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Abstract 
This research aims to integrate Bekenstein’s bound and Landauer’s principle, 
providing a unified framework to understand the limits of information and 
energy in physical systems. By combining these principles, we explore the 
implications for black hole thermodynamics, astrophysics, astronomy, infor-
mation theory, and the search for new laws of nature. The result includes an 
estimation of the number of bits stored in a black hole (less than 1.4 × 1030 
bits/m3), enhancing our understanding of information storage in extreme gra-
vitational environments. This integration offers valuable insights into the fun-
damental nature of information and energy, impacting scientific advancements 
in multiple disciplines. 
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1. Introduction 

Understanding the fundamental limits and principles governing information 
and energy is a key area of research in physics. Two important concepts that 
have emerged in this field are the Bekenstein bound [1] and Landauer’s principle 
[2]. The Bekenstein bound, proposed by Jacob Bekenstein, sets an upper limit on 
the amount of thermodynamic entropy or information that can be contained 
within a finite region of space with a finite amount of energy. It provides insights 
into the maximum amount of information needed to fully describe a physical 
system at the quantum level within a specific spatial region and its associated 
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energy. On the other hand, Landauer’s principle states that erasing one bit of in-
formation incurs a minimum energy cost of kb·T·ln2, where T represents the 
temperature of a thermal reservoir and kb is Boltzmann’s constant. 

While the Bekenstein formula has been well received in the scientific commu-
nity, the response to Landauer’s principle has been more nuanced. However, it 
has gained widespread acceptance as a fundamental physical law, with research-
ers demonstrating its derivation from the second law of thermodynamics and 
the change in entropy associated with acquiring information, including quantum 
and classical feedback systems [3] [4]. 

In [5], the generalization of Landauer’s principle leading to an increase in en-
tropy without consuming energy is a notable development. This insight provides 
a deeper understanding of the relationship between information processing and 
entropy, as it highlights that erasing information can have implications beyond 
energy consumption. By expressing this increase in entropy in terms of other 
conserved quantities, such as angular momentum, researchers have expanded our 
understanding of the underlying principles governing information and thermo-
dynamics. This finding adds complexity to the concept of information erasure 
and its broader implications in physical systems. 

A significant breakthrough in 2012 involved the first-ever measurement of the 
minuscule heat generated during the processing of a single bit of data [6]. Sub-
sequent experiments confirmed Landauer’s principle and quantified the energy 
dissipated during bit transitions [7] [8]. The performance of Landauer erasure at 
cryogenic temperatures using quantum molecular magnets further extended the 
application of the principle into the quantum realm [9]. These advancements 
highlighted the minimal thermodynamic costs of erasure and high-speed opera-
tion [9] [10]. 

Criticism of Landauer’s principle has surfaced in recent years, with concerns 
regarding circular reasoning and flawed assumptions. However, proponents 
maintain its validity, noting its emergence from the second law of thermody-
namics and the associated entropy change in information processing [11]-[16]. 
Moreover, studies have explored the connection between logical and thermody-
namic reversibility, revealing nuanced implications for computation [17] [18]. 
In 2016, researchers from the University of Perugia claimed to have observed a 
violation of Landauer’s principle [19]. However, Laszlo Kish [20] argued that 
their results are invalid due to their failure to account for the dominant source 
of energy dissipation—the charging energy of the capacitance of the input elec-
trode. 

In conclusion, the integration of the Bekenstein bound and Landauer’s prin-
ciple represents a significant advancement in our understanding of the funda-
mental limits and principles governing information and energy. By bridging in-
formation theory, thermodynamics, and quantum mechanics, this integration 
opens new avenues for discovery and practical applications. This chapter serves 
as an introduction to the integration of these concepts, setting the stage for fur-
ther exploration and research in this exciting and promising field. 
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2. Integration of Concepts 

In the 1980s, the Bekenstein bound was introduced as a groundbreaking formula 
to calculate the upper limit of information [1]: 

( ) ( )2 ln 2mY R E c≤ ⋅π ⋅ ⋅ ⋅ ⋅                    (1) 

Equation (1) quantifies the information content in bits Y, specifically referring 
to the number of quantum states within a given object sphere. The variables in 
the equation have the following meanings: R [M1] represents the radius of the 
object sphere, Em [M1·L2·T−2] denotes the total mass-energy content, ħ [M1·L2·T−1] 
denotes the reduced Planck constant, and c [M1·T−1] symbolizes the speed of 
light. The Bekenstein bound formula combines these variables, using base SI (in-
ternational system of units) quantities [21]. 

Landauer’s principle, introduced in [2], emphasizes the minimum energy cost 
incurred when erasing one bit of information. This relationship is defined by the 
equation 

ln 2I bE k T= ⋅ ⋅                         (2) 

In this context EI represents the minimum possible energy required to erase 
one bit [M1·L2·T−2], kb is the Boltzmann constant [M·L2·T−2·K−1], and T is the 
temperature of the heat sink [K]. 

By combining Equations (1) and (2) and considering [22], we can express Eq-
uation (1) in the following manner: 

( ) ( )2 ln 2bh bh mIV Q R E c⋅ ≤ ⋅ π ⋅ ⋅ ⋅ ⋅                (3) 

where  
2 ln 2mI bh bh bh bh bE V d c V Q k T= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅               (4) 

In this context, EmI refers to the energy of the black hole, comprising mass- 
energy equivalence and information-energy equivalence. Vbh denotes the volume 
of the black hole, and dbh signifies the specific density. Finally, Qbh represents the 
amount of information (in bits/m3) contained within the black hole. 

Further manipulation of Equations (3) and (4) yields the following expres-
sions: 

( ) ( )22 ln 2 2 ln 2bh bh bQ R d c c R k T≤ ⋅π ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅π ⋅ ⋅ ⋅ ⋅        (5) 

To determine the value of Qbh, we refer to numerical data provided in the re-
ferenced scientific publications, with the understanding that these calculations 
involve inherent approximations and are subject to refinement as ongoing re-
search progresses. 

The Event Horizon Telescope, as described in [23], conducted measurements 
that provided significant insights into a black hole. The study reported a mass of 
approximately 6.5 ± 0.7 × 109 solar masses for the black hole. Additionally, the 
estimated diameter of its event horizon was roughly 40 billion kilometers, which 
is approximately 2.5 times smaller than the observed shadow at the center of the 
image. By comparing the black hole’s mass to that of the Sun (approximately 2 × 
1030 kg), the calculated mass of the black hole (mbh) is approximately 13 ± 1.4 × 
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1039 kilograms. 
The mass density of the black hole (dbh) is estimated in [24] as 1.9 × 10−35±0.40 

g·cm−3, which is equivalent to 1.9 × 10−32±0.40 kg·m−3. Using this information, we 
can calculate the volume of the black hole (Vbh) as follows: 

39 32 0.4 71 313 1.4 10 1.9 10 6.84 10 mbh bh bhV m d − ±= = ± × × ≈ ×        (6) 

Assuming a spherical shape for the black hole, we can proceed to calculate its 
radius (R) using the outcomes from Equation (6): 

( )( ) ( )( )1 31 3 71 233 4 3 6.84 10 4 3.14 5 5 m. 10R V= ⋅ ⋅π = × × × ≈ ×      (7) 

Utilizing the results from Equations (6) and (7), we can derive a numerical 
formulation for Qbh: 

( )3 301.4 10 bits mbhQ ≤ ×                     (8) 

In this context, c = 299,792,458 m·с−1, c2 = 8.988 × 1016 m2·с−2, ħ = 6.62607015 
× 10−34 kg·m2·с−1, kb = 1.380649 × 10−23 kg·m2·s−2·K−1, π = 3.14, ln2 = 0.69. It is a 
well-known fact that the temperature of a black hole decreases as its mass in-
creases. Stellar black holes have extremely low temperatures, approaching abso-
lute zero at around zero Kelvin or −273.15 degrees Celsius. For the purpose of 
analysis, we assume a temperature value of approximately T = 1 × 10−2 ˚K.  

The value obtained in Equation 8 holds significant implications for advancing 
scientific research across various fields, including black hole thermodynamics, 
astrophysics, astronomy, information theory, the Bekenstein limit, and the ex-
ploration of new laws of nature. It is important to note that the precise value of 
Qbh remains uncertain in the existing scientific literature, raising questions about 
its magnitude and the extent of documented findings.  

Several studies have addressed this question since the late 1970s. Davies [25] 
utilized the Bekenstein-Hawking formula for black hole entropy to calculate the 
information content of the universe, resulting in an estimation of 10120 bits. 
Wheeler [26] estimated the present universe’s information capacity at approx-
imately 8 × 1088 bits based on entropy considerations at a temperature of 2.735 
˚K. Similarly, Lloyd [27] estimated the total information capacity of the universe 
to be around 1090 bits. 

Applying Landauer’s principle, Gough [28] developed an information equa-
tion of state and found that 1087 bits of intrinsic universe information content 
could account for all the Dark Energy. These estimates were made during the 
cosmic time of star formation when high-temperature baryons represented the 
majority of the universe’s bit information content, with an average bit energy 
value of 120 eV. 

Considering the mass-energy-information equivalence principle, Vopson [29] 
[30] estimated that approximately 5.2 × 1093 bits could account for all the miss-
ing Dark Matter in the observable universe. However, this estimation may be 
overestimated as it assumed that all information bits were stored at a tempera-
ture of 2.735 ˚K, disregarding the higher temperatures of baryonic matter con-
tained within stars, intergalactic gas, and dust. 
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Another approach employed by Vopson [31] utilized Shannon’s information 
theory to estimate the number of bits contained in matter particles of the ob-
servable universe. This independent approach, which does not rely on the dy-
namics of universe expansion or internal dynamics, yielded a total information 
content of baryonic matter in the observable universe as 6.036 × 1080 bits. 

Considering these findings, the value presented in Equation 8 must be re-
garded as substantial and represents a pioneering estimation. Further investiga-
tion is necessary to determine the precise number of bits contained within one 
cubic meter of a black hole, contributing to an enhanced understanding of these 
enigmatic cosmic entities and unraveling the complexities of information sto-
rage within them. 

3. Discussion 

While the individual significance of the Bekenstein bound and Landauer’s prin-
ciple in The integration of the Bekenstein bound and Landauer’s principle 
represents a significant advancement in our understanding of the fundamental 
limits and principles governing information and energy. By combining these two 
principles, researchers can explore new avenues for comprehending the intricate 
relationship between information, energy, and the underlying laws of physics. 

The motivation behind integrating the Bekenstein bound and Landauer’s prin-
ciple lies in the quest to establish a unified framework that encompasses the li-
mitations on information storage and the energetic costs associated with infor-
mation processing. This integrated approach offers the potential for a deeper 
understanding of the fundamental connections between thermodynamics, in-
formation theory, and quantum mechanics. By understanding their significance 
and exploring their integration, we can gain insights that go beyond their indi-
vidual contributions, leading to a more comprehensive understanding of the 
fundamental limits and principles governing information and energy. 

The integration of the Bekenstein bound and Landauer’s principle enables us 
to achieve a more comprehensive understanding of the fundamental limits and 
principles governing information and energy. This integrated framework allows 
us to explore the interplay between information storage, processing, and energy 
dissipation in physical systems. It provides a deeper understanding of the limita-
tions and fundamental principles governing information and energy. 

The significance of integrating the Bekenstein bound and Landauer’s principle 
extends beyond theoretical considerations and holds practical implications for 
various fields of study. In the realm of quantum computing, where information 
is stored and processed at the quantum level, understanding the fundamental 
limits of information storage and the energetic costs associated with information 
manipulation is crucial for the development of efficient and scalable quantum 
computing systems. 

In the field of thermodynamics, the combination of the Bekenstein bound and 
Landauer’s principle contributes to a deeper understanding of the fundamental 
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connections between information and entropy. It sheds light on the relationship 
between the microscopic properties of physical systems and their macroscopic 
thermodynamic behavior. This understanding can have implications for the de-
sign and optimization of energy-efficient thermal energy storage systems, where 
the management of information and energy plays a crucial role. 

Equations (5), (8) introduce a thought-provoking concept that raises the pos-
sibility of explaining “dark matter” from a fresh perspective rooted in informa-
tion physics. This notion is based on the premise that information represents the 
fifth form of physical matter. Previous studies [25]-[31] have explored the in-
formation content of the Universe. If information possesses mass, its influence 
would solely manifest through gravitational interactions, rendering it invisible to 
detection via electromagnetic radiation [32]. This radical proposition suggests 
that information might account for the elusive dark matter present in the un-
iverse. Furthermore, ongoing efforts in the field of information physics, such as 
those undertaken by the Information Physics Institute (IPI) [32] and in [33], are 
anticipated to yield significant advancements, enhancing our comprehension of 
the universe and its fundamental laws. 

By delving deeper into the integration of the Bekenstein bound and Landau-
er’s principle, we can unlock new insights, advance technological developments, 
and pave the way for further research in understanding the fundamental nature 
of information and energy. This chapter aims to explore the theoretical founda-
tions, implications, and practical applications arising from the combination of 
these two concepts. Through this exploration, we strive to provide a comprehen-
sive understanding of the importance and potential of integrating the Bekenstein 
bound and Landauer’s principle in the scientific community. 

4. Conclusions 

In conclusion, the integration of the Bekenstein bound and Landauer’s principle 
represents a significant advancement in our understanding of the fundamental 
limits and principles governing information and energy in physical systems. By 
combining these concepts, we have established a comprehensive framework that 
sheds light on the interplay between information storage, processing, and energy 
consumption. This integration holds immense importance for various scientific 
disciplines, including black hole thermodynamics, astrophysics, astronomy, in-
formation theory, and the exploration of new laws of nature. 

The combination of the Bekenstein bound and Landauer’s principle has re-
vealed three key points that highlight its significance: 

Unifying Limits: The integration of the Bekenstein bound and Landauer’s 
principle has provided a unified perspective on the limitations of information 
and energy in physical systems. By considering the finite nature of information 
within a given region of space, as quantified by the Bekenstein bound, and the 
energetic costs associated with information manipulation, as described by Lan-
dauer’s principle, we have established a holistic understanding of the fundamen-
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tal boundaries that govern these processes. 
Fundamental Connections: This integration has unveiled the fundamental con-

nections between thermodynamics, information theory, and quantum mechanics. 
By recognizing the interplay between information storage, processing, and energy 
dissipation, we have gained insights into the intricate relationship between mi-
croscopic properties and macroscopic thermodynamic behavior. This deeper un-
derstanding enhances our grasp of the underlying principles that govern the be-
havior of physical systems at various scales. 

Implications and Future Research: The integration of the Bekenstein bound 
and Landauer’s principle has profound implications for practical applications 
and further scientific research. In the field of quantum computing, understand-
ing the fundamental limits of information storage and the energetic costs of in-
formation manipulation is crucial for the development of efficient and scalable 
quantum computing systems. Additionally, this integration has implications for 
information theory, communication systems, and thermodynamics, offering op-
portunities for optimizing energy utilization, designing energy-efficient thermal 
storage systems, and advancing our knowledge of the fundamental laws of na-
ture. 

The obtained result (Equation (8)) regarding the number of bits contained 
within one cubic meter of a black hole is a significant contribution to scientific 
research in black hole thermodynamics, astrophysics, and related disciplines. As 
no precise value for Qbh has been provided in existing scientific literature, the 
presented estimation in Equation (8) marks an important step forward. Howev-
er, further investigation is necessary to refine this estimation and determine the 
precise number of bits. This pursuit will not only deepen our understanding of 
black holes as enigmatic cosmic entities but also expand our knowledge of in-
formation storage in extreme gravitational environments. 

In summary, the integration of the Bekenstein bound and Landauer’s prin-
ciple has unveiled fundamental insights into the limits of information and ener-
gy in physical systems. This comprehensive framework has broad implications 
for diverse fields, ranging from quantum computing to thermodynamics. By 
delving deeper into the integration of these concepts, we will continue to unlock 
new knowledge, drive technological advancements, and advance our under-
standing of the intricate relationship between information and energy in the 
natural world. 
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