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Abstract 
In this paper, we consider a class of Kirchhoff type problem with superlinear 
nonlinearity. A sign-changing solution with exactly two nodal domains will 
be obtained by combining the Nehari method and an iterative technique. 
 
Keywords 
Kirchhoff Type Problem, Nehari Method, Iterative Technique 

 

1. Introduction 

In this paper, we consider the following Kirchhoff type problem 

( ) ( )2 d ,          in ,

0,                                                 on ,

a b u x u f u

u
Ω

− + ∇ ∆ = Ω

 = ∂Ω

∫            (1.1) 

where , 1,2,3N NΩ⊂ =�  is a bounded smooth domain. The problem (1.1) is 
related to the stationary analogue of the equation 

( ) ( )2 d ,ttu a b u x u f x u
Ω

− + ∇ ∆ =∫               (1.2) 

proposed by Kirchhoff as an existence of the classical D’Alembert’s wave equa-
tions for free vibration of elastic strings. Kirchhoff’s model takes into account 
the changes in length of the string produced by transverse vibrations. After 
Lions [1] introduced an abstract framework to the problem, the Equation (1.2) 
began to receive much attention. In recent years, the existence and multiplicity 
of nontrivial solutions for the Kirchhoff type problem on a bounded domain  

NΩ⊂ �  or on N�  has been studied by many authors, see [2]-[20] and refer-
ences therein. To obtain the existence of nontrivial solutions for (1.1), various 
growth conditions with the nonlinearity f for problem (1.1) are always needed. 
For example, the subcritical growth case was considered in [2] [4] [6] [9], the 
critical growth case was considered in [5] [8], the superlinear case was consi-
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dered in [7] [10] [11] [13] [14] [15] [17], the asymptotically linear case was con-
sidered in [3] [12] [14]. In [12], by using the Yang index and Morse theory, Pe-
rera and Zhang established the existence of nontrivial solutions for (1.1) when 
the nonlinearity f is asymptotically linear near zero and asymptotically 4-linear 
at infinity. In [14], Sun and Liu obtained the existence of nontrivial solutions via 
the Morse theory when the nonlinearity is superlinear near zero but asymptoti-
cally 4-linear at infinity, and the nonlinearity is asymptotically linear near zero 
but 4-superlinear at infinity. In [16], by applying the mountain pass theorem, the 
local linking theorem, and the fountain theorem, Sun and Tang obtained the ex-
istence and multiplicity of nontrivial solutions for (1.1) when the nonlinearity f 
is 4-superlinear at infinity. 

In the previous existence and multiplicity results, the additional properties 
about the solutions are not be considered. Recently, there has been increasing 
interest to obtain additional information on the solutions of (1.1). The existence 
of sign-changing solutions for (1.1) has attracted a lot of attention. In [19], Zhang 
and Perera studied the existence of sign-changing solutions for a class of Kir-
chhoff type problems by using variational method. In [13], Shuai proved the 
problem (1.1) possesses one least energy sign-changing solution via the Nehari 
method when the nonlinearity f is 4-superlinear at infinity by combining con-
straint variational method and quantitative deformation lemma. 

In this paper, motivated by [13], we will study the existence of sign-changing 
solution for (1.1) when the nonlinearity f is 4-superlinear at infinity. Our result 
has somewhat improved the result of [13]. In [13], Shuai obtained the existence 
of sign-changing solution for (1.1) under the following conditions: 

(f1) ( )1 ,f C∈ � � , ( ) ( )f s sο=  as 0s → ; 

(f2) For some constant ( )4,2p ∗∈ , ( )
1lim 0ps

f s
s −→∞

= , where 2∗ = +∞  for  

1,2N =  and 2 6∗ =  for 3N = ; 

(f3) 
( )
4lim

s

F s
s→∞

= +∞ , where ( ) ( )
0

d
s

F s f t t= ∫ ;  

(f4) 
( )

3

f s
s

 is an increasing function of { }\ 0s∈� . 

Here we replace the condition (f4) with the following conditions (f5) and (f6): 
(f5) There exist constant 2θ >  and 0 0s >  such that  

( ) ( ) 00 , ,F s sf s s sθ< < ∀ ≥  

(f6) ( ) ( )f s
f s

s
′ >  for all 0s ≠ . 

If 0F > , we can see that our conditions (f5) and (f6) are weaker than (f4). In 
fact, if (f4) holds, then for 0s ≠ , one has that 

( ) ( )2 3 0f s s f s s′ − >  and ( ) ( )4f s s F s> , 

which implies that (f5) and (f6) hold when 0F > . On the other hand, let  

( ) ( )
51

3 23
2

7 24 ln 1
3 1

sf s s s s s
s

= + + +
+

, then ( ) ( )
7

4 23 ln 1F s s s s= + + . By calcu-
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lation, we see that ( )f s  satisfies (f1) - (f3), (f5), and (f6). But notice that 

( ) ( )
67

3
2

5 24 0
3 1

sf s s F s s
s

− = − + <
+

 

when 0 1s< ≤ , thus the condition (f4) is not satisfied. Hence our result is new 
and we have partially extended the result in [13] when 0F > . 

We will use a method different from [13]. The existence of a sign-changing 
solution with exactly two nodal domains will be proved by combining the Neha-
ri method and an iterative technique proposed in [21]. The main idea is to fix 
the nonlocal term first and to consider the corresponding usual second order el-
liptic problem. The sign-changing solution for this usual second order elliptic 
problem will be obtained by the Nehari method. Then we use the iterative tech-
nique to get a sequence of approximate solutions, and the sign-changing solu-
tion for (1.1) will be obtained through a limit argument. The key point is to ob-
tain the boundedness of this sequence of approximate solutions. 

Our main result is the following theorem. 
Theorem 1.1. Assume that (f1) - (f3), (f5), (f6) hold, then the problem (1.1) has 

at least one sign-changing solution which has exactly two nodal domains. 
Remark 1.2. In fact, under the conditions of Theorem 1.1, we can also obtain 

the positive and negative solutions of (1.1) by combining the mountain pass 
theorem and a similar iterative process. 

The paper is organized as follows. In Section 2, we fix the nonlocal term of 
(1.1) and consider the corresponding usual second order elliptic problem. We 
apply the Nehari method to obtain the sign-changing solution for this usual 
second order elliptic problem. In Section 3, we give the proof of our main result 
by using an iterative technique. 

2. Preliminaries 

Let ( )1
0E H= Ω  be the usual Sobolev space with the norm ( )

1
2 2du u x

Ω
= ∇∫ . 

For any fixed Eω∈ , we consider the following problem 

( ) ( )2 d ,          in 

0,                                                  on 

a b x u f u

u

ω
Ω

− + ∇ ∆ = Ω


= ∂Ω

∫             (2.1) 

The associated functional corresponding to (2.1) is :I Eω → � , 

( ) ( ) ( )2 21 d d d .
2

I u a b x u x F u xω ω
Ω Ω Ω

= + ∇ ∇ −∫ ∫ ∫  

By (f1) and (f2), ( )2 ,I C Eω ∈ �  is weakly lower semi-continuous and the weak 
solution of the problem (2.1) corresponds to the critical point of the functional 
Iω . 

Define 

( ) ( ) ( ) ( )2 2, d d , d ,G u I u u a b x u x f x u u xω ω
Ω Ω Ω

′= = + ∇ ∇ −∫ ∫ ∫  
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( ) { } ( ){ } { }1
0 \ 0 | 0 , | , ,N u H u G u S u N u N u Nω ω ω ω ω ω

+ −= ∈ = = ∈ ∈ ∈  

where { } { }max ,0 , min ,0u u u u+ −= = . The set Nω  is called the Nehari mani-
fold. 

Obviously, any sign-changing solutions of (2.1) must be on Sω . Note that for 
any u E∈ , 

( ) ( ) ( ) ,I u I u I uω ω ω
+ −= +  

( ) ( ) ( ) ( ), , ,  , , .I u u I u u I u u I u uω ω ω ω
+ + + − − −′ ′ ′ ′= =  

Then if u E∈  satisfies u Nω
+ ∈ , and u Nω

− ∈ , we have that u Nω∈  and 
thus u Sω∈ . 

Now we give a detailed explanation of our proof. Firstly, for every Eω∈ , we 
prove that Iω  is bounded on Nω  and so also bounded on Sω . Then we can 
find a minimizer uω  of Iω  on wS , which is proved to be a sign-changing so-
lution of (2.1). Secondly, we prove that there exists a constant 1R  such that if 

1Rω ≤  then 1u Rω ≤ . Using this conclusion again and again we can obtain a 
sequence { }nu  such that nu  is a sign-changing critical point of 

1nuI
−

 and  

1nu R≤ . Thirdly, let n →∞ , we can prove that nu u→ �  for some u E∈�  and 
u�  is a sign-changing solution of the original problem (1.1). Finally, we show 
that u�  is the minimizer of uI �  on uS � , and using this fact we prove that u�  
has exactly two nodal domains.  

In order to prove the main result, we need the following lemmas. However, 
the proofs of them are standard and similar to Lemmas 3.1 - 3.4 of our recent 
paper [10], so we omit their proofs. Note that in [10], we only proved the exis-
tence of sign-changing solution for (1.1) when b is sufficiently small, and the 
number of nodal domains is not obtained there. By contrast, here for any 0b > , 
a sign-changing solution is obtained, and it has exactly two nodal domains. 

Lemma 2.1. Assume that (f1), (f2), (f5), (f6) hold, then for each { }\ 0u E∈  
there exists unique ( ) 0t t u= >  such that ( )t u u Nω∈ . 

Lemma 2.2. Assume that (f1), (f2), (f5), (f6) hold, there exists constants 0α >  
and 0c >  independent of ω  such that ( )I uω α≥  and u c≥  for all  
u Nω∈ . 

Define 1 infSm I
ω ω= , then it is clearly that 1 0m α≥ ≥ . 

Lemma 2.3. 1m  is achieved at some u Sω ω∈ , and uω  is a critical point of 
Iω . 

Remark 2.1. In [10], we assumed that , 3N NΩ∈ =� . But it is not difficult to 
see that the above lemmas still true for , 1,2N NΩ∈ =� , from the proofs there. 

3. Proof of the Main Result 

In this section, we prove our main result. 
Proof of Theorem 1.1. 
Step 1. We construct a bounded sign-changing functions sequence { }nu  in E 

such that ( )
1

0
nu nI u
−
′ =  for any 2n ≥ . 
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For any Eω∈ , by Lemma 2.3, there exists a minimizer uω  of Iω  on Sω  
and ( ) 0I uω ω′ = . We fix a function 0v E∈  with 0 0v+ ≠  and 0 0v− ≠ . By Lemma 
2.1, there exist ( )0 0t v+ >  and ( )0 0t v− >  such that ( )0 0t v v Nω

+ + ∈  and  

( )0 0t v v Nω
− − ∈ . Then it is clear that 

( ) ( )0 0 0 0 .t v v t v v Sω
+ + − −+ ∈                     (3.1) 

By (f3), for any 0ε >  there exists 0Cε′ >  such that 

( ) 41 .F s s Cεε
′≥ −                        (3.2) 

Then by (3.1), (3.2), and notice that wu  is a minimizer of Iω  on Sω , we 
have 

( ) ( ) ( )( )
( )( ) ( )( )
( ) ( )

( )

( )

( )

0 0 0 0

0 0 0 0

0 0
0 0

2 2 42 4
0 0

0

2 2 42 4
0 0

0

22
1

sup sup

1sup d d d
2

1sup d d d
2

 d ,

t t

t

t

I u I t v v t v v

I t v v I t v v

I tv I tv

t a b x v x t v x C

t a b x v x t v x C

C a b x C

ω ω ω

ω ω

ω ω

ε

ε

ε

ω
ε

ω
ε

ε ω

+ + − −

+ + − −

+ −

> >

+ +

Ω Ω Ω>

− −

Ω Ω Ω>

Ω

≤ +

= +

≤ +

 
′≤ + ∇ ∇ − + Ω 

 

 
′+ + ∇ ∇ − + Ω 

 

′′= + ∇ +

∫ ∫ ∫

∫ ∫ ∫

∫

 (3.3) 

where Ω  is the Lebesgue measure of Ω , 

( )
( )

( )
( )

2 22 2
0 0

1 4 4
0 0

d d1 , 2 .
16 d d

v x v x
C C C

v x v x
ε ε

+ −

Ω Ω

+ −

Ω Ω

 
 

′′ ′= + = Ω 
  
 

∫ ∫

∫ ∫
 

By (f5), there exists a constant 0C  such that 

( ) ( ) 0
1 , .F s f s s C s
θ

≤ + ∈�                  (3.4) 

Since uω  is a critical point of Iω , we have 

( ) ( )2 2d d , d .a b x u x f x u u xω ω ωω
Ω Ω Ω

+ ∇ ∇ =∫ ∫ ∫           (3.5) 

Then by (3.3), (3.4) and (3.5), we have 

( )
( ) ( )

( ) ( )

( ) ( )

2 2

0

22 2 2
1

1 d d
2

d

1 d

1d d d ,

a b x u x

I u F u x

I u f u u x C

C a b x a b x u x C

ω

ω ω ω

ω ω ω ω

ω ε

ω

θ

ε ω ω
θ

Ω Ω

Ω

Ω

Ω Ω Ω

+ ∇ ∇

= +

≤ + + Ω

≤ + ∇ + + ∇ ∇ +

∫ ∫

∫

∫

∫ ∫ ∫

 

where 0C C Cε ε′′= + Ω . Note that 2θ > , thus 
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( )
( )

( )

( )

22
12

2

2
1 2

2
1

d
d

1 1 d
2

2 2d
2 2 d

2 2d .
2 2

C a b x C
u x

a b x

CC a b x
a b x

CC a b x
a

ε

ω

ε

ε

ε ω

ω
θ

θ θε ω
θ θ ω

θ θε ω
θ θ

Ω

Ω

Ω

Ω

Ω

Ω

+ ∇ +
∇ ≤

 − + ∇ 
 

 
 = + ∇ +

− −  + ∇ 

≤ + ∇ +
− −

∫
∫

∫

∫
∫

∫

  (3.6) 

Take 0ε ε=  sufficiently small such that 

1 0
2 1 ,

2 2
C bθ ε

θ
≤

−
 

then from (3.6), we have 

02 2
1 0

1 2d d .
2 2

C
u x x C a

a
ε

ω
θω ε

θΩ Ω

 
∇ ≤ ∇ + + −  

∫ ∫         (3.7) 

Choose a sufficiently large constant 1 0R >  such that 

0 2
1 0 1

2 1 .
2 2

C
C a R

a
εθ ε

θ
 

+ ≤ −  
                   (3.8) 

Notice that the constants 
00 ,Cεε  and 1C  are all independent of ω , then 

1R  is also independent of ω . By (3.7) and (3.8), for any Eω∈  with  

1Rω ≤ , we have 

02 2 2
1 1 0 1

1 2d .
2 2

C
u x R C a R

a
ε

ω
θ ε

θΩ

 
∇ ≤ + + ≤ −  

∫           (3.9) 

Now let 1uω =  for some 1u E∈  with 1 1u R≤ , then by Lemma 2.3 and 
(3.9), 

1uI  has a critical point 2u  with 
12 uu S∈  and 2 1u R≤ . Again, let 2uω = , 

then similarly 
2uI  has a critical point 3u  with 

23 uu S∈  and 3 1u R≤ . By 
induction, we get a sequence { }nu  with ( )

1 1
0,

n nu n n uI u u S
− −
′ = ∈  and 1nu R≤ . 

Step 2. We prove that nu u→ �  in E for some u E∈�  up to a subsequence 
and u�  is a sign-changing solution of (1.1). 

Since 1nu R≤ . We can get a subsequence of { }nu  (for simplicity still de-
noted by { }nu ) such that nu u�  in E and nu u→ �  in ( )PL Ω  for some 
u E∈� . By 1nu R≤  and (f2), we have 

( ) ( )

( ) ( ) ( ) ( )
1

2
1

lim ,

lim d d d

0.

nu nx

n n nx

I u u u

a b u x u u u x f u u u x

−→∞

−Ω Ω Ω→∞

′ −

 = + ∇ ∇ ⋅∇ − − −
 

=

∫ ∫ ∫

� �

� � � �  

Hence 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( )

1 1

22
1

2 2
1

0 lim , ,

lim d d d

lim d ,

n nu n n u nx

n n n nx

n nx

I u u u I u u u

a b u x u u x f u f u u u x

a b u x u u

− −→∞

−Ω Ω Ω→∞

−Ω→∞

 ′ ′= − − − 

 = + ∇ ∇ − − − −
 

= + ∇ −

∫ ∫ ∫

∫

� � �

� � �

�
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which implies that nu u→ �  in E as n →∞ . Thus for any Eϕ ∈ , we have 

( )

( ) ( )

( ) ( )

( )

1

2
1

2

0 lim ,

lim d d d

d d d

, .

nu nx

n n nx

u

I u

a b u x u x f u x

a b u x u x f u x

I u

ϕ

ϕ ϕ

ϕ ϕ

ϕ

−→∞

−Ω Ω Ω→∞

Ω Ω Ω

′=

 = + ∇ ∇ ⋅∇ −
 

= + ∇ ∇ ⋅∇ −

′=

∫ ∫ ∫

∫ ∫ ∫
�

� � �

�

 

Therefore, u�  is a critical point of uI � , and u�  satisfies (1.1). By 
1nn uu S
−

∈ , 
we have 

1nn uu N
−

+ ∈  and 
1nn uu N
−

− ∈  for 2n ≥ . Then from Lemma 2.2, we have 

nu c+ ≥  and nu c− ≥  for 2n ≥ , so u c+ ≥�  and u c− ≥� . Hence u�  is a sign- 
changing solution of (1.1). 

Step 3. We prove that 

( ) ( )inf .
u

u uv S
I u I v

∈
=

�
� ��                      (3.10) 

For any uv S∈ � , we have that uv N+ ∈ �  and uv N− ∈ � . Since 0v+ ≠  and  
0v+ ≠ , by Lemma 2.1, there exists 0nt >  and 0ns >  such that 

1nn ut v N
−

+ ∈  
and 

1
, 2,3,4,

nn ut v N n
−

− ∈ = � . 
By Lemma 2.2, we have that 

, .n nt v c s v c+ −≥ ≥  

Let 1
cT
v+

=  and 1
cS
v−

= , then for any 2n ≥ , 1nt T≥  and 1ns S≥ . On 

the other hand, by (f5), there exist constants 1 0C′ >  and 2 0C′ >  such that 

( ) 1 2.F s C s Cθ′ ′≥ −                     (3.11) 

Since 
1nn ut v N
−

+ ∈ , by Lemma 2.2 and (3.11), we have that 

( )

( ) ( )

( )

1

2 22
1

2 22
1 1 2

d d d
2

d d d .
2

nu n

n
n n

n
n n

I t v

t a b u x v x F t v x

t a b u x v x C t v x C
θθ

α
−

+

+ +
−Ω Ω Ω

+ +
−Ω Ω Ω

≤

= + ∇ ∇ −

′ ′≤ + ∇ ∇ − + Ω

∫ ∫ ∫

∫ ∫ ∫

  (3.12) 

Note that 1nu u− → �  and 2θ > , by (3.12) we can conclude that there must 
exist 2 0T >  such that 2nt T≤  for any 2n ≥ . Similarly, there exists 2 0S >  
such that 2ns S≤  for any 2n ≥ . Then the sequence { }nt  has a subsequence 
still denoted by { }nt  such that 0nt t→  and the sequence ns  has a subsequence 
still denoted by ns  such that 0ns s→ .  

We show that 0 1t =  and 0 1s = . In fact, since 
1nn ut v N
−

+ ∈ , we have that 

( ) ( )22 2
1 d d d 0,n n n na b u x t v x f t v t v x+ + +
−Ω Ω Ω

+ ∇ ∇ − =∫ ∫ ∫  

letting n →∞ , we get 

( ) ( )22 2
0 0 0d d d 0.a b u x t v x f t v t v x+ + +

Ω Ω Ω
+ ∇ ∇ − =∫ ∫ ∫�        (3.13) 

which implies that 0 ut v N+ ∈ � . Recall that uv N+ ∈ � , then by Lemma 2.1, we have 

https://doi.org/10.4236/jamp.2023.117132


X. H. Duan, G. G. Liu 
 

 

DOI: 10.4236/jamp.2023.117132 2100 Journal of Applied Mathematics and Physics 
 

0 1t = . Similarly, we also have 0 1s = .  
Since ( )

1 11
inf

n u nnu n S uI u I
− −−

=  and 
1nn n ut v s v S
−

+ −+ ∈ , we have that 

( ) ( )1 1
,

n nu n u n nI u I t v s v
− −

+ −≤ +  

letting n →∞ , we get 

( ) ( ).u uI u I v≤� ��  

This implies (3.10). 
Step 4. We prove that u�  has exactly two nodal domains.  
Suppose in contradiction that u�  has at least three nodal domains. We choose 

nodal domains 1 2,Ω Ω , such that 1 0u ≥�  and 2 0u ≤� , where 0, 1,2iu i≠ =� , are 
defined by 

( ) ( ) ,     if ,
0,            if \ .

i
i

i

u x x
u x

x
∈Ω= 
∈Ω Ω

�
�  

Let 3 1 2u u u u= − −� � � � , then 3 0u ≠� . Since 

( )

( ) ( )

( ) ( )
( )

2
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0 ,

d d d

d d d

,

u i

i i

i i i

u i i

I u u

a b u x u u x f u u x

a b u x u x f u u x

I u u

Ω Ω Ω

Ω Ω Ω

′=

= + ∇ ∇ ⋅∇ −

= + ∇ ∇ −

′=

∫ ∫ ∫

∫ ∫ ∫

�

�

� �

� � � � �

� � � �

� �

 

for 1,2,3i = , we have that , 1,2,3i uu N i∈ =�� . Then 1 2 uu u S+ ∈ �� � , and by Lemma 
2.1, ( )3 0uI u α≥ >� � . Hence, by (3.10), 

( ) ( ) ( ) ( ) ( )1 2 1 2 3 ,u u u u uI u I u u I u u I u I u≤ + < + + =� � � � �� � � � � � �  

we get a contradiction. Therefore, u�  has exactly two nodal domains. 
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