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Abstract 
We establish the links between the lightlike geometry and basics invariants of 
the associated semi-Riemannian geometry on r-lightlike submanifold and 
semi-Riemannian constructed from a semi-Riemannian ambient. Then we 
establish some basic inequalities, involving the scalar curvature and shape 
operator on r-lightlike coisotropic submanifold in semi-Riemannian mani-
fold. Equality cases are also discussed. 
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1. Introduction 
One of the most fundamental problems in submanifold theory is the problem of 
isometric immersibility. The embedding problem had been around since Rie-
mann in 1854. Soon after Riemann introduced the notion of a manifold, Schläfli 
conjectured that every Riemannian manifold could be locally considered as a  

submanifold of an Euclidean space with dimension ( )1 1
2

n n +  in 1873. This  

was later proved in different steps by Janet (1926), E. Cartan revised Janet’s pa-
per with the same title in 1927. 

This result of Cartan-Janet implies that every Einstein n-manifold ( 3n ≥ ) can  

be locally isometrically embedded in 
( )1

2
n n+

 . In 1956 J. Nash proved that every  
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closed Riemannian n-manifold can be isometrically embedded in a Euclidean  

m-space m  with ( )1 3 11
2

m n n= +  and he proved also that every non-closed  

Riemannian n-manifold can be isometrically embedded in m  with  

( )( )1 1 3 11
2

m n n n= + + . 

R. E. Greene improved Nash’s result in (1970) and proved that every non- 
compact Riemannian n-manifold can be isometrically embedded in the Eucli-
dean m-space m  with ( )( )2 2 1 3 7m n n= + + . 

In 1970, Clarke and Greene proved that any semi-Riemannian n-manifold 
n
qM  with index q can be isometrically embedded in a semi-Euclidean m-space 

m
q , for m and q  large enough. Moreover, this embedding may be taken inside 

any given open set in m
q . The problem of discovering simple sharp relation-

ships between intrinsic and extrinsic invariants of a Riemannian submanifold 
becomes one of the most fundamental problems in submanifold theory. The 
main extrinsic invariant is the squared mean curvature and the main intrinsic 
invariants include the classical curvature invariants namely the scalar curvature 
and the Ricci curvature. The conformal screen notion on lightlike hypersurface 
introduced in [1]. 

In [2], B.-Y. Chen recalled that one of the basic interests of submanifold 
theory is to establish simple relationships between the main extrinsic invariants 
and the main intrinsic invariants of a submanifold. Many famous results in dif-
ferential geometry can be regarded as results in this respect. In this regard, B. Y. 
Chen [3] proved a basic inequality involving the Ricci curvature and the squared 
mean curvature of submanifolds in a real space form. In [4] introduced the no-
tion of screen distribution which provides a direct sum decomposition of TM  
with certain nice properties. 

In [5], the author immersed a lightlike hypersurface equipped with the Rie-
mannian metric (induced on it by the rigging) into a Riemannian manifold suita-
bly constructed on the Lorentzian manifold and she established the basic rela-
tionships between the main extrinsic invariants and the main intrinsic invariants 
named Chen-Ricci inequality of the lightlike hypersurface in the Lorentzian ma-
nifold. Inequalities between extrinsic and intrinsic are explored to give some 
characterizations of isometric immersions. Since the Riemann curvature tensor 
is one of the central concepts in differential geometry that allows us to get rela-
tionships between geometric objects, it is difficult to hundle it in case of lightlike 
geometry because the algebraic properties are not verified in general case. We 
have to ensure the algebraicity of Riemann curvature tensor in degenerate case. 
In 1965, A. Friedman proved that any n-dimensional semi-Riemannian mani-
fold of index q can be isometrically embedded in a semi-Euclidean space of  

dimension ( )1 1
2

n n +  and index q≥  [6]. 

In [7] the autors established some remarkable geometric roperties to ensure 
algebraicity of the induced Riemannian curvature tensor on lightlike Warped 
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Product Manifolds. The same approach has been explored in [8] to present os-
serman conditions for lightlike warped product manifolds. Using rigging tech-
nical, the authors showed the nonexistence of stable currents in lightlike hyper-
surface of Lorentzian manifold and they has established some inequalities be-
tween the main extrinsic and intrinsic invariants on lightlike hypersurface in the 
Lorentzian manifold in [9] [10]. 

In this paper, we establish inequalities for a submanifold of a semi-Rieman- 
nian manifold. In our approach, to deal with the problem concerning the alge-
braicity properties of the Riemannian curvature tensor induced on a submani-
fold, we induce a semi-Riemannian metric on the lightlike submanifold and we 
immersed isometrically the lightlike submanifold endowed with semi-Riem- 
mannian metric in semi-Riemmannian manifold. We then establish links be-
tween the lightlike geometry and basics invariants of the associated nondegene-
rate geometry such as linear connection, the curvature tensor, Ricci curvature 
such that is symmetric and sectional curvature and we established some inequa-
lities between scalar curvature and shape operator of lightlike submanifold in 
semi-Riemannian manifold with the a spacelike, timelike mean curvature, time-
like geodesic, spacelike geodesic and timelike mixed geodesic. We give the fol-
lowing diagram illustrates the situation: 
 

 
 

The remaining of this paper is organized as follows: 
Section 2 contains most of the prerequisites material of lightlike submanifolds 

in semi-Riemannian Manifold. The normalization and the associated semi- 
Riemannian structure on a normalized null submanifold using Rigging tech-
niques are introduced and discussed in Section 3. The relashionship between the 
lightlike and the associated semi-Riemannian geometry is considered in Section 
4. In the last section, we give the inequalities between the scalar curvature of 
lightlike submanifold in semi-Riemannian manifold. 

2. Preliminaries 

Let ( ),M g  be a real ( )n k+ -dimensional semi-Riemannian manifold of con-
stant index { }1, , 1q n k∈ + −�  where 1, 1n k> ≥ . Suppose M is a n-dimen- 
sional submanifold of M . In case xg  is non-degenerate on xT M , then xT M  
and xT M ⊥  are complementary orthogonal vector subspaces of xT M , a part of 
the normal vector bundle TM ⊥  (the radical distribution) lies in the tangent 
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bundle TM  of a submanifold M of a semi-Riemannian manifold M . Other-
wise, xT M  and xT M ⊥  are degenerate orthogonal subspaces but no longer com-
plementary subspaces, that is { }0TM TM ⊥∩ ≠ . Thus a basic problem of the 
lightlike submanifolds is to replace the intersecting part by a vector subbundle 
whose sections are nowhere tangent to M. To overcome with this problem posed 
by lightlike submanifolds, the authors Bejancu and Duggal introduced the no-
tion of screen distribution which provides a direct sum decomposition of TM  
with certain nice properties. Used a screen distribution ( )TMS  on M and a 
screen vector bundle ( )TM ⊥S  over M to construct a transversal bundle  
( )tr TM . They obtained the structure equations of M that relate the curvature 

tensor of M  with the curvature tensor of the linear connections induced on the 
vector bundles involved in the study. If the mapping ( )Rad TM  is a smooth 
distribution with constant rank 0r > , then, it is said the radical (lightlike) dis-
tribution on M. Also, g is called r-null (r-lightlike, r-degenerate) metric on M the 
submanifold M is said to be r-lightlike (r-lightlike, r-degenerate) submanifold of 
M , with nullity degree r and is simply called null (lightlike) submanifold. Any 
complementary (and hence orthogonal) distribution ( )TMS  of ( )Rad TM  
in TM  is called a screen distribution. For a fixed screen distribution ( )TMS  
on M, the tangent bundle splits as  

( ).orthTM RadTM TM= ⊕ S                     (1) 

Certainly, ( )TMS  is not unique, however it is canonically isomorphic to 
the factor vector bundle *TM TM RadTM=  considered by Kupeli [11]. ( )TMS  
can be constructed by using the local equations of the submanifold and therefore 
it enables us to obtain the main induced geometrical objects: induced connection, 
second fundamental form, shap operator, �  A screen transversal vector bun-
dle ( )TM ⊥S  on M is any (semi-Riemannian) complementary vector bundle 
of ( )Rad TM  in TM ⊥ . It is obvious that ( )TM ⊥S  is non-degenerate with 
respect to g  and TM ⊥  has the following orthogonal direct decomposition  

( ).orthTM RadTM TM⊥ ⊥= ⊕ S                    (2) 

( )TMS  and ( )TM ⊥S  are called a screen distibution and a screen trans-
versal vector bundle of M respectively. As ( )TMS  is not degenerate let  

( )TM ⊥S  be its complementary orthogonal in 
M

TM . Then we have the fol-
lowing decomposition  

( ) ( ) .orthM
TM TM TM ⊥= ⊕S S                   (3) 

Note that ( )TM ⊥S  is a vector subbundle of ( )TM ⊥
S  and since both are 

non-degenerate we have the following orthogonal direct decomposition 

( ) ( ) ( ) .orthTM TM TM
⊥⊥ ⊥ ⊥= ⊕S S S  

Since the theory of null submanifold M is mainly based on both ( )TMS  
and ( )TM ⊥S , a null submanifold is denoted by ( ) ( )( ), , ,M g TM TM ⊥S S  
and we have four sub-cases with respect to the dimension and codimension of M 
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and rank of RadTM : 
1) r-null(lightlike) if ( )min ,r n k< ;  
2) Coisotropic if r k n= <  (hence ( ) { }0TM ⊥ =S );  
3) Isotropic if r n k= < , (hence ( ) { }0TM =S );  
4) Totally null if r n k= = , (hence ( ) { } ( )0TM TM ⊥= =S S ).  
We have seen from the above that the normal bundle TM ⊥  is orthogonal but 

not a complement to TM , since it intersects the null tangent bundle RadTM . 
This creates a problem as a vector of xT M  cannot be decomposed uniquely in-
to a component tangent of xT M  and a component of xT M ⊥ . Therefore, the 
standard definition of second fundamental forms and the Gauss-Weingarten 
formulae do not work, To deal with this anomaly, one of the techniques used 
consists to split the tangent bundle TM  into four non-intersecting comple-
mentary (but not orthogonal) vectors bundle. 

Theorem 2.1 Let ( ) ( )( ), , ,M g TM TM ⊥S S  be an r-lightlike submanifold 
of ( ),M g  with 1r > . Suppose   is a coordinate neighbourhood of M and 
{ } { }; 1, ,i i rξ ∈ �  a basis of ( )RadTMΓ


. Then there exist smooth sections  

{ }iN  of ( )TM
⊥⊥


S  such that 

( ), ,i i ijg N ξ δ=                         (4) 

and  

( ), 0i jg N N =                         (5) 

for any { }, 1, ,i j r∈ � .  
It follows that there exists a null transversal vector bundle ( )ltr TM  locally 

spanned by { }iN . By using (4) and (2) it is easy to check that  
{ }1 1, , , , ,r rB N Nξ ξ= � �  is a basis of ( )

|
S TM

⊥⊥Γ
U

. The set of local sections 
{ }iN  is not unique even if one use the same vector bundle in general. Let  
( )tr TM  be complementary called (but not orthogonal) vector bundle to TM  

in 
M

TM . Then the following hold  

( ) ( ) ( ) ,Orthtr TM ltr TM TM ⊥= ⊕ S                 (6) 

( ) ( )( ) ( ) ( ).Orth OrthM
TM TM RadTM ltr TM TM TM tr TM⊥= ⊕ ⊕ ⊕ = ⊕S S  (7) 

Let ∇  be the Levi-Civita connection on M . As TM and ( )tr TM  are com-
plementary sub-bundles of 

M
TM , the Gauss and Weingarten formulae are  

( ), ,X XY Y h X Y∇ =∇ +                      (8) 

,t
X V XV A X V∇ = − +∇                      (9) 

( ) ( )( ), ,X Y TM V tr TM∀ ∈Γ ∈Γ . ∇  and t∇  are linear connections on TM 
and the vector bundle ( )tr TM  called the induced linear connection and the 
transversal linear connection on M respectively. 

∇  is torsion-free linear connection. The components XY∇  and VA X−  
belong to ( )TMΓ , ( ),h X Y  and t

XV∇  to ( )( )tr TMΓ . Also h is a ( )( )tr TMΓ - 
valued symmetric bilinear form on ( )TMΓ  called the second fundamental form 
of M with respect to ( )tr TM . A is a ( )TMΓ -valued bilinear form defined on 
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( )( ) ( )tr TM TMΓ ×Γ  called shape operator of M. From the geometry of non- 
degenerate submanifolds [12], it is known that the induced connection on a 
non-degenerate submanifold is a Levi-Civita connection. Unfortunately, in gen-
eral, this is not true for a null submanifold. 

( )( ) ( )( ) ( )( ), , , ,l l
X g X Y g h X Y g h X Z Y∇ = +            (10) 

( )( ) ( ) ( ){ }, , ,t
X V Vg V V g A X V g A X V′′ ′∇ = − +            (11) 

for all ( ) ( )( ), , ; ,X Y Z TM V V tr TM′∈Γ ∈Γ . Thus, it follows that the induced 
connection ∇  is not a Levi-Civita connection. 

According to the decomposition (6), let L and S denote the projection mor-
phisms of ( )tr TM  onto ( )ltr TM  and ( )TM ⊥S  respectively, lh L h= � ,  

sh S h= � , ( )l t
X XD V L V= ∇ , ( )s t

X XD V S V= ∇ . The transformations lD  and 
sD  do not define linear connections but Otsuki connections on ( )tr TM  with 

respect to the vector bundle morphisms L and S. Then we have 

( ) ( ), ,l s
X XY Y h X Y h X Y∇ =∇ + +               (12) 

( ),l s
X N XN A X D N D X N∇ = − + +                (13) 

( ),l s
X W XW A X D X W W∇ = − + +∇                (14) 

( ) ( )( ), ,X Y TM N ltr M∀ ∈Γ ∈Γ  and ( )( )W S TM ⊥∈Γ . Since ∇  is a metric 
connection, using (12) - (14) we have  

( )( ) ( )( ) ( ), , , , ,s l
Wg h X Y W g Y D X W g A X Y+ =          (15) 

( )( ) ( ), , , .s
Wg D X N W g N A X=                 (16) 

As lh  and sh  are ( )( )ltr TMΓ -valued and ( )( )TM ⊥Γ S -valued respec-
tively, we call them the null second fundamental form and the screen second 
fundamental form of M. 

Suppose M is either with { }min ,r m k<  or coisotropic. Then, using the de-
composition (1) we get 

( )* * ,X XY PY h X PY∇ =∇ +                  (17) 

* *t
X XA Xξξ ξ∇ = − +∇                     (18) 

for any ( ),X Y TM∈Γ  and ( )RadTMξ ∈Γ , where { }* *,X PY A Xξ∇  and  
( ){ }* *, , t

Xh X PY ξ∇  belong to ( )( )TMΓ S  and ( )( )Rad TMΓ  respectively. It 
follows that *∇  and *t∇  are linear connections on ( )TMS  and RadTM  
respectively. On the other hand, *h  and *A  are ( )RadTMΓ -valued and  

( )( )TMΓ S -valued bilinear forms on ( ) ( )( )TM TMΓ ×Γ S  and  
( ) ( )RadTM TMΓ ×Γ  Called the second fundamental forms of distributions  
( )TMS  and ( )Rad TM  respectively. 

For any ( )RadTMξ ∈Γ  consider the linear operator  

( ) ( )( ) ( ) ( )* *: ; , ,A TM TM A X A X X TMξ ξ ξΓ →Γ = ∀ ∈ΓS  

and call it the shape operator of ( )TMS  with respect to ξ . Also, call *∇  
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and *t∇  the induced connections on ( )TMS  and RadTM  respectively. 
The second fundamental form and shape operator of non-degenerate subma-

nifold of a semi-Riemannian manifold are related by means of the metric tensor 
field. Contrary in case of null submanifolds there are interrelations between geo-
metric objects induced by ( )tr TM  on one side and geometric objects induced 
by ( )S TM  on the other side. More precisely, 

( )( ) ( ) ( )( ) ( )
( )( )

* *

*

, , , , , , ,

, , 0, 0.

l
N

l

g h X PY g A X PY g h X PY N g A X PY

g h X A

ξ

ξξ ξ ξ

= =

= =
    (19) 

From (19) as lh  is symetric, it follows that the shape operator of ( )TMS  
is a self-adjoint operator on ( )TMS . 

Next, consider a coordinate neighbourhood U  of M and let { },iN Wα  be a 

basis of ( )( )M
tr TMΓ  where ( )( ) { }, 1, ,i M

N ltr TM i r∈Γ ∈ �  and  

( )( ) { }, 1, ,W TM r kα α⊥∈Γ ∈ + �


S . Then (12) becomes 

( ) ( )
1

, , .
r k

l s
X X i i i

i r
Y Y h X Y N h X Y Wα

α= =

∇ = ∇ + +∑ ∑            (20) 

We call { }lih  and { }shα  the local null second fundamental forms and the 
local screen second fundamental forms of M on U . 

We recall the equations of Gauss, Codazzi and Ricci with play an important 
role in studying differential geometry of non-degenerate submanifolds Let R  
and R denote the Riemannian curvature tensors of ∇  and ∇  on M  and M 
respectively. The Gauss equation are given by  

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

, , , ,
, ,

, , , ,

, , , ,

, , , ,

l l s sh X Z h Y Z h X Z h Y Z

l l l s
X Y

l s s s
X Y

s l s s

R X Y Z R X Y Z A Y A X A Y A X

h Y Z h X Z D X h Y Z

D Y h X Z h Y Z h X Z

D X h Y Z D Y h X Z

= + − + −

+ ∇ − ∇ +

− + ∇ − ∇

+ −

 

( ), , ,X Y Z U TM∀ ∈Γ . Therefore  

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

*

*

, , , , , , , , ,

, , , , , ,

, , , ,

l

l s s

s s

R X Y PZ PU R X Y Z PU g h Y PU h X Z

g h X PU h Y Z g h Y PU h X Z

g h X PU h Y Z

= +

− +

−

 (21) 

Throughout, we consider that the submanifold is coisotropic that is 0sh = . 
Let the differential 1-forms { }( ), 1, , 0 min ,i i r r m nω = < <�  defined by:  

( ) ( ) ( ) { }, , , 1, , .i iX g X N X TM i rω = ∀ ∈Γ ∈ �


         (22) 

Then any vector X on M is expressed on U  as follows  

( )
1

r

i i
i

X PX Xω ξ
=

= +∑                      (23) 

where P is the projection morphism of ( )TMΓ  onto ( )( )S TMΓ .  
Lemma 2.1 [13] If 1, , na a�  are real numbers then  
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2
2

1 1

1 ,
n n

i i
i i

a a
n = =

  ≤ 
 
∑ ∑                       (24) 

with equality if and only if 1 na a= =� .  

3. Normalization and Induced Semi-Riemannian Metric 

Let ϖ  denote the 1-form which satisfying ( ) ( ). ,.g Nϖ = . Then, take  

fω ϖ=                             (25) 

to be its restriction to M, the map :f M M→  being the inclusion map. 
Throughout, a screen distribution on M is denote by ( )NS . 

We define the associated semi-Riemannian metric on M  as  

1 1and .r r
i ig g g i g gϖ ϖ ω ω= == − ⊗ = = − ⊗�             (26) 

Lemma 3.1 [14] Let ( ),nM g  be a submanifold in semi-Riemannian mani-
fold ( )1,nM g+ . Then, g�  is nondegenerate.  

Let ( )( ), ,M g NS  be a normalized null submanifold of a semi-Riemannian 
manifold, then the integral curves of the rigged vector field ξ  are pregeodesic 
but not geodesic in general. The following lemma shows that in case the norma-
lization is a conformal vector field, then ξ  is g -geodesic.  

Lemma 3.2 Let ( )( ), ,M g NS  be a conformal normalized null submanifold 
of a semi-Riemannian manifold such, then iξ  is g -geodesic and ( )1 0r

ii τ ξ
=

=∑ . 
Definition 3.1 A normalized null submanifold ( ), ,M g N  of a semi-Rie- 

mannian manifold ( ),M g  is said to have a conformal screen if there exists a 
non vanishing smooth function ϕ  on M such that NA Aξϕ=   holds.  

This is equivalent to saying that ( ) ( ), ,Ng A X PY g A X Yξϕ=   for all tangent 
vector fields X and Y. The function ϕ  is called the conformal factor. 

4. Relation between the Null and the Associated  
Semi-Riemannian Geometry 

The main focus of this section lies on deriving jump formulas for the various 
curvature quantities, that is, how the Riemann and Ricci tensor and scalar cur-
vature of course the reason why this is of a particular interest lies in physics, 
mainly general relativity, where such formulas might find an application due to 
the Einstein field equations. 

Theorem 4.1 [14] Let ( ), ,nM g N  be a r-closed coisotropic normalized null 
submanifold with rigged vector field ξ  in a ( )n k+  semi-Riemannian mani-
fold. Then ( ),X Y TM∀ ∈Γ , we have the following:  

( ) ( )

( ) ( )

( )( ) ( )( )

( )( ) ( ) ( )( )

*

1 1

*

1 1

*

1 1

1 1

, , , ,

, ,

.

i i

i
i

i i

i
i

r r

N
i i

r r
N

i
i i
r r

N
i i
r r

N N
i X

i i

Ric X Y Ric X Y A X Y A X Y

X Y trA

A X Y A X Y

X Y Y

ξ

ξ

ξ ξ ξ

ξ

τ ω

τ ω τ

= =

= =

= =

= =

= − −
+ 

+ ∇ − ∇

+ ∇ − ∇

∑ ∑

∑ ∑

∑ ∑

∑ ∑

�

       (27) 
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where Ric�  and Ric  denote the Ricci curvature of ∇�  and ∇  respectively.  
Lemma 4.1 [14] Let ( ),nM g  be a r-closed and conformal (with factor ϕ ) 

coisotropic normalized null submanifold with rigged vector field ξ  in a  
( )n k+  semi-Riemannian manifold. Then  

( ) ( ) ( )

( ) ( )( )

* *

1

*

1

, , 1 ,

1 , .

i i

i i

r

i

r

i

Ric X Y Ric X Y A X Y trA

A X Y

ξ ξ

ξ ξ

ϕ

ϕ

=

=


= − −


− − ∇ 

∑

∑

�

         (28) 

Theorem 4.2 [14] Let ( ),nM g  be a r-closed coisotropic normalized null sub- 
manifold with rigged vector field ξ  and ( ) 0Nτ ξ =  in a semi-Riemannian ma-
nifold. Then 

( ) ( ) ( ) #

0 * *

1

#*

1
.

i i i

i
i i i i

r

N
i

r
NN g

N
i

r trA trA trA

tr A tr A divη

ξ ξ

ξ ξ ξ τ τ τ

=

=

 ϒ = − − 

 + ∇ − ∇ + − 

∑

∑

�

       (29) 

Corollary 4.1 Let ( ),nM g  be a closed and conformal (with factor ϕ ) nor-
malized null submanifold with rigged vector field ξ  in a ( )n k+  semi-Rie- 
mannian manifold. Then  

( ) ( ) ( )20 * *

1
1 .

i i i

r

i
r trA tr Aξ ξ ξϕ

=

 ϒ = + − − ∇  ∑�              (30) 

Since the sectional curvature of null submanifold equipped with associated 
Riemannian metric is symmetric, we can denote the scalar curvature by r�  with 
respect g�  as follows:  

( )
1

1, .
2i j

i j n
r K e e

≤ < ≤

= = ϒ∑ � ��                    (31) 

By (31), (29) and (30) become  

( ) ( ){
( )}

0 * * *

1

##

1
2

.

i i i i i i i

i

r

N N
i

Ng N

r r trA trA trA tr A tr A

div ηω

ξ ξ ξ ξ ξ

τ τ τ

=

 = − − − ∇ + ∇ 

+ +

∑�
      (32) 

( ) ( ) ( )20 * *1 1 .
2 i i i

r r trA tr Aξ ξ ξϕ  = + − − ∇  
�               (33) 

5. Link between Geometry of g�  and g   

Let ( ),M g�  be an n-dimensional semi-Riemannian submanifold of index 1q −  
of an ( )n k+ -dimensional semi-Riemannian manifold ( ),M gα . We shall use 
the inner product notation ,  for both the metrics of M and the induced me-
tric g on the null submanifold M. The semi-Riemannian submanifold M is space-
like if 0q = ; and it is timelike if q n= . The Gauss and Weingarten formulas 
are given, respectively, by  

( ),X XY Y X Yα δ∇ = ∇ +�                       (34) 
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.X X XA Dα α αξ ξ ξ∇ = − +                       (35) 

where A Xξ  and XD ξ  are the tangential and normal components of Xα ξ∇  
for all ,X Y TM∈  and T Mξ ⊥∈ , where ,α∇ ∇�  are the semi-Riemannian con-
nections with respect g  and g�  respectively. The second fundamental form 
δ  related to the shape operator A by  

( ), , ,X Y A X Yξδ ξ =                        (36) 

The second fundamental form can be used to determine a relationship be-
tween the curvature of M  and of M with respect to gα  and g�  respectively. 
More precisely we have the following  

( )( ) ( )( ) ( ) ( ) ( ) ( ), , , , , , , , .g R X Y Z W g R X Y Z W X Z Y W Y Z X Wα α δ δ δ δ= + −��

(37) 

for all , , ,X Y Z W TM∈ , where R  and R�  are the curvature tensors of M  
and M respectively of g  and g� . 

Let { }1, , ne e�  be any orthonormal basis for xT M . The mean curvature 
vector ( )H x  at x M∈  is defined by  

( ) ( ) ( ) ( )( )*

1 1

1 , , , ,
n n

i i i i i i i
i r i r

H x e e g e e g A e e
n ξε δ

= + = +

= =∑ ∑          (38) 

being ( )1, ,r ne e+ �  an orthonormal basis of ( )NS  at x. A submanifold is said 
to be minimal if and only if its mean curvature vector vanishes. Minimal subma-
nifolds appear in a natural way as the critical points of the volume functional 
and they are a topic of current interest in differential geometry. We say that a 
submanifold is totally geodesic if its second fundamental form vanishes, 0δ = . 
This is equivalent to saying that every geodesic in M is also a geodesic in M . If 
( ), ,X Y X Y Hδ =  for all ,X Y TM∈ , then M is totally umbilical. 
Let ( ),M g�  be an n-dimensional semi-Riemannian submanifold of index  

1q −  of an ( )n k+ -dimensional semi-Riemannian manifold ( ),M gα . Let  
{ }1, , ,r ne e e�  be an orthogonal basis of the tangent space xT M  and re  with  

{ }1, ,r k∈ � , be an orthonormal basis of the normal space T M⊥  with respect 
g� . We put  

( ), ,r
ij i j re e eδ δ=                        (39) 

so that  

( ) ( ), , , , , .r
i j r i j r r r ij r r r re e e e e e e e eδ ε δ ε δ ε= = =          (40) 

where the quantities r
ijδ  are called the coefficients of the second fundamental 

form δ . We put also  

( ) ( )
22

, 1 , 1
, , ,

n n
r

i j i j ijg gi j i j
e e e eδ δ δ δ

= =

= =∑ ∑� �
             (41) 

Let ijKα
�  and ijKα  denote the sectional curvature of the plane section span- 

ned by ie  and je  at x in the submanifold ( ),M g�  and in the semi-Rieman- 
nian manifold ( ),M gα . Thus, ijKα

�  and ijkα  are the intrinsic and the extrin-
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sic sectional curvatures of the Span { },i je eπ = . From (37), we get  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,i j i j j i i j i i j jK K e e e e e e e eα απ π ε ε δ δ ε ε δ δ= + −�  (42) 

which turns out to be  

( ) ( ) ( )2

1 1
.

k k
r r r

i j ij i j ii jj
r r

K Kα απ π ε ε δ ε ε δ δ
= =

= + −∑ ∑�            (43) 

The scalar curvature rα�  of M at x with respect g�  in the ambient semi- 
Riemannian manifold ( ),M gα  is defined by  

( ) ( )
0 1

1 .
2

n

ij i
i j n i

r x K Ric eα α α
≤ < ≤ =

= =∑ ∑� ��                 (44) 

If D  is any distribution on M, then the g-orthogonal distribution of D , 
denoted by ⊥D , is the distribution whose fibre over each point p M∈  is  

( ){ }: , 0 x xX T M g X Y Y= ∈ = ∀D D . Where xD  denotes the fibre of D  over 
x. 

Now we consider the following maximally timelike and maximally spacelike 
distribution on M µD  and D , we write a g-orthogonal decomposition  

.ortTM µ ν= ⊕D D                        (45) 

Thus there is an orthonormal frame { }1 1, , , , ,q q ne e e e+� � , where  

{ }1, , qe eµ = �D  is the maximally timelike and { }1, ,q ne eν += �D  is the max-
imally spacelike. If �D  is any subbundle of T M⊥ , then the g -orthogonal 
subbundle of �D , denoted by ⊥�D , is the subbundle of T M⊥  such that  

( ){ }: , 0 ,xV T M g V W W x M⊥ ⊥ ⊥= ∈ = ∀ ∈ ∈� �D D  
Now, there is always a g -orthogonal decomposition of the normal bundle 

T M⊥  as  

ortT M µ ν
⊥ = ⊕� �D D                       (46) 

where 1, , qe eµ =� � ��D  is the maximally timelike and 1, ,q ne eν +=� � ��D  is the max-
imally spacelike. Let ( ),M g�  be an (n)-dimensional semi-Riemannian subma-
nifold of index q of an ( )n n+ -dimensional semi-Riemannian ( ),M gα . 

A normal subbundle of TM ⊥  will be called maximally timelike if it is time-
like and has rank qα� . Similarly, a normal subbundle of TM ⊥  will be called 
maximally spacelike if it is spacelike and has rank ( )n qα− � . we can write now  

( ) ( ) ( ), , ,X Y X Y X Yµ νδ δ δ= +
� �D D                (47) 

where ( ),X Yµ
µδ ∈

� �D
D  and ( ),X Yν

νδ ∈
� �D D . 

6. Relationships between the g  and g  Geometry 

In this section, we give the links between to geometric objects of gω  and g  
using rigging techniques.  

Lemma 6.1 [14] Let ( ), ,M g N  be a normalized null submanifold in semi- 
Riemmannian manifold ( ),M g  and α∇ , ∇  be the Levi-Civita connections 
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of g  and g  respectively. Let ( ),M gα  be a semi-Riemannian manifold of 
index ( )q qα+ �  constructed in a semi-Riemannian manifold ( ),M g . Then fo-
rall ( ),X Y TM∈Γ , we prove the following:  

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )}# #

1 2 , 2 ,
2

.

i
i

N
X X N i

X Y

Y Y g A X Y X Y d X Y N

i d Y i d X

α τ ϖ ϖ

ϖ ϖ ϖ ϖ

 ∇ =∇ + − + − 

+ +
  (48) 

In particular, for a closed normalization, we have this  

( ) ( ) ( )1 2 , 2 .
2

i
i

N
X X N iY Y g A X Y X Y Nα τ ϖ ∇ = ∇ + − +          (49) 

Lemma 6.2 [14] Let ( ), , iM g N  be a normalized null submanifold in semi- 
Riemmannian manifold ( ),M g . Let ( ),M gα  be a semi-Riemannian manifold 
constructed in a semi-Riemannian manifold ( ),M g , R  and Rα  the curva-
tures tensors of ∇  and α∇  respectively. Then  

( )( )
( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )( ){
( ) ( ) ( ) ( ) ( )( )( )

( ) ( )} ( ) ( )

, ,

, , , , ,

, , , ,

, , ,

, , , , , .

i
i i i

i
i i i i

i i
i i

i
i

N
N N N

N
N N N Y N

N N
N X N

N
N

g R X Y Z W

g R X Y Z W g A Y Z g A X W Y Z g A X W

g A X Z g A Y W X Z g A Y W g A X Z

d X Y Z X g A Y Z g A Y Z

Y g A X Z W X Y Z W TM

α α

τ ϖ

τ ϖ

τ ϖ τ

τ ϖ

= + −

− + + ∇

+ − − ∇

+ ∀ ∈Γ

(50) 

In the following, by using a quasiorthonormal basis  
{ }0 1 1, , , ,n nB e e e e Nξ += = =�  for ( ),x xT M g  we can prove the the relashion-

ship between the Ricci curvature of Ricα  and the corresponding Ric  by con-
tracting (50) with gα .  

Theorem 6.1 [14] Let ( ), ,M g N  be a closed normalized r-null submanifold 
in semi-Riemmannian manifold ( ),M g . Let ( ),M gα  be a semi-Riemannian 
manifold constructed in a semi-Riemannian manifold the curvatures tensors of 
g  and g  ( ),M g , Ricα  and Ric  are respectively related on M  by 

( ) ( ) ( ) ( ) ( ){ }
( ) ( )( )( ) ( )
( ) ( )( )( ) ( ) ( )

, , , ,

, , ,

, , , , ,

N N N

N N X N N

N N N N

Ric X Y Ric X Y g A X Y g A X Y trA

g A X A Y g A Y A X

g A A X g A X Y g A X g A Y

α

ξ

ξ ξ

ξ ϖ

ξ ξ

ξ ξ ξ

= + +

− + ∇ − ∇

+ − ∇ −

 (51) 

Theorem 6.2 [14] Let ( ), ,M g ζ  be a normalized null submanifold in semi- 
Riemmannian manifold ( ),M g . Let ( ),M gα  be a semi-Riemannian manifold 
constructed in a semi-Riemannian manifold the scalar curvatures of g  and g  

( ),M g , rα  and r  are respectively related on M  by  

( )( ) ( ){
( ) }#

2 2 21 ,
2

.
g

N N N N ag

N
N

r tr A tr A A A A e

tr A div α

α ξ

ξ

ξ ξ

τ

ϒ = + − − +

− ∇ −



      (52) 
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7. Inequalities of Scalar Curvature of Null Submanifold in  
Semi-Riemannian Manifold 

Now, to establish inequality between the extrinsic scalar curvature of M and the 
scalar curvature of ( ),M gα , we shall need the followings définitions and lem-
ma.  

Definition 7.1 Let ( ),M gα�  be an n-dimensional semi-Riemannian subma-
nifold of index ( )q qα+ �  of an ( )n k+ -dimensional semi-Riemannian mani-
fold ( ),M gα  of index q. The submanifold will be called 

1) Timelike µD -geodesic if | 0µ

µ
σ =

�D
D , 

2) Timelike νD -geodesic if | 0µ

ν
σ =

�D
D , 

3) Spacelike µD -geodesic if | 0ν
µ

σ =
�D

D , 

4) Spacelike µD -geodesic if | 0ν
µ

σ =
�D

D , 

5) Timelike mixed geodesic if | 0µ

µ ν
σ × =

�D
D D , 

6) Spacelike mixed geodesic if | 0ν
µ ν

σ × =
�D

D D .  

Theorem 7.1 Let ( ), ,nM g ζ  be a normalized r-null submanifold in semi- 
Riemmannian manifold ( ),n kM g+ . Let the isometrical immersion ( ),nM g�  in 

( ),n kM gα
+  of null submanifold equipped with a semi-Riemannian manifold of 

index ( )q qα+ �  in sem-Riemannian constructed in a semi-Riemannian mani-
fold of index q. If the mean curvature is spacelike-geodesic, then  

( ) ( ){
( ) ( )}

2 2 2 2 20 2
| | |

2 #

1 1,
2 2

, .

N N

N
N N Ng

r r n H H trA tr A

A A A trA trA trA tr A

µ µ ν
µ ν µ ν

η
ξ ξ ξ ξ ξ

σ σ σ

ξ ξ τ τ

×
 ≤ + + + + + − 
 

 − + + − − ∇ + 

� � �

   

D D D
D D D D

(53) 

Also, if the mean curvature is timelike, then  

( ) ( ){
( )}

2 22 2 20 2
| | |

2 #

1 1,
2 2

, ( ) .

N N

N
N N Ng

r r n H H trA tr A

A A A trA trA trA tr A

µ ν ν
ν ν µ ν

η
ξ ξ ξ ξ ξ

σ σ σ

ξ ξ τ τ

×
 ≥ + − − − + −  

 − + + − − ∇ + 

� � �

   

D D D
D D D D

 (54) 

If the equality case of (53) is satisfied at each point x M∈ , then the mean 
curvature is timelike and M is timelike mixed geodesic. If the equality case of (54) 
is satisfied at each point x M∈ , then the mean curvature is spacelike and M is 
spacelike mixed geodesic. The equalities in both the cases (53) and (54) are true 
simultaneously if and only if M is totally geodesic.  

Let µD  be a maximally timelike, νD  be a maximally spacelike distribution 
on TM and µ

�D  be a maximally timelike distribution, ν
�D  be a maximal space-

like distribution on T M⊥ . If we put (40) in (38), then we get  

1 1 1 1 1 1 1 1
.

q qq qk n k n
r r r r
jj r jj r jj r jj r

r j r q j r j q r q j q
nH e e e e

α α

α α

δ δ δ δ
= = = + = = = + = + = +

= − − +∑∑ ∑ ∑ ∑ ∑ ∑ ∑
� �

� �
    (55) 

2 22 22
| | | |n H µ µν ν
µ ν µ ν

σ σ σ σ= + − −
� �� � D DD D

D D D D             (56) 
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which is equivalent to say that the mean curvature is timelike if the submanifold 
is spacelike µD -geodesic and spacelike νD -geodesic, and the mean curvature is 
spacelike if the submanifold is timelike µD -geodesic and timelike νD -geodesic. 
The lightlike submanifold equipped with a semi-Riemannian metric g�  is a 
semi-Riemannian submanifold of index q . 

Using the equality (44) and stanard techniques as [3], we have  
2 2 2 22

| | | |

2 2

| |

1 ,
2

.

r r n H H µ µ ν ν
µ ν µ ν

µ ν
µ ν µ ν

α α σ σ σ σ

σ σ× ×

 = + + + − −  

− +

� � � �

� �

� D D D D
D D D D

D D
D D D D

      (57) 

Which lead to the following inequality  
2 2 2

2
| | |

1 , .
2

r r n H H µ µ µ

µ ν µ να α σ σ σ ×
 ≤ + + + +  

� � �
� D D D

D D D D          (58) 

Putting (32) in (58), we have the inequality  

( ) ( ) ( ){ }#

2 2 20 2
| | |

#

1 ,
2

1 .
2

N N
N N

r r n H H

trA trA trA tr A tr A div

µ µ ν
µ ν µ ν

η

α

ξ ξ ξ ξ ξ

σ σ σ

τ τ τ

×
 ≤ + + + +  

 + − − ∇ + ∇ + + 

� � �

  

D D D
D D D D

 (59) 

Putting (52) in (59), we obtain the announced result. If the equality case of (53 
is true, then 

22 2

| || 0H
µν ν

ν µ ν
σ σ σ ×= = =

�� �
�

DD D
D D D . We can prove the rest part follows 

from  
2 2 2

2
| | |

1 , .
2

r r n H H µ µ µ

µ ν µ να α σ σ σ ×
 ≥ + − − −  

� � �
� D D D

D D D D        (60) 

If the equality case of (53), then 
22 2

| | | 0µν ν
ν ν µ ν

σ σ σ ×= = =
�� � DD D

D D D D .  
Corollary 7.1 Let ( ), ,nM g ζ  be a conformally closed normalized r-null sub-

manifold with the mean curvature is spacelike in semi-Riemmannian manifold 

( ),n kM g+  with conformal factor ϕ  and the isometrical immersion ( ),nM g�  
in ( ),M gα  of null submanifold equipped with a semi-Riemannian manifold 
g�  in sem-Riemannian constructed in a semi-Riemannian manifold of index q. 
If the mean curvature is spacelike-geodesic, then  

( ) ( ){ } ( )( ) ( ) ( ){ }

2 2 20 2
| | |

2 2 2 #2

1 ,
2

1 1 1 .
2 2

N

r r n H H

trA tr A trA tr A

µ µ ν
µ ν µ ν

η
ξ ξ ξ ξ ξ

σ σ σ

ϕ ϕ τ τ

×
 ≤ + + + +  

+ − + − − ∇ +

� � �

   

D D D
D D D D

 (61) 

If the equality case of (61) is satisfied at each point x M∈ , then the mean 
curvature is timelike and M is timelike mixed geodesic. Also, If the mean curva-
ture is timelike, then  

( ) ( ){ } ( )( ) ( ) ( ){ }

22 20 2
| | |

2 2 2 #2

1 ,
2

1 1 1 .
2 2

N

r r n H H

trA tr A trA tr A

µν ν
ν ν µ ν

η
ξ ξ ξ ξ ξ

σ σ σ

ϕ ϕ τ τ

×
 ≥ + − − −  

+ − + − − ∇ +

�� �

   

DD D
D D D D

 (62) 

If the equality case of (62) is satisfied at each point x M∈ , then the mean 
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curvature is spacelike and M is spacelike mixed geodesic. The equalities in both 
the cases (61) and (62) are true simultaneously if and only if M is totally geodes-
ic.  

Theorem 7.2 Let ( ), ,nM gα ζ�  be a normalized r-null submanifold equipped 
with a associated semi-Riemannian gα�  in semi-Riemmannian manifold  

( ),n kM gα
+ . If ( ),M gα�  is timelike geodesic, then  

( ) ( ){
( ) ( )}

2 2 2 20 2
| |

2 #

1 1,
2 2

, .

N N

N
N N Ng

r r n H H trA tr A

A A A trA trA trA tr A

ν ν
µ ν

η
ξ ξ ξ ξ ξ

σ σ

ξ ξ τ τ

 ≥ + − − + − 
 

 − + + − − ∇ + 

� �

   

D D
D D

   (63) 

If the equality case of (63) is satisfied at each point x M∈ , then M is mixed 
geodesic.  

From (57) and under the assumption that the submanifold is timelike geodes-
ic, we have: 

2 222
| | |

1 , ,
2

r r n H H ν ν ν
µ ν µ να α σ σ σ ×

 = + − − +  
� � �� D D D

D D D D          (64) 

which implies the inequality  
2 22

| |
1 , .
2

r r n H H ν ν
µ να α σ σ ≥ + − −  
� �� D D

D D               (65) 

Putting (32) in (65), we have the inequality 

( ) ( ) ( ){ }#

2 20 2
| |

#

1 ,
2

1 .
2

N N
N N

r r n H H

trA trA trA tr A tr A div

ν ν
µ ν

η

α

ξ ξ ξ ξ ξ

σ σ

τ τ τ

 ≥ + − − 
 

 + − − ∇ + ∇ + + 

� �

  

D D
D D

 (66) 

and putting (52) in (66), we obtain (63) the equality case of (63) is satisfied if 
2

| 0ν
µ ν

σ × =
�D

D D , which is equivalent to say that M is mixed geodesic.  
In the conformally case with conformal factor ϕ , we can prove the following  
Corollary 7.2  

( ) ( ){ }
( )( ) ( ) ( ){ }

2 2 2 20 2 2
| |

2 #

1 1,
2 2

1 1 .
2

N

r r n H H trA tr A

trA tr A

ν ν
µ ν

η

α ξ ξ

ξ ξ ξ

σ σ ϕ

ϕ τ τ

 ≥ + − − + − 
 

+ − − ∇ +

� �  

 

D D
D D

   (67) 

If the equality case of (67) is satisfied at each point x M∈ , then M is mixed 
geodesic.  

Theorem 7.3 Let ( ), ,nM g ζ  be a normalized r-null submanifold in semi- 
Riemmannian manifold ( ),M g  and the isometrical immersion ( ),nM g�  in 

( ),M gα  of null submanifold equipped with a semi-Riemannian manifold g�  
in semi-Riemannian constructed in a semi-Riemannian manifold of index q. If 
( ),M g�  is timelike geodesics, then  

( ) ( ){
( ) ( )}

2 2 2 20 2
|

#

1 1,
2 2

, .

N N N g

N
N N

r r n H H trA tr A A

A A trA trA trA tr A

ν
µ ν

η
ξ ξ ξ ξ ξ

σ ξ

ξ τ τ

×≤ + + + − −

 + + − − ∇ + 

�

   

D
D D

   (68) 

If the equality case of (68) is true, then M is minimal  
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The submanifold equipped with associated semi-Riemannian ( ),nM g�  is 
isometrically immersed in a Riemannian manifold ( ),M gα  is semi-riemannian 
submanifold. Under the assumption that the submanifold is timelike geodesic, 
from (57) and using semi-Riemannian technical, we have the following inequa-
lity  

22
|

1 , ,
2

r r n H H ν
µ να α σ ×≤ + +
�� D

D D                  (69) 

Putting (32) in (65), we have  

{
( ) ( ) ( )}#

20 2
|

#

1 1,
2 2

.

N

N N
N

r r n H H trA trA trA

tr A tr A div

ν
µ ν

η

α ξ ξ

ξ ξ ξ

σ

τ τ τ

×  ≤ + + + − 

− ∇ + ∇ + +

�  



D
D D

        (70) 

and putting (52) in (70), the desired result hold. If the equality case of (68) is 
true, then 

2 2

| | 0ν ν
µ ν

σ σ= =
� �D D

D D , which is equivalent to say that M is minimal.  
Corollary 7.3 Let ( ), ,nM g ζ  be a closed conformally normalized r-null sub-

manifold in semi-Riemmannian manifold ( ),M g  with conformal factor ϕ  
and the isometrical immersion ( ),M g�  in ( ),M gα  of null submanifold equip- 
ped with a semi-Riemannian manifold g�  in sem-Riemannian constructed in a 
semi-Riemannian manifold of index q. If ( ),nM g�  is timelike geodesic, then  

( ) ( ){ }
( )( ) ( ) ( ){ }

2 2 20 2 2
|

2 #

1 1,
2 2

1 1 .
2

N

r r n H H trA tr A

trA tr A

ν
µ ν

η

ξ ξ

ξ ξ ξ

σ ϕ

ϕ τ τ

×≤ + + + −

+ − − ∇ +

�  

 

D
D D

      (71) 

If the equality case of (71) is true, then M is minimal  
Theorem 7.4 Let ( ), ,nM g ζ  be a closed normalized r-null submanifold in 

semi-Riemmannian manifold ( ),M g  and the isometrical immersion ( ),M g�  
in ( ),M gα  of null submanifold equipped with a semi-Riemannian manifold 
g�  in sem-Riemannian constructed in a semi-Riemannian manifold of index q. 
If ( ),nM g�  is spacelike geodesic, then  

( ) ( ){
( ) ( )}

2 2 2 20 2
| |

2 #

1 1,
2 2

, .

N N

N
N N Ng

r r n H H trA tr A

A A A trA trA trA tr A

µ µ

µ ν

η
ξ ξ ξ ξ ξ

σ σ

ξ ξ τ τ

 ≤ + + + + − 
 

 − + + − − ∇ + 

� �

   

D D
D D

 (72) 

The equality case of (72) is satisfied at each point p M∈  if and only if M is 
mixed geodesic.  

From (57) and under the assumption of theorem, we have  
2 2 2

2
| | |

1 , .
2

r r n H H µ µ µ

µ ν µ να α σ σ σ ×
 ≤ + + + −  

� � �
� D D D

D D D D        (73) 

Putting (32) in (73), we have  

( ) ( ) ( ){ }#

2 2
0 2

| |

#

1 ,
2

1 .
2

N N
N N

r r n H H

trA trA trA tr A tr A div

µ µ

µ ν

η

α

ξ ξ ξ ξ ξ

σ σ

τ τ τ

 ≤ + + + 
 

 + − − ∇ + ∇ + + 

� �

  

D D
D D

 (74) 
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and putting (52), (74), on obtain (72). With the equality if and only if 
2

| 0µ

µ ν
σ × =

�D
D D . 

which is equivalent to say that M is mixed geodesic.  
Corollary 7.4  

( ) ( ){ }
( )( ) ( ) ( ){ }

2 2 2 20 2 2
| |

2 #

1 1,
2 2

1 1 .
2

N

r r n H H trA tr A

trA tr A

µ µ

µ ν

η

ξ ξ

ξ ξ ξ

σ σ ϕ

ϕ τ τ

 ≤ + + + + − 
 

+ − − ∇ +

� �  

 

D D
D D

  (75) 

The equality case of (75) is satisfied at each point p M∈  if and only if M is 
mixed geodesic.  

Theorem 7.5 Let ( ), ,nM g ζ  be a closed normalized r-null submanifold in 
semi-Riemmannian manifold ( ),M g  and the isometrical immersion ( ),M g�  
in ( ),M gα  of null submanifold equipped with a semi-Riemannian manifold 
g�  in sem-Riemannian constructed in a semi-Riemannian manifold of index q. 
If ( ),nM g�  is spacelike geodesic, then  

( ) ( ){
( ) ( )}

2 2 2 20 2
|

#

1 1,
2 2

, .

N N N g

N
N N

r r n H H trA tr A A

A A trA trA trA tr A

µ

µ ν

η
ξ ξ ξ ξ ξ

σ ξ

ξ τ τ

×≥ + − + − −

 + + − − ∇ + 

�

   

D
D D

   (76) 

The equality case of (76) is satisfied at each point p M∈  if and only if M is 
minimal.  

Under the assumption of theorem, from (57) and substituting (32), and (52) 
in (57), we prof (76). With the equality if and only if 

2 2

| | 0µ µ

µ ν
σ σ= =

� �D D
D D   

Corollary 7.5 Let ( ), ,nM g ζ  be a conformally normalized r-null submani-
fold in semi-Riemmannian manifold ( ),M g  with conformal factor ϕ  and 
the isometrical immersion ( ),M g�  in ( ),M gα  of null submanifold equipped 
with a semi-Riemannian manifold g�  in sem-Riemannian constructed in a 
semi-Riemannian manifold of index q. Then  

( ) ( ){ }
( )( ) ( ) ( ){ }

2 2 20 2 2
|

2 #

1 1,
2 2

1 1 .
2

N

r r n H H trA tr A

trA tr A

µ

µ ν

η

ξ ξ

ξ ξ ξ

σ ϕ

ϕ τ τ

×≥ + − + −

+ − − ∇ +

�  

 

D
D D

      (77) 

The equality case of (77) is satisfied at each point p M∈  if and only if M is 
minimal.  

8. Conclusion 

In this paper, some basic inequalities, involving the scalar curvature and the 
mean curvature, for a lightlike submanifold of a semi-Riemannian manifold are 
obtained. We established some inequalities between scalar curvature and shape 
operator of lightlike submanifold in semi-Riemannian manifold with the space-
like, timelike mean curvature, timelike geodesic, spacelike geodesic and timelike 
mixed geodesic. Equality cases are also discussed. For the rest of the work, we 
will establish other inequalities with an example for understand the methodolo-
gy and its potential applications. 
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