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Abstract 
Using resting-state functional magnetic resonance imaging (fMRI) technolo-
gy to assist in identifying brain diseases has great potential. In the identifica-
tion of brain diseases, graph-based models have been widely used, where graph 
represents the similarity between patients or brain regions of interest. In these 
models, constructing high-quality graphs is of paramount importance. Re-
searchers have proposed various methods for constructing graphs from dif-
ferent perspectives, among which the simplest and most popular one is Pear-
son Correlation (PC). Although existing methods have achieved significant 
results, these graphs are usually fixed once they are constructed, and are gen-
erally operated separately from downstream task. Such a separation may re-
sult in neither the constructed graph nor the extracted features being ideal. 
To solve this problem, we use the graph-optimized locality preserving projec-
tion algorithm to extract features and the population graph simultaneously, 
aiming in higher identification accuracy through a task-dependent automatic 
optimization of the graph. At the same time, we incorporate supervised in-
formation to enable more flexible modelling. Specifically, the proposed me-
thod first uses PC to construct graph as the initial feature for each subject. 
Then, the projection matrix and graph are iteratively optimized through graph- 
optimization locality preserving projections based on semi-supervised learn-
ing, which fully employs the knowledge in various transformation spaces. Fi-
nally, the obtained projection matrix is applied to construct the subject-level 
graph and perform classification using support vector machines. To verify the 
effectiveness of the proposed method, we conduct experiments to identify 
subjects with mild cognitive impairment (MCI) and Autism spectrum dis-
order (ASD) from normal controls (NCs), and the results showed that the 
classification performance of our method is better than that of the baseline 
method.  
 

Keywords 
Graph Learning, Mild Cognitive Impairment, Autism Spectrum Disorder 

How to cite this paper: Zhang, K.P., Zhang, 
Y.N. and Liu, X.Y. (2023) Semi-Supervised 
Graph Learning for Brain Disease Identifi-
cation. Journal of Applied Mathematics and 
Physics, 11, 1846-1859. 
https://doi.org/10.4236/jamp.2023.117119  
 
Received: June 18, 2023 
Accepted: July 15, 2023 
Published: July 18, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2023.117119
https://www.scirp.org/
https://doi.org/10.4236/jamp.2023.117119
http://creativecommons.org/licenses/by/4.0/


K. P. Zhang et al. 
 

 

DOI: 10.4236/jamp.2023.117119 1847 Journal of Applied Mathematics and Physics 
 

1. Introduction 

The global incidence of brain diseases, such as autism spectrum disorder and 
Alzheimer’s disease, has been increasing in recent years, which poses a huge bur-
den to both families and society [1]. Up to now, researchers have not found a 
strategy that can fully treat most of the brain disorders, and it is especially im-
portant to diagnose and intervene brain disorders in their early stages, which can 
greatly alleviate the progression of the disease [2] [3] [4]. 

Utilizing resting-state functional magnetic resonance imaging (rs-fMRI) to 
study brain activity during rest has become an independent field of research, due 
to its non-invasive, operable, and easily shareable advantages, as well as its po-
tential to serve as the biomarker for psychiatric disorders [5]. Due to the ubiqui-
ty of graphs as a common data structure, graph-based modeling has gained sig-
nificant [6] [7] [8]. In recent years, using graphs to study brain activity has be-
come increasingly popular, and the construction of high-quality graphs is the 
key to the graph modeling process. However, the presence of artifacts, structured 
noise, and our limited understanding of the brain make the construction and 
evaluation of graphs in the context of brain diseases a challenging and unre-
solved problem [9] [10]. Additionally, obtaining excellent labeling in medical 
data is often expensive and time-consuming process, leading to a scarcity of la-
beled data. To address this issue, semi-supervised learning has emerged as an ef-
fective approach, allowing for the training of generalizable models using a small 
amount of labeled data and a large amount of unlabeled data [11] [12] [13]. In 
this paper, we primarily focus on studying the estimation of edges in subject- 
level graphs within the framework of semi-supervised learning. 

In the exploration of graph estimation methods, various approaches have been 
proposed and attempted. One popular method is the utilization of similarity 
measures, such as Pearson’s correlation (PC) [14], partial correlation [15] [16], 
Cosine similarity [17], and others. These similarity measures offer convenience 
and efficiency in constructing graphs directly. However, they often overlook 
important factors such as data distribution, which can result in suboptimal out-
comes. As a result, researchers are increasingly inclined towards data-driven 
methods for graph learning, such as metric learning [18] [19], which aim to 
capture underlying patterns in the data. In addition, some methods incorporate 
regularized extensions [9] [20] [21] [22] to enhance graph learning performance 
by reducing node dominance. Of course, these regularization constraints require 
prior knowledge that fits the scene, leading to more realistic graph, example in-
clude SR [23], group sparsity [24], modularity [20] [25], and so on. The combi-
nation of data fitting term and regularized term can be unified within the ma-
trix-regularized graph learning framework [26], providing a flexible platform to 
incorporate various graph learning methods. 

However, the graphs constructed by these methods are fixed and often not 
linked to downstream tasks, which can result in both unsatisfactory constructed 
graph and extracted features, affecting the final performance and effect. In addi-
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tion, when using certain methods, a considerable amount of manual adjustments 
and optimization are required to match the constructed graph with downstream 
tasks. To address this limitation, we propose a novel adaptive graph estimation 
method for brain diseases that jointly learns the graph and projection matrix 
[27]. Specifically, we first construct the graph using PC as the initial feature of 
each subject. In addition, we employ locality preserving projections [28] to con-
struct the initial graph, then we label connections between same-class subjects as 
1 and between different-class subjects as 0 by constraining the loss function. 
Furthermore, we iteratively optimize the learning of the projection matrix and 
graph, maximizing the utilization of these information in different transforma-
tion spaces. Finally, we leverage the learned projection matrix to construct sub-
ject-level adaptive graph and utilize the support vector machine (SVM) for clas-
sification. To verify the effectiveness of the method, we conducted experiments 
on the MCI and ASD datasets to identify subjects with diseases from the healthy 
control group. The experimental results show that our method significantly out-
performs the baseline methods in terms of classification performance. 

In the subsequent sections, this paper will further elaborate on the methods, 
experiments, and conclusions in order. The method section begins by introduc-
ing the data source and describing the preprocessing steps. It then proceeds to 
review the existing baseline works before presenting our proposed method, in-
cluding the underlying motivation, model, and algorithm. Moving on to the ex-
periment section, we conducted identification experiments on MCI and ASD to 
validate the feasibility of our method and compare it with the baseline methods. 
Finally, in the conclusion section, a concise summary of the paper is provided, 
along with a discussion on potential future research directions. 

2. Materials and Methods 
2.1. Data Preparation 

This study utilized two benchmark databases to validate the effectiveness of the 
proposed method, including the publicly available ADNI database and ABIDE 
database with rs-fMRI data. For the ADNI database, we selected 137 subjects (68 
MCIs and 69 NCs) and preprocessed the data according to the most recent study 
[29]. For the ABIDE database, we used data from 184 participants (79 ASD and 
105 NC) from the largest site (NYU) and preprocessed the data using the Data 
Processing Assistant for Resting-State fMRI (DPARSF) [30]. In Table 1, we 
present some clinical and demographic characteristics of the subjects, such as 
gender, age, etc. Please note that the subject information shown in Table 1 con-
forms to the general inclusion/exclusion criteria of the ADNI dataset, which can 
be briefly summarized as follows: 1) NC subjects: Mini-Mental State Examina-
tion (MMSE) scores between 20 and 30 (inclusive), Clinical Dementia Rating 
(CDR) of 0, non-depressed, non-MCI, and non-demented; 2) MCI subjects: 
MMSE scores between 24 and 30 (inclusive), memory impairment, CDR of 0.5, 
no significant impairment in other cognitive domains, intact activities of daily 
living, and non-dementia. 
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Table 1. Demographic and clinical information of subjects in the ADNI and ABIDE datasets. Values are reported as mean ± 
standardard deviation. M/F: Male/Female; MMSE: Mini-Mental Examination; GCDR: Global Clinical Dementia Rating; FIQ: Full- 
Scale Intelligence Quotient; VIQ: Verbal Intelligence Quotient; PIQ: Performance Intelligence Quotient. 

Datasets Class Gender (M/F) Age (Years) MMSE GCDR FIQ VIQ PIQ 

ADNI 
MCI 39/29 76.50 ± 13.50 26.77 ± 1.23 0.48 ± 0.02 - - - 

NC 17/52 71.50 ± 14.50 28.85 ± 1.15 0 - - - 

ABIDE 
ASD 68/11 18.58 ± 11.45 - - 107.92 ± 3.15 105.81 ± 1.23 108.81 ± 2.10 

NC 79/26 19.13 ± 11.85 - - 113.15 ± 2.45 113.13 ± 1.15 115.07 ± 2.08 

 
For the preprocessing pipeline of each subject in ADNI dataset, the scanning 

time was 7 min, corresponding to 140 volumes. To address errors caused by 
magnetic field and signal instability, we removed the first 10 volumes. Then, we 
performed motion correction and calculated frame-wise displacement (FD) 
based on head motion parameters, and the subjects with more than 2.5 min of 
FD larger than 0.5 mm were excluded from the dataset. To reduce the influence 
of signal from head motion parameters, white matter, and cerebrospinal fluid 
(CSF), we adopted nuisance regression based on the Friston 24-parameter model. 
Subsequently, the corrected images were registered to the standard Montreal 
Neurological Institute (MNI) space and underwent spatial smoothing with 
band-pass temporal filtering (0.015 - 0.150 Hz). Finally, we divided the brain in-
to 116 regions of interest (ROIs) based on AAL atlas [31]. It is worth noting that 
we used the AAL atlas for ROIs segmentation mainly because of its popularity 
and simplicity. 

For the ABIDE dataset, all fMRI data were acquired on a standard echo-planar 
imaging sequence using a clinical routine 3.0 Tesla Allegra scanner. 184 subjects 
(including 79 ASDs and 105 NCs) from the largest site (i.e., NYU) were used in 
our study. The imaging parameters are as follows: TR/TE is 2000/15 ms with 180 
volumes, the number of slices is 33, and the slice thickness is 4.0 mm. The pre-
processing pipeline mainly consisted of four steps: 1) volume slice and head mo-
tion correction, 2) interference signal regression (including ventricle, white 
matter signal, and the high-order effects of head motion described by the Friston 
24-parameter model), 3) registration to MNI space, and 4) temporal filtering 
(0.01 - 0.10 Hz). Finally, the brain was segmented into 116 ROIs based on the 
AAL atlas. 

2.2. Baseline Method 
2.2.1. Pearson Correlation 
The Pearson correlation is the simplest and widely adopted method for con-
structing graph, and in this study, we used it as a baseline task to develop our 
work. Assuming the features of each subject is represented by 1t

ix R ×∈ , where t 
is the number of the features. The graph edge values based on PC can be defined 
by the following formula: 
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where 1t
i R ×∈x  is the mean vector of ix . 

If ix  is centered by i i−x x  and standardized by ( ) ( )T
i i i i− −x x x x  de- 

noted as ix , then the above formula can be expressed as an inner product 
form: 

( ) TPCW X X=                          (2) 

here, [ ]1 2, , , t r
rX R ×= ∈x x x�  is the preprocessed data matrix. 

2.2.2. Spares Representation 
SR is one of the commonly-used methods for calculating partial correlation. The 
mathematical model for SR is expressed as follows: 
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which can be further rewritten by the following matrix form: 
2

1min  ,

s.t.  0, 1, ,

FW

ii

X XW W

w i n

δ− +

= ∀ = �
                    (4) 

where 2
FX XW−  is a data fitting term for capturing the partial correction 

information, 1W  is an 1l -regularized term for obtaining sparse solutions of 
W, and δ  is a regularization parameter for controlling the balance between 
these two terms. Note that the constraint 0iiw =  is used here to avoid the tri-
vial solution (i.e., W I= , the identity matrix) by implicitly removing ix  from X. 

2.3. The Proposed Method for Graph Construction 
2.3.1. Motivation 
As mentioned earlier, the quality of the graph we construct is crucial for suc-
cessful classification task. However, due to the lack of fundamental facts, we can 
only explore the real graph through research. Although previous methods have 
achieved good results in constructing graph, they are usually fixed once con-
structed and are generally separated from subsequent downstream task. This se-
paration may lead to suboptimal graph, and extracted features are not ideal. 
Moreover, some methods cannot naturally integrate supervised information, 
which may limit application of the method in certain areas such as medicine. In 
Figure 1, we summarize the basic motivations and ideas. 

To address the aforementioned issues, this paper utilizes subject-level graphs 
in the alternating optimization process, allowing the projection matrix to fully 
utilize the potential relationships between subjects in the graph, and synchron-
ously learn with graph optimization. Such projection matrix constructs the pop-
ulation graph that merges the subsequent feature extraction and is closely linked  
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Figure 1. Most popular method (i.e., PC) use the inner product of the preprocessed data matrix to obtain the graph without con-
sidering distribution of the data. In contrast, our method obtains the adaptive graph that fits the data by alternately optimising the 
projection matrix and graph. First, we perform PC to construct graph as the initial feature for each subject. Then, we construct a 
subject-level graph and use the locally preserved projection algorithm to alternately optimize the graph and projection matrix. 
Finally, we calculate the adaptive graph using the projection matrix, and apply the node features to classify subjects through the 
support vector machine classifier (SVM). It is worth noting that we used the AAL atlas for ROIs segmentation mainly because of 
its popularity and simplicity. 

 
to the downstream task. At the same time, in order to balance the uniformity (or 
smoothness) and locality of the graph, we regularize the objective function by 
adding an entropy term. Then, we introduce a pairwise constraint (in the form 
of must-link/cannot-link constraints) to integrate supervised information into 
the joint optimization objective, for the construction of subject-level graphs and 
calculation of the projection matrix, thereby achieving more flexible modeling. 
This will be detailed in the following sections on algorithms and models. 

2.3.2. Model and Algorithm 
Given a set of data points [ ]1 2, , , rX = x x x� , D

i R∈x , D is the number of up-
per triangular elements in the data calculated using Pearson correlation. The 
paired-constraints linking constraint  

( ){ }and belong to the,  same clas| si j i jM = x x x x  and the paired-constraints 
non-linking constraint ( ){ }and belong to diff, erent cla s| si j i jC = x x x x  can-
not be linked. The goal of semi-supervised GoLPP is to optimize both the graph 
and projection directions within a unified framework while maintaining paired 
constraints. The objective function is defined as follows: 
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Although the objective function is not convex, it can be easily solved through 
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Alternating Optimization (AO). The iterative process includes the following two 
main steps: 

Step 1: Initialize the weights for the graph. For example, a simple initialization 
method is shown below: 

( )
( )

( )2

1, if ,

0, if ,

exp , otherwise

i j

i jij

i j

M

CS

σ

 ∈

 ∈= 


− −


x x

x x

x x

            (6) 

Then, the optimal projection matrix is obtained using a generalized eigenvalue 
problem. In fact, the solution obtained in this way is not precise, as it involves 
ratio tracing and ratio tracking problems, which are beyond the scope of our 
main focus. For more details, please refer to [32]. 

Step 2: Revise W W=  and minimize the objective function, and we can ob-
tain the following problem: 
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In fact, we only need to consider the following problem first, and then add the 
part of equality constraints for ijS : 

( )2T T

, 1 , 1

1

min  ln ,

s.t.  0, , 1, ,

     0,otherwise

ij

n n
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where ( ),i j M∉x x  and ( ),i j C∉x x . Then, letting  

( )( )2T T ln 1 0i j ij
ij

L W W S
S

ϕ α∂
= − + + =

∂
x x , We can obtain: 

( ) ( )2T Texp 1 expij i jS W Wα ϕ= ⋅ − ⋅ − −x x             (9) 

α  is a positive parameter used only to obtain a more compact and desirable 
solution under the new constraint. When the distance between two samples ap-
proaches 0, we expect the weight ijS  to approach 1. We set eα = , then we get: 

( )2T Texpij i jS W W ϕ= − −x x                  (10) 
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Finally, when we add the equality constraints, we have: 

( )
( )

( )2T T

1, if ,

0, if ,

exp , otherwise

i j

i jij

i j
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CS

W W σ

 ∈

 ∈= 


− −


x x

x x

x x

         (11) 

Finally, we update ijS  using ijS  and continue to iterate until convergence. 
We use this approach to continuously update the construction of the graph 

and projection matrix, so as to learn important information between subjects in 
different transformation spaces, such as subject category information. This in-
formation is implicitly contained in the projection matrix, so that when the pro-
jection matrix is used to map data in the future, it can better distinguish between 
subjects. In addition, it implies the possibility that two samples belong to the 
same class. Specifically, if two samples come from the same class, the edge  

weight is 1; if they come from different classes, it is 0; ( )2T Texp i jW W σ− −x x ,  

if they are unlabeled, then the edge weight lies between 0 and 1. Specifically, 
when two samples are very close to each other, this value tends to 1; conversely, 
when samples are far apart from each other, it tends to 0. 

3. Experiments and Results 
3.1. Experimental Setting 

We evaluated our proposed method on the MCI and ASD datasets using a leave- 
one-out (LOO) cross-validation strategy. The performance was measured using 
four metrics: accuracy (ACC), sensitivity (SEN), specificity (SPE), and the area 
under the receiver operating characteristic curve (AUC). They intuitively display 
the overall recognition accuracy, patient recognition accuracy, normal recogni-
tion accuracy and confidence level of the model. Here are the definitions for 
these metrics: 

TP TNACC
TP TN FP FN

+
=

+ + +
                  (12) 

TPSEN
TP FN

=
+

                       (13) 

TNSPE
TN FP

=
+

                       (14) 

here, TP represents the number of true positive subjects predicted, FN represents 
the number of false negative subjects predicted, and similarly, TN and FP 
represent the number of their corresponding experimental subjects. 

3.2. Competing Method 

We compared the proposed the performance of our proposed method with with 
the baseline methods: PC, SR, the unsupervised form of our method (un-ours) 
and GCN. Next, we will explain some parameter settings. PC has no parameters, 
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the sparse parameter of SR is selected as the optimal parameter in the range of 
[2−4, 2−2, 20, 22, 24], and feature extraction uses t-test with a p-value set to 0.01. 
GCN performs node classification, and the initial graph is constructed using PC. 
The design of GCN is the same as the original paper [33], with the following 
partly parameter settings: lr is 0.01, weight decay is 5e−4, and dropout is 0.5. In 
our method, the parameter settings are the same for unsupervised and semi- 
supervised. The regularization parameter defaults to 1, and the maximum itera-
tion defaults to 100. 

It is worth noting that our method does not perform feature extraction using 
t-test because the projection matrix learned during the process of learning the 
graph can map the data to the optimal position without the need for feature ex-
traction. At the same time, we use thresholding to ensure a certain level of spar-
sity in the brain constructed by our method, and we discuss the impact of dif-
ferent levels of sparsity on our method. In our method, To simulate the lack of 
labeled data, we assume that 10% of the training samples are labeled and used to 
create must-link/cannot-link constraints depending on whether these samples 
belong to the same class. In this paper, we use leave-one-out cross-validation to 
split the data. Finally, we use SVM to predict the labels and calculate four evalu-
ation metrics, namely accuracy (ACC), sensitivity (SEN), specificity (SPE), and 
area under the curve (AUC). 

3.3. Result 

As shown in Table 2, we have listed the results obtained by each method in both 
datasets. Also, we visualized the results obtained by the comparison method and 
the proposed method in Figure 2, showing the disease classification results of 
ASD in the left graph and the disease classification results of MCI in the right 
graph. We can obtain the following results, where our proposed model clearly  
 
Table 2. Classification results under four performance indicators for five different me-
thods. 

Dataset Method ACC SEN SPE ROC 

ASD 

PC 61.41% 58.23% 63.81% 69.83% 

SR 66.85% 46.84% 81.90% 68.61% 

GCN 67.39% 65.82% 68.57% 67.20% 

Un-ours 69.02% 62.03% 74.29% 73.14% 

Ours 70.11% 63.29% 75.24% 73.16% 

MCI 

PC 78.10% 77.94% 78.26% 85.68% 

SR 84.67% 85.29% 84.06% 91.86% 

GCN 85.40% 86.76% 84.06% 85.41% 

Un-ours 85.40% 83.82% 86.96% 89.37% 

Ours 86.13% 83.82% 88.41% 89.49% 
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Figure 2. The ASD and MCI classification results based on five methods (i.e., PC, SR, GCN, 
Unsupervised ours and Ours) based on the four performance indicators (i.e., ACC, SEN, SPE, 
and AUC) using LOOCV. 

 
outperforms the comparison method, which illustrates the benefit of considering 
the co-optimization of the projection matrix of the graph and feature extraction 
during the construction of the graph. In addition, the inclusion of appropriate 
supervision information also contributes to the performance improvement. In 
Figure 3 we also compare the graph constructed by our method with different 
degrees of sparsity, and the result is that the graph no longer needs to be sparse 
on the ASD dataset, it has reached the optimum, and it is basically no longer 
needed to be sparse on the MCI dataset, which shows that the projection matrix 
learned by our method is able to map the data to the learned optimal space 
without generating similar to the PC due to noise and other reasons The weak 
connection due to noise, etc. 
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Figure 3. Implement sparseness operations on our method, with abscissa representing 
sparsity and 0 indicating no sparsity. It can be seen that our method does not require 
sparse operations, indicating that there is basically no weak connection similar to that of a 
PC due to noise, etc. 

4. Conclusion 

In this paper, we construct task-dependent adaptive graph in a semi-supervised 
scene using a relaxed constrained graph-optimized holdout projection, which 
fits well into the context of the lack of labelling in medicine. We make use of the 
projection matrix to map the data to the learned best space, and use the node 
features in the graph to classify by SVM. The experimental results show that the 
method achieves 86.13% and 70.11% correct rates for the MCI and ASD recog-
nition tasks based on the leave-one-out method, respectively, and outperforms 
the baseline method in terms of ACC and SPE. This further illustrates the im-
portance of task-dependent adaptive graph and reliable supervised information 
to improve the generalization of subsequent classifier. Our model has very few 

https://doi.org/10.4236/jamp.2023.117119


K. P. Zhang et al. 
 

 

DOI: 10.4236/jamp.2023.117119 1857 Journal of Applied Mathematics and Physics 
 

hyperparameters, which avoids the difficulty of parameter selection, but on the 
other hand, it also reduces the flexibility of the model. In addition, heterogeneity 
between data from different sites is also a limitation. In the future, we will try to 
design more powerful and adaptive graph learning methods to overcome the 
problems of hyperparameter selection and site heterogeneity. 
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