )inf ,D A B= . 

We have [ ] [ ]
1 2 2 2

1 2 1 2
, 1 , 2 2

n n
n n n n

w w
P p P p k k D D

M

γ γ− − −
− ≥ − ≥

 

 for all 1n ≥  

finite, 1≥  and 0M > . 
We have D is positive real depending on , ,n w   and ( ) ( )1 2 2 2 0n nw wγ γ− × − > . 

Then for all 0M >   

( ) ( ) ( )
1 2 1 21 2

1 2,
.

2p p n nH H

D n
w w

M
γ γ−→

Λ − Λ ≥ −


 

If we take ( ) ( )
2, , ,

, ,
MC n w M

D w n
=



, then we have the result.    

Remark 4.3 The study of stability for a continuous radial potential function 
would follow from the study of stability in the case where the potential is a 
piecewise radial function. It is sufficient to approximate this continuous function 
by two piecewise radial functions.  

5. Conclusion 

We can conclude that when we consider that the potential ( )p r  is radial func-
tion for the Schrödinger equation with energy w2 defined in the unit ball which 
has no zero on the interval ( )0,1 , there exists an explicit formula for the Di-
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richlet-to-Neumann map given in theorem (4.1) for all piecewise constant radial 
potential function, and in theorem (4.2) for all continuous radial potential func-
tion. We have established a Lipschitz stability result near the edge of the domain 
with a constant depending on the dimension of the potential space and the order 
of the eigenvalues. The Lipschitz stability result of the map that associates a Di-
richlet-to-Neumann map to any radial potential p is essential for the study of its 
inversion. This explicit formula of the Dirichlet-to-Neumann map ( )p w fΛ  in 
dimension 3 is a generalization of the results obtained in [1]. They are very im-
portant results which allow to study an inverse inverse for a hyperbolic differen-
tial equation ; they will open the way to the development of important research 
on the type of inverse problems. In the perspective, we will consider, among 
other things, the numerical study of the Dirichlet-to-Neumann map in the unit 
ball in 3 , the reconstructing of the potential from the Dirichlet-to-Neumann 
map both theoretically and numerically, and then the analytical study of the Di-
richlet-to-Neumann map in the case where the potential has one or more zeros 
on the interval ( )0,1 . In addition, a Lipschitz type stability in the depth of the 
domain will be studied by giving an estimation constant.  
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Appendix 

We consider the spherical Bessel functions  

( ) ( ) ( ) ( )1 1
2 2

, ,
2 2

j r J r y r Y r
r r+ +

= =
π π

 

 

            (29) 

that satisfies the equation  

( )( )2 22 1 0.r y ry r y′′ ′+ + − + = 
 

The modified spherical Bessel functions  

( ) ( ) ( ) ( )1 1
2 2

, ,
2 2

i r I r k r K r
r r+ +

= =
π π

 

 

             (30) 

that satisfies the equation. 
If ( ) 1, , , 1f j y i k+= − 

    

 then  

( ) ( )1
1 .f r f f r

r−
+′ = −

  



                     (31) 
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