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Abstract 
A traditional method of Monte Carlo computer simulation is to obtain un-
iformly distributed random numbers on the interval from zero to one from a 
linear congruential generator (LCG) or other methods. Random variates can 
then be obtained by the inverse transformation technique applied to random 
numbers. The random variates can then be used as input to a computer si-
mulation. A response variable is obtained from the simulation results. The 
response variable may be biased for various reasons. One reason may be the 
presence of small traces of serial correlation in the random numbers. The 
purpose of this paper is to introduce an alternative method of response varia-
ble acquisition by a power transformation applied to the response variable. 
The power transformation produces a new variable that is negatively corre-
lated with the response variable. The response variable is then regressed on its 
power transformation to convert the units of the power transformed variable 
back to those of the original response variable. A weighted combination of 
these two variables gives the final estimate. The combined estimate is shown 
to have negligible bias. The correlations of various antithetic variates obtained 
from the power transformation are derived and illustrated to provide insights 
for this research and for future research into this method. 
 

Keywords 
Inverse Correlation, Variance Reduction, Antithetic Random Variates,  
Simulation Model Bias, Bias Reduction 

 

1. Introduction 

A sequence of random numbers that are serially perfectly uncorrelated in its to-
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tality can contain what appear to be subsets of correlated sequences. Indeed, po-
sitively and negatively correlated subsets are a necessary part of true random-
ness. Traces of serial correlation in any subset can create a trend that biases the 
random numbers to the high or low side of the true value. An opposite trend can 
develop subsequently. But a very large number of random numbers can occur 
before the net bias is corrected. Proykova [1] describes random walk simulation 
experiments in which the walker is temporarily trapped in the vicinity of corre-
lated numbers. Either way, apparent subsets of traces of serial correlation intro-
duce unreliability into the simulation. Serial correlation in random numbers that 
are used in Monte Carlo computer simulation experiments, are known to cause 
bias in estimates of the response variable (Ferrenberg, Lanau and Wong [2]). 
Where possible, bias and variance reduction methods can be very useful for im-
proving accuracy in some applications. For example, physics experiments can 
utilize as many as 1019 random numbers. Reducing the length of a simulation for 
the same level of accuracy will save considerable time. Depending on the appli-
cation, bias free accuracy is of paramount importance. Therefore, apart from 
their not repeating, the long run quality of the random numbers is irrelevant, 
since subsets will be correlated. Perhaps it is better to focus on methods that 
have the potential to improve the results obtained from random numbers that 
are deficient for any reason related to departure from randomness. Accordingly, 
some ideas are explored and discussed. The novelty of this paper is to present a 
new method of antithetic variables that eliminates bias error in the simulation 
response variable. 

1.1. Background 

Monte Carlo computer simulation is a widely used method for the study and 
analysis of complex systems that are not tractable to analytical mathematical 
formulae. Several methods of random number generation have been devised for 
use in computer simulation. Once the most common of these was the multiplic-
ative congruential generator first suggested by Lehmer [3]. Various design issues 
have been identified by Marsaglia [4] and Park and Miller [5]. Pursuant to these 
issues and others associated with the mixed linear congruential generator, vari-
ous more complicated methods have been suggested (Marsaglia [6] [7]; Marsag-
lia & Tsang [8]; Marsaglia & Tsay [9]). Much attention has also been paid to the 
speed of generating random numbers (Marsaglia, MacLaren & Bray [10]; Mar-
saglia & MacLaren [11]; Marsaglia, Ananthanarayan & Paul [12]; Marsaglia & 
Tsang [13]; Leva [14]). Kroese, Taimre & Botev [15] discusses the pros and cons 
of a wide variety of methods. The disconcerting outcome from the use of so 
called better random numbers is that the bias found by Ferrenberg, Lanau and 
Wong [2] is worse than that for the simpler linear congruential generator. 

Inversely correlated random numbers were suggested by Hammersley and 
Morton [16]. They proposed a simple method for use in Monte Carlo computer 
simulation. In that method two simulations are conducted. One simulation uses 
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uniformly distributed (0, 1) random numbers ir , 1,2,3,i =  . The other uses 
the complementary random numbers 1 ir− . The output responses from the two 
simulations are then averaged. The method may produce an average response 
that has a smaller variance than for the individual simulations. Aljeddani [17] 
uses Bayesian methodology in Monte Carlo simulation to improve estimates 
where time and cost constraints are prohibitive. In practice, the variance reduc-
tion is not guaranteed and may actually increase (Cheng [18]; Kleijnen [19]). 
Cheng [18] goes on to suggest an improvement. However, reducing variance 
does not correct bias error. It only makes the response variable more precisely 
wrong. Our aim in this paper is bias elimination. 

Antithetic random variables by power transformation of actual time series 
data was introduced by Ridley [20]. The Ridley [20] antithetic time series theo-
rem states that “if 0tX > , 1,2,3,t =   is a discrete realization of a lognormal 
stochastic process, such that ( )2ln ~ ,t NX µ σ , then if the correlation between 

tX  and p
tX  is ρ, then 

0, 0
lim 1

pσ
ρ−→ →
= − .” Serially correlated antithetic 

random variables can be combined so as to generate a new random variable that 
is not serially correlated. Ridley [20] provides antithetic fitted function, and an-
tithetic fitted error variance function theorems for lognormally distributed ran-
dom variables. Ridley [21] [22] [23], Ridley, Ngnepieba & Duke [24], Ridley & 
Ngnepieba [25] [26] demonstrate applications in time series analysis and fore-
casting. At first thought, it appears that the creation of antithetic random va-
riables by this method might be useful for computer simulation. However, the 
random numbers used in computer simulation are uniformly distributed, not 
lognormally distributed. 

1.2. Proposed Research 

The proposed research is concerned with artificial sequences of antithetic ran-
dom numbers and variables as opposed to the analysis of antithetic time series 
obtained from recorded data. We define antithetic variables as follows. 

Definition. Two random variables are antithetic if their linear correlation is 
negative. A bivariate collection of random variables is asymptotically antithetic if 
its limiting correlation approaches minus one asymptotically. 

Definition. r(ξ,i) is an ensemble of random variables, where ξ belongs to a 
sample space and i belongs to an index set representing order, such that ir  is a 
discrete realization of a stochastic process from the ensemble, ( )~ 0,1ir U , and 

, 1, 2,3, ,ir i n=   are serially correlated. 
The objective of the proposed research is not to create better random num-

bers. The objective is to reduce the effect of serial correlation in random num-
bers on bias in the estimate of the response variable from computer simulations 
regardless of the particular method of random number generation. Combining 
antithetic computer simulations is investigated for this purpose. Therefore, the 
worse the random numbers are, the better is the test of efficacy of combining an-
tithetic computer simulations. So, only the simple linear congruential generator 
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(LCG) was used. If the random numbers, however generated, were ideal in every 
way, the expectation is that no improvement in the accuracy of the response va-
riable will occur due to antithetic combining. We do not know ahead of time the 
distribution of the response variable. So, beyond what we know about the log-
normal case from Ridley [20], we begin by exploring the correlation between the 
sequence of various random variables to establish the inverse correlations that 
are the basis of antithetic combining. This serves to improve our general under-
standing of antithetic combining and gain insights for what might work best. 
Then we apply antithetic combining to a response variable from a computer si-
mulation. After examining the results of the exploration, we hypothesize that the 
estimates of response variables from computer simulations can be combined 
with their antithetic counterpart to obtain a new response variable that has neg-
ligible bias. 

The paper is organized as follows. In section 2 we derive the analytic function 
for the correlation between a uniform random number and the random variate 
obtained from its pth exponent. In section 3 we derive the analytic function for 
the correlation between antithetic exponential random variates obtained by 
power transformation. In Section 4 we derive the correlation between random 
variates from inverse and power transformations. In section 5 we present the 
results of a computer simulation experiment. In section 6 we explore the effect of 
combining a response variable from a Monte Carlo simulation performed with 
random variates obtained by inverse transformation and by combining the re-
sponse variable with its power transformed antithetic variable counterpart. Sec-
tion 7 contains conclusions and suggestions for future research. 

2. Correlation between ir  and p
ir  

Antithetic uniform random numbers theorem: If 0ir > , 1,2,3, ,i n=   is a 
discrete realization of a uniform stochastic process, such that ( )~ ,ir U a b  for 
any interval a, b, then if prr

ρ  is the correlation between ir  and p
ir , then 

( )( )0 0

1 2 1 12 3lim lim
2 2 1 2prrp p

p p p
p p p

ρ
− −→ →

+ + ⋅
= = −

+ +  
See Appendix A for the proof. 
This correlation is illustrated in Table 1 and Figure 1 for ( )~ 0,1ir U  and 

values of p on and between −0.1 and −0.001. The correlations are averages cal-
culated from 1000 samples of 500 numbers each, obtained from Matlab [27]. The 
correlation between ir  and p

ir  is seen to be negative, approaching −0.8666 
recurring, or 23− . 

Unlike the case of the lognormal distribution where the correlation between 
the random variable and its pth exponent is −1, here the correlation is 23− . 
That is, ir  and p

ir  can only offer partial antithetic combining. In order to 
convert pr−  into the units of r, consider the regression of pr  on pr− , 

( )p p pr f r rε α β ε− −= + = + + . Since ( )0
lim , 1p p

p
Corr r r−

−
→

= −  (see Appendix B), 
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Table 1. Correlation between ir  and p
ir  vs p. 

p Corr(r,rp) 

−0.100 −0.8204 

−0.050 −0.8449 

−0.040 −0.8485 

−0.030 −0.8552 

−0.020 −0.8587 

−0.010 −0.8626 

−0.004 −0.8665 

−0.003 −0.8665 

−0.002 −0.8665 

−0.001 −0.8665 

 

 
Figure 1. Correlation between ir  and p

ir  vs p. 
 

that is pr  and pr−  are perfectly negatively correlated, it follows that  

0
lim p p

p
r rα β ε−

−
→

= + +  where 0ε → . That is, p pr rα β −≈ + . Let the fitted 

values of pr  be denoted by ˆ pr , let α̂  and β̂  denote least squares estimates 
of α  and β  respectively, and let s denote standard deviation. Then,  

( )( )( )ˆˆˆ , p p
p p p p p p p

r r
r r r Corr r r s s r rα β −

− − − −= + = + − . This random variable 

is negatively correlated with r. However, unlike r, the probability distribution of 
ˆ pr  is not uniform. For purpose of comparison and uniformity, ˆ pr−  can be 

converted back to the original scale of and distribution of ˆ pr  by computing the 

inverse transform ( )1ˆ
ppr r′ = . As it turns out, r and r′  are positively corre-

lated. 

3. Antithetic Variates 

Antithetic random variates theorem: If 0ir > , 1, 2,3, ,i n=   is a discrete 
realization of a uniform stochastic process, such that ( )~ 0,1ir U , then if 
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p pr r
ρ + −  is the correlation between p

ir  and p
ir
− , then 

( )( ) ( )( )
( )( )0 0

2 1 1 2 1 1
lim lim 1

1 1p pp pr r

p p p p
p p

ρ + −→ →

+ + − + − +
− = −

− +
= . 

See Appendix B for the proof. 
This correlation is illustrated in Table 2 and Figure 2 for values of p on and 

between −0.1 and −0.001. The correlations are calculated from just one sample 
of 100 random numbers. These correlations converge very rapidly. The correla-
tion between p

ir  and p
ir
−  is seen to approach −1. 

Histograms for ( )~ 0,1ir U  and 
0

lim
p

p
ir−→

 and 
0, 0

lim
p

p
irσ −→ →
−  based on 

300 random numbers are shown in Figure 3. The histograms illustrate that in 
the limit as 0p −→ , the distributions of p

ir  and p
ir
−  are similar to negative  

 
Table 2. Correlation between p

ir  and p
ir
−  vs p. 

p ( ),p p
iCor r rr −

 

−0.100 −0.9560 

−0.050 −0.9962 

−0.040 −0.9990 

−0.030 −0.9996 

−0.020 −0.9985 

−0.010 −0.9999 

−0.005 −1.0000 

−0.004 −1.0000 

−0.003 −1.0000 

−0.002 −1.0000 

−0.001 −1.0000 

 

 
Figure 2. Correlation between p

ir  and p
ir
−  vs p. 
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Figure 3. Distributional characteristics 0p −→ . 
 

and positive exponential distributions, respectively. 
Consider the possibility of combining response variables obtained from two 

computer simulations that are based on antithetic exponential random variates. 
Let the mean and standard deviation be 1/λ. Then, the exponential random va-
riates can be obtained from p

ir  by converting the mean and standard deviation. 
This is accomplished by subtracting its sample average pr  and dividing by the 
standard deviation ( pr

s ), then multiply by the population standard deviation 
(1/λ) and adding the population mean (1/λ) of interest. This suggests that com-
puter simulations based on the antithetic pair ( ) 1p

p p
i r

r r s λ λ− +  and  

( ) 1p
p p

i r
r r s λ λ−
− −− +  might yield a combined response with improved statis-

tics. However, if the distribution of ( ) 1p
p p

i r
r r s λ λ− +  matches that of the 

actual problem variable, the distribution of ( ) 1p
p p

i r
r r s λ λ−
− −− +  will not  

match, and will not be a good representation. These random variates are per-
fectly negatively correlated. 

4. Correlation between Random Variates from Inverse and 
Power Transformations 

We established that the random variates 0,p
ir p −→  are exponentially distri-

buted. Therefore, we explored the comparison between exponential random va-
riates obtained from the traditional inverse transformation and those obtained 
from the proposed power transformation. 

Consider the exponential random variable x with parameter λ. Its pdf given by 

( ) e for 0
0 elsewhere

x

f
x

x
λλ −

=
 ≥

  

The corresponding cumulative distribution is given by 

( ) ( ) 1 e for 0
0 elsewhere

x

F
x

x P X x
λ−

= <
− ≥

=


  

The exponential random variate is calculated by setting ir  equal to the cu-
mulative distribution 

1 e ix
ir

λ−= −  
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The exponential random variate obtained by inverse transformation is given 
by 

( ) ( )l1 n 1i ix rλ= − −  
The exponential random variate obtained by power transformation is given by 

1
p

p p
i

i
r

r rx
s λ λ
−′ = +

 
Substituting the expected values for pr  and pr

s  from Appendix A, 

( )
( )

1 1 1
1 2 1

p
i

i

r p
x

p p p λλ

− +
′ = +

+ + ⋅
, 

where ix′  has the property of equality of mean and standard deviation. 
Antithetic inverse and power transform random variates theorem: If 

( )~ 0,1ir U  is a uniformly distributed random number, 0iX > , 1,2,3, ,i n=   
is a discrete realization of an exponential stochastic process such that  

( )~iX E λ  derived from the inverse transformation ( ) ( )l1 n 1i ix rλ= − −  with 

parameter λ, and ( )~ ,iX E pλ′  derived from 
( )

( )
1 1 1
1 2 1

p
i

i

r p
x

p p p λλ

− +
′ = +

+ + ⋅
, 

then if ,X Xρ ′  is the correlation between iX  and iX ′ , then 

2
,0

li 6m 1X Xp
ρ− ′→

− π= . 

See Appendix C for the proof. 
This correlation is illustrated in Table 3 for values of p on and between −0.1 

and −0.001 and in Figure 4. The correlations are averages calculated from 2000 
samples of 500 numbers each, obtained from Matlab [27]. The correlation be-
tween ix  and ix′  is seen to be negative, approaching −0.6484 recurring. That  

 
Table 3. Correlation between ix  and ix′  vs p. 

p ( ),i irr xCo x′
 

−0.100 −0.6022 

−0.050 −0.6275 

−0.040 −0.6308 

−0.030 −0.6354 

−0.020 −0.6411 

−0.010 −0.6438 

−0.005 −0.6457 

−0.004 −0.6475 

−0.003 −0.6484 

−0.002 −0.6484 

−0.001 −0.6484 
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is, approximately equal to 21 6− π . This correlation falls short of the ideal cor-
relation of −1. That is, ix  and ix′  can offer only partial antithetic combining. 

5. Computer Simulation Experiment 

Consider a simple M/M/1 queue as depicted in Figure 5. There are many sys-
tems that can be modelled by queueing theory. They include waiting lines at a 
business establishment, library or other institution, jobs waiting to be processed 
by a computer central processing unit, automobile traffic, telephone calls, statis-
tical particle physics, etc. The test system used in the following experiment is li-
mited to a simple queue for which we know precisely the value of the response 
variable. The expectation is that if bias reduction is effective in the test system, it 
will also be effective in more complex systems where the answers are unknown 
and are to be determined. The schematic shows one queueing system and one 
Monte Carlo experiment. In both cases, entities arrive at the mean rate of λ per 
unit time and are served at the mean rate of μ per unit time. The time between 
arrivals is exponentially distributed with mean 1/λ. The service time is exponen-
tially distributed with mean 1/μ. In the standard traditional experiment, the  

 

 
Figure 4. Correlation between ix  and ix′  vs p. 

 

 
Figure 5. Simple queueing system. 
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experiment is conducted with an inter arrival time denoted by ax  derived from 

ar  and service time sx  derived from sr . The LCG is  

( )31
1630360016 mo 2di iz z −=  (suggested by Harrell, Ghosh & Bowden [28]. 

In the simple queue, the source population for arriving entities is infinite. The 
queue is un-capacitated. There is a single server. The entity processing rule is 
first come first served. The first actual simulation is based on a mean inter arriv-
al time of 3 minutes and a mean service rate of 2.4 minutes. That is, λ = 1/3 per 
minute and μ = 1/2.4 per minute. The response variable chosen is the average 
time that an entity spends in the system. The average time that entities spend in 
the system is well known to be precisely ( ) ( )1 1 1 2.4 1 3 12theoricalT µ λ= − = − =  
minutes. Based on a 100,000 arrivals simulation, the estimated simulation time 
in the system T = 11.63 (see Table 4). The bias is 12-11.65 = 0.35 = 2.92%. For 
most applications this level of accuracy may suffice. However, as the λ/μ ratio 
increases toward 1 the bias increases and the decline in accuracy is significant. 
Table 4 shows the results for various of λ/μ ratios. For an example of high bias, 
consider μ = 1/2.4, 1/λ = 2.474, λ/μ = 0.97, the  

( ) ( )1 1 1 2.4 1 2.474 80.24theoricalT µ λ= − = − =  minutes. The estimated simula-
tion time in the system is T = 65.3807 (see Figure 6). The bias = 65.3807 − 80.24 
= −14.8593 = −18.51%. This bias is unacceptable as are many estimates in Table 
4. 

To reduce this bias the antithetic time in system is obtained from pT  where 
p = −0.0001. Then T is regressed on pT  to express pT  in the original units of 
T. The estimated regression equation is given by 

( )( )( ), p
p p p

T T
T T Corr T T s s T T′ = + − . 

 

 
Figure 6. Simulation estimates of time in system ( )1CT T Tω ω ′= + −  when 1ω = . 
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Table 4. Computer simulation results 1/μ = 2.4 minutes and various 1/λ, λ/μ and ω. 

λ/μ 0.97 0.96 0.95 0.94 0.92 0.90 0.80 0.40 0.20 

Theoretical 
Time in 
system 

(minutes) 

80.24 60 48.11 40.05 30.09 24.55 12 4 3 

1/λ (minutes) 2.474 2.5 2.526 2.553 2.608 2.660 3 6 12 

ω Simulated time in system TC 

0.090 58.9426 47.7679 39.9840 33.9829 26.2401 21.4613 10.5719 3.6749 2.7996 

1.000 65.3807 52.9643 44.3156 37.6477 29.0445 23.7348 11.6355 3.9721 2.9996 

1.010 66.0245 53.4839 44.7487 38.0142 29.3250 23.9621 11.7418 4.0018 3.0196 

1.020 66.6683 54.0036 45.1819 38.3807 29.6054 24.1895 11.8482 4.0315 3.0396 

1.030 67.3121 54.5232 45.6150 38.7471 29.8859 24.4168 11.9546 4.0612 3.0596 

1.035 67.6340 54.7830 45.8316 38.9304 30.0261 24.5305 12.0077 4.0761 3.0696 

1.040 67.9559 55.0429 46.0482 39.1136 30.1663 24.6442 12.0609 4.0909 3.0796 

1.050 68.5997 55.5625 46.4814 39.4801 30.4468 24.8715 12.1673 4.1207 3.0996 

1.055 68.9216 55.8223 46.6979 39.6633 30.5870 24.9852 12.6990 4.1355 3.1096 

1.060 69.2435 56.0821 46.9145 39.8466 30.7272 25.0989 13.2308 4.1504 3.1196 

1.065 69.5654 56.3420 47.1311 40.0298 30.8674 25.2126 13.7626 4.1652 3.1296 

1.070 69.8873 56.6018 47.3477 40.2131 31.0077 25.3262 14.8261 4.1801 3.1396 

1.080 70.5311 57.1214 47.7808 40.5795 31.2881 25.5536 12.4863 4.2098 3.1596 

1.090 71.1749 57.6411 48.2140 40.9460 31.5685 25.7809 12.5927 4.2396 3.1796 

1.100 71.8187 58.1607 48.6471 41.3125 31.8490 26.0083 12.6990 4.2693 3.1996 

1.150 75.0377 60.7589 50.8129 43.1449 33.2512 27.1450 13.2308 4.4179 3.2995 

1.200 78.2568 63.3571 52.9787 44.9773 34.6534 28.2817 13.7626 4.5665 3.3995 

1.250 81.4758 65.9554 55.1445 46.8096 36.0557 30.5552 14.2944 4.7151 3.4995 

1.300 84.6948 68.5536 57.3102 48.6420 37.4579 31.6920 14.8261 4.8637 3.5995 

1.400 91.1329 73.7500 61.6418 52.3068 40.2623 32.8287 15.8897 5.1609 3.7994 

1.450 94.3519 76.3482 63.8076 54.1392 41.6646 33.9654 16.4215 5.3095 3.8994 

1.500 97.5710 78.9464 65.9734 55.9716 43.0668 35.1022 16.9532 5.4581 3.9994 

 
The final result is the weighted average ( )1CT T Tω ω ′= + − , where ω and 

( )1 ω−  are combining weights. For each combination of μ and λ there is an ω 
for the corresponding λ/μ ratio that results in negligible bias (estimated TC in 
bold numbers). 

Ferrenberg, Lanau, & Wong [2] tried more advanced random number gene-
rators to no avail. So, the LCG simulation experiments here were repeated with 
the most advanced Mersenne Twister algorithm for random numbers. The re-
sults were biased similarly. 
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6. Optimizing the Combining Weights 

A graph of ω for various λ/μ ratios that result in negligible bias (estimated TC in 
bold numbers) is given in Figure 7. This graph of ω is a smooth monotonically 
increasing function λ/μ. Optimization of the weight is done by consulting Figure 
7 once the λ/μ ratio for the system design is known. A graph of simulation esti-
mates of time in system when 1/λ = 2.474, 1/μ = 2.4 minutes, ω = 1.25 and 

( )1CT T Tω ω ′= + −  converges to 81.48 minutes is given is Figure 8. The graph 
is created once ω is obtained from Figure 7. The bias is now 80.24 − 81.48 = 1.24 
= 1.5%. This is acceptable. We also observe that the shapes of the graphs in  

 

 
Figure 7. Weight ω for various λ/μ ratios that result in negligible bias. 

 

 
Figure 8. Simulation estimates of time in system ( )1CT T Tω ω ′= + −   when 1.25ω = . 
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Figure 6 and Figure 8 are essentially the same except for one is biased and one 
is unbiased. 

7. Conclusion 

The experiments in this paper were Monte Carlo computer simulations. Anti-
thetic random variates were created by inverse transformation. The response va-
riable was observed to be highly biased. This appears to be an artifact of a simu-
lation that cannot be improved by the choice of random numbers. Therefore, 
antithetic random variables were created from the response variable and its 
power transformation. The idea for this came from insights that were gained 
from the derivations of the correlation with antithetic counterparts of known 
functions. These formed antithetic variables that were combined. The combined 
variable was demonstrated to contain negligible bias. The combined estimates 
were closer to their corresponding values that are known to be true from theory. 
Combining reduced bias in the estimated values. The simulations in this re-
search were applied to a simple queue. Like Ferrenberg, Lanau, & Wong [2] in 
their study of the Ising model two-dimensional lattice gauge physics problem, 
we conclude here that there is bias leading to the wrong answer for time in the 
queueing system. Therefore, we repeat their caution here. This research supports 
the notion that if the bias is due to pre-simulation traces of serial correlation, 
then since subsets of correlation are part of overall randomness, bias cannot be 
avoided by better random numbers. Therefore, it is better to pursue ideas for 
cancelling bias, post-simulation. This research is limited to the simple queuing 
system. Future research might be conducted for different system designs and an-
tithetic variables combining strategies. The Ising lattice gauge physics problem 
can be repeated using the method proposed in this research to see if the bias is 
eliminated there. 
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Antithetic variables—Two variables that are oppositely correlated. 
Antithetic power transformation—Uses an infinitesimal negative exponent to 
produce a new variable that is negatively correlated with the original variable. 
LCG—Linear congruential generator of pseudorandom numbers. 
Mersenne Twister algorithm—Fast generation of high-quality very long period 
pseudorandom numbers. 
Monte Carlo Simulation—A mathematical method for calculating the odds of 
multiple possible outcomes occurring in an uncertain process through repeated 
random sampling. 
PDF—Probability Density Function. 
Random variate—Uniformly distributed [0, 1] random number sequence. 
Random variable—Random number sequence that follows a distribution cor-
responding to a known variable. 
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Appendix A: Correlation between ir  and p
ir  

Consider ( )~ 0,1iX U  with pdf 
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This correlation is invariant with respect to the lower limit of the interval a, b. 

Appendix B: Correlation between p
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Appendix C: Correlation between iX  and ′iX  
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The expected value of the antithetic variable iX ′  is 
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For an n step computer simulation, ( ) ( ) 0p p
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i X i XX Xσ σ

λ′′= = = =   is consistent with iX  & iX ′  ex-

pontially distributed. 
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from which we obtain 
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The Taylor expansion at 0p =  of p
ir  is 
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from which we obtain 
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X X E X X− −→ →
 ′ ′=   . 

Therefore, 

[ ] ( ) ( )20

1lim ln ln 1i i i ip
X X r r

λ−→
′  = ⋅ −   , 

and since ( ) ( )1 2
0
ln ln 1 d 2 6i i ir r r− = − π∫  (see Appendix D), 

[ ] ( )2
20

1lim 2 6i ip
X X

λ−→
′ = − π .              (C.12) 

Finally, the correlation between iX  and iX ′  

( ) [ ] [ ] [ ], i i i i
XX i i X X

X X

X X X X
Cov X Xρ σ σ

σ σ′ ′
′

=
′ ′−

′=
  

 

And substituting from (C.2), (C.3), (C.4), (C.5), (C.12), 
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( )2
2

1 1 12 6

1 1XX
λ λλρ

λ λ

′

− π − ⋅
=

⋅
 

21 6XXρ ′ = − π . 

Appendix D 

( ) ( )

( )

( )

( )

1

0

1

10

1

1 0

11 1
1

1 0
0

11

1
0

ln ln 1 d

ln d

1 ln d

1 1ln d
1 1

1 1
1 1

i i i

n
i

i in

n
i

i in

n n
i i

i in
i

n
i

n

r r r

rr r
n

rr r
n n

r rr r
n n r n

r
n n n

∞

=

∞

=

+ +
∞

=

+
∞

=

−

 
 
 

    −   + +     

 


= −

= −

= −

= + + 

∫

∑∫

∑ ∫

∑ ∫

∑
 

( )

( )

( )

21

21

21

2

1 1
1

1 1 1
1 1

11 1

6

2 2

2

n

n

n

n n

n n n

n
ζ

∞

=

∞

=

∞

=

+

= − −
+ +

 = − −  
−

π

=

=

= −

∑

∑

∑

 
where ζ is the Reimann zeta function. See Chapman [29]. 
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