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Abstract 
This research article is based on a study of optimal frequency to the repairable 
system due to the failure finding interval to maximize as well as minimize the 
availability of some components devices. We studied together maintenance 
and corrective actions that carried out item of failure and periodic failure 
finding designed to check whether a system is still working. The model is 
proved as well as useful application in detecting the problem related to find-
ing failure tasks of different scheme devices by maximization. The model 
formulated and the numerical application to the relevant mathematical model 
have been discussed to demonstrate the article quality. Therefore based on 
probability analytic development, the optimal maintenance policy is then ob-
tained as solution of an optimization problem in which the maintenance cost 
rate is the objective function and the risk of corrective maintenance is the 
constraint function. Finally, the solution to the optimal device in the consi-
dered development model has been well adjusted due to derivation to the ex-
perimental observation rather than theory which will be taken into considera-
tion in the next applied practical design research related and the system device 
provided that, the proactive device agreed with using the exponential distribu-
tion to the survive distribution function which can not be considered as valid. 
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1. Introduction 

It is known that a secure of system machine is spoiled due to different changes 
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or modifications made to it like an extreme substitute done on that machine 
system which implies the consequence of the component being declined. The 
loss of ability to function for some parts normally is unpredicted or not notified 
before, but it is almost a hidden failure system which is only discovered by in-
spection, the more details can be seen in [1]-[6]. The risk of such an issue is no-
ticed in time the system device is taken into operation and then fails to operate. 
To determine the failure of the network device, the notification of customary 
inspection is advised to execute the well-functioning of the system to bring it as 
good as new as it was before, see [7] [8]. As the failure part of the system is 
founded the component is automatically taken to be repaired where the failed 
part will be repaired or replaced respectively as can be seen in [9] [10]. It is un-
derstandable that, the system availability of this state device is always determined 
by the one who is concerned with the maintenance system. And the quality of 
not being available in the time needed to be used which is known as unavailabil-
ity has been discussed in [11]-[16], which gives the corrective impact of main-
tenance action to improve the system device. 

In a time of inspection failure part, a failure of system device can be caused by 
different factors such as determination the occurrence of the failure point fol-
lowed by the control point, downtime to failure running out. Also, downtime to 
failure resulting from the reviews time, a system device is taken to the mainten-
ance to replace the damaged part. Otherwise, it will be repaired or replaced. 
Some of these factors have been discussed here [17]-[22], where the restoration 
of specification hidden condition is needed to be considered. 

It is observed that the downtime of the system is closely related to the inspec-
tion conducted in the interval of time. Therefore as checkup time increases, the 
relative control frequencies are also increased and the entire downtime of in-
spection while the downtime of failure is decreased too. Hence the optimal point 
to the inspection interval is needed for minimizing the complete downtime and 
maximizing the system availability to the state device at the same time [23] [24] 
[25] [26] [27] which has been discussed in detail. 

Different models have been discussed for the given problem above such as 
[28]-[32]. These models present also enclose limiting assumptions or has some 
inconveniences. 

The purpose of this model is to make a comparison between our presented 
model with the one presented by Moubray. To define the optimal of finding 
failure in the given interval to the system device, to maximize as well as minim-
ize the entire downtime of inspection to the state devices, have been investigated 
in [33] [34] [35]. 

The rest of this article is organized as the following: In section 2, we consider 
the model formulation due to the classical one formulated by Moubray. In part 
3, we develop some assumptions which will help us in model structure. By sec-
tion 4, we present the key proof to our model produced. In section 5, the nu-
merical examples have been discussed to compare the classical and new one 
model considered in this article. Hence, in section 6, we present the conclusion 
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and acknowledgment. 

2. Statement of the Problem 

Using the same procedures with the one founded in [36], model, which can be 
derived respectively in the following manner. We assume that ( )S τ  and ( )S τ  
are availability and unavailability system respectively at given time τ . The 
mean time between failure to the inspection component is α , and failure  

finding interval is denoted as θ , where downtime to failure is noticed as 
2
θ  in 

such that downtime and inspection of system device is assumed to be neglected. 
Let us take ( )0, I  as the total interval in such that the total number of the av-
erage of failures system is given by 

.g
IN
α

=
 

In the same way the entire downtime to failure is also expressed as 

2gNτ
θδ =

 
The given availability of system is characterised by the following relation 

( ) 1 1
2

IS
I I

τ τδ δ θτ
α

−
= = − = −

 
And the given interval of failure to the system is expressed as 

( ) ( )2 1 2S Sθ α α τ= − =                      (1) 

Such that, ( )S τ  is taken as unavailability of the system device. 

3. Model Assumptions 

The model is based on following assumptions which play a significant role in 
our model formulation. 

A0: An expression I
α

 is not taken as the entire number of average while I 

doesn’t consider as stopover in regularly working conditions of the system de-
vices. 

A1: An expression 
2
θ  can’t be seen as perfect while the density function of 

failure condition is taken as exact under the inspected interval time with res-
pected to the symmetric distribution. 

A2: An unavailability to the system devices caused by the inspection time to-
gether with repair time have been taken into consideration. We have seen that, 
in the above statement, the downtime affected by the inspected with repair time  

is closed related to the relation 
2
θ  which is tested as not exact as the entire 

number of the checked time which is too big. 
A3: It is acknowledged that the finding failure interval of system device is cha-

racterized by the unavailability of the system device to be minimized instead of 
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limiting to the supplied availability of the system apparatus. It can help us to get 
the qualified significance availability of the system which can even not be readily 
determined as such. 

4. Main Proof for the Model 

From the above assumptions, it is observed that, for downtime to failure case, 
the inspection time showed the damaged part of the system devices. Where some 
areas of the component are tested for working slowly or not compared to the or-
dinary conditions which imply the maintenance to be taken into consideration 
such as repair or replacement of component material. Therefore let us use expo-
nential distribution to represent Weibull distribution in the case of time failure 
to the system device which has a similar mean. In the same way, it better to con-
sider some assumptions to the exponential where the symmetric condition to the 
density function is less measured in the situation. 

Then, let us suppose that the failure to the density function has the following 
expression, 

( ) 1 expg ττ
α α

 =  
   

The conditional to the density function given in the interval time is ( )1,j jτ τ + , 
such that , 0,1,j j jτ θ= =  , which is provided by the following equation 

( ) ( )
( ) ( )

( )
1 1 expj j

g g
g

G Gς

τ χ
τ

θτ τ
α

+

= =
 − − − 
   

then jχ τ τ= − . We conclude that, the expression to the expectation of down-
time to failure 1,j jτ τ +  is expressed by the following relation 

( ) ( )
0

1 d
1 exp 1 exp

gI g
θ θθ χ χ χ α

θ θ
α α

= − = −
   − − −   
   

∫         (2) 

It is understandable that, jI  is taken as a function of θ  with α  which is 
independent of the inspected time. Assume that iI  with rI  are considered as 
average to the inspection time with repair time severally. Suppose that the ade-
quate interval time ( )0, I , such that I is considered as the entire regular time 
taken for the failure of system device, where inspection time with repair time are 
not included. Therefore, the failure to the whole number of average is expressed 
by, 

g
g

IN
Iα

=
+  

in the same way, the complete number of average to the inspection time is 
represented by the following, 

i
IN
θ

=
 

where, the entire downtime is determined by 
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( )g g g r i iN I I N Iδ = + +
 

the entire time, inspection with repair time are respectively expressed by the fol-
lowing relation 

.g r i iI I N I N Iτ = + +  
Hence, the expression of system availability is taken as 

( )
( )

1
11

1

g r i

g

i rr

g

I I I
I

S
I III

I

τ

τ

α θδ
τ

γ θ
αα θ

+
− +

+
= − = =

++ +
+

             (3) 

as such that 

( ) 1 1 gi II
γ θ

θ α
  = + +  

  
                     (4) 

By the above expression (3) with (4), the unavailability system is closed related 
to the minimum of ( )γ θ . Such that the optimal finding failure interval can not 
be influenced by repair time of the system which is rI , while it can perform the 
unavailability system. 

Applying the relation (2) to the given relation (4) we get, 

( )
1 exp

iIθ
α αγ θ

θ
α

+
=

 − − 
   

We are interested to see the behaviour of the function ( )γ θ  where the rela-

tion 
( )d

0
d
γ θ
θ

=  with 

( )exp 1ν ν ρ− = +  

represents a figure which having minimum at the point εθ θ= , that is unique 
where 

,i iI I
ρ ν

α θ
= =

 

It is understandable that, εθ  is considered as function to the given variable 
ρ . 

Consider 

( ) ,α εγ γ θ=  
We have the maximum to the availability of system which is expressed by the 

following 

( )max
1

r
S I

α

τ
γ

α

=
+

 

which is indicated by ( )0,maxS τ . 
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Therefore, the following expression is retained 

( ) ( )( )0,max max
10 .rS S I
α

τ τ
γ

= = =
 

Hence, ( )maxS τ  is expressed by the following 

( ) ( )

( )
0,max

max

0,max

.
1 r

S
S IS

τ
τ

τ
α

=
+

 

It is clear that, 0, 0iI εθ
α α
→ →  together with 0,max 1S →  

Therefore, εθ
α

 is increasing so fast, since ( )0,maxS τ  is decreasing in iI
α

. 

However iI
α

 is absolutely smallest one. 

To simplify our model solution, we adjust the following important expressions 
below. 

0.5748 0.4570

0,max1.2725 , 1 0.9806 .i iI I
Sεθ

α α α
   = = −   
   

          (5) 

By considering the relation (5), we get 

( )1.0968
0,max1.3259 1 Sεθ

α
= −

 

5. Numerical Example for Model Application 

Using the related data discussed by [37] [38] in his model, we illustrate the for-
mula developed above where the entire time services in a period of one year is 
considered as 30I = . And the total failure number of the system device is taken 
as 3gN = , such that the interval time of sampling have been taking a year. 
Therefore mean time between failure interval, in this case, is 10 years maximum. 
By using the assumption to the exponential distribution, mean time between to 
failure is expressed as the following, 

9.4924g g

g

I N I
N

α
−

= =
 

The error observed in this case is relatively around 5.1%. Using the assump-

tion of 
2
θ , 0.51gI = ; together with assumption on exponential distribution 

0.5076,gI =  

We get 

1 0.1053474358 0.1053
9.4924

θ
α
= = 

 

In general, due to these assumptions, the downtime to the failure of the sys-
tem produce an error in the following derived relation. 
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2 0.1038 15.2849 %
g

g

I

I

θ
θ
α

−  = + 
   

Therefore the error generated is closed related to the large interval of the in-

spection made on the system device. Thus, let us use 0.0004gI
α

= , we get the 

following relative value 

0,max0.0252, 98.58%Sεθ
α

= =
 

Which is impossible to get the availability of the system having a significant 
value of 98.58%. 

Since rI
α

 varies from 0.0004 up to 0.004, 
( ) ( )

( )
0,max max

0,max

S S
S
τ τ

τ
−

 also varies 

from 0.0284% up to 0.2910%, which express that the repair time of the system 
can not cause the change to the availability of system device. 

By considering of availability to the system which is ( ) ( )0,maxS Sτ τ< , the re-
lation given above in (12) provides two solutions of variable θ . Where those 
solutions are considered to be less compared to the εθ , otherwise has a value 
which is bigger than εθ  respectively. Therefore, the biggest or greater one is 
selected to be economic system as an efficiency solution of θ . 

Under the two models proposed here is to compare between the old one and 
new one, which is constructed through to the value of availability system where  

0gI =  together with 0.0004iI
α
= . The estimate solution of finding failure  

interval time from the relation (12) together with (4) have been illustrated in 
Table 1 below. It implies the largest deviation value due to the biggest value to  

 
Table 1. Different failures interval founded due to parameter value of θ  attributed. 

( )S τ
 

θ  in Equation (3) 
(Months) 

θ  M. model
9.4924α =  

error % 
θ  M.model 

10α =  
error% 

0.9858 2.7498 5.4786 97.68 5.7786 108.28 

0.98 5.5562 6.8226 22.67 7.1600 29.26 

0.97 8.4184 9.0845 8.07 9.5000 13.78 

0.96 11.0682 11.3786 2.79 11.8200 8.26 

0.95 13.6517 13.6562 0.03 14.3800 5.38 

0.94 16.2345 15.9351 1.78 16.7400 3.39 

0.93 18.8326 18.2180 3.19 19.1800 1.79 

0.92 21.4452 20.4982 4.37 21.5800 0.58 

0.91 24.1018 22.7578 5.38 23.8700 0.37 

Expected 
value 

  16.21  19.01 
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the availability of the system. Therefore, from the above observation the given 
above relation in (4) is closed related to the unavailability of the scheme which is 
smaller than 5.1%. 

Hence, the given system device provided that, the protective device agrees 
with using the exponential distribution to the survive distribution function 
which can not be considered as a valid, accurate statement to maintain in this 
new model derived 

6. Conclusions 

In this article, we have used different models to develop an effective one to find 
out the optimal finding failure interval for the system device. And the solutions 
to the optimal device in the considered developed model has well adjusted due to 
derivation to the experimental observation rather than theory, which may be 
taken into consideration in the next applied practical design research related. In 
the theory of mathematical application in this model, we have theoretically and 
mathematically demonstrated a big gap between the two considered models, the 
classic one and the new one developed in this article. Hence our suggestion to 
our reader is to use the new one developed model more than the classic one in 
their practical application for next research. 

Our future related research will be focussed on an extension of our model by 
using more than one of the new assumptions. Our major challenge is to formu-
late a research model where the system degradation will be explained by condi-
tional parameters such as those related to climate change. The above new idea 
will help us to achieve maximum efficiency in the next failure finding task by 
optimization. 
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