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Abstract 

Let U be a ( ),B A -bimodule, A and B be rings, and 
0A

T
U B
 

=  
 

 be a for-

mal triangular matrix ring. In this paper, we characterize the structure of rel-
ative Ding projective modules over T under some conditions. Furthermore, 
using the left global relative Ding projective dimensions of A and B, we esti-
mate the relative Ding projective dimension of a left T-module. 
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1. Introduction 

Let A and B be rings an U a ( ),B A -bimodule, 
0A

T
U B
 

=  
 

 is called a formal  

triangular matrix ring with usual matrix addition and multiplication. This kind 
of ring is useful in the representation theory of algebras and ring theory. It is 
typically used to create examples and counterexamples, which add more exam-
ples and concreteness to the theory of rings and modules. Many authors have 
studied T in several directions. For example, Zhang [1] specifically described the 
Artin triangular matrix algebra with Gorenstein projective modules. Enochs, 
Izurdiaga and Torrecillas [2] characterized Gorenstein projective and injective 
modules over a triangular matrix ring. Mao [3] studied Gorenstein flat modules 
over T and provided a left global Gorenstein flat dimension estimate of T. Be-
sides, he [4] studied cotorsion pairs and approximation classes over T. 

This paper aims at investigating relative Ding projective modules and relative 
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Ding projective dimension over T. Following is the organization of this paper. 
In Section 2, we present some terminology as well as preliminary results. 
In Section 3, we describe relative Ding projective modules over T. Assume 

that 1A C  and 2B C  are semidualizing. Let 1

2 M

M
M

M ϕ

 
=  
 

,  

( )1 2 -Mo, dC C C T= ∈p  and U be Ding C-compatible. Then a left T-module 

1

2 M

M
M

M ϕ

 
=  
 

 is CD -projective if and only if 1M  is 
1CD -projective, Coker 

Mϕ  is 
2CD -projective, and 1 2:M

AU M Mϕ ⊗ →  is injective. 

In Section 4, we estimate the CD -projective dimension of a left T-module and 
the left global CD -projective dimension of T. It is proved that, given a left 

T-module 1

2 M

M
M

M ϕ

 
=  
 

, if ( )1 2,C C C= p , U is Ding C-compatible, 1A C  and 

2B C  are semidualizing, and  

( ) ( ) ( ){ }2 2 1
- sup - |C C B A CpSD PD B D U D Dd D P A= ⊗ ∈ < ∞ , then: 

( ) ( ) ( )( ){ } ( )

( )( ) ( )( ) ( ){ }
1 2 2

1 2 2

1 2

1 2

max - , - - -

max - - 1, - .

C C C C

C C C

D pd M D pd M SD PD B D pd M

D pd M SD PD B D pd M

− ≤

≤ + +
 

Consequently, we prove that, 

( ) ( ){ } ( )

( ) ( ) ( ){ }
1 2

1 2 2

max - , - -

max - - 1, - .

C C C

C C C

D PD A D PD B D PD T

D PD A SD PD B D PD B

≤

≤ + +
 

So we establish a relationship between the relative Ding projective dimension 
of modules over T and modules over A and B. 

All rings for this article are nonzero associative rings with identity, and all 
modules are unitary. Unless stated explicitly, all modules will serve as unital left 
R-modules. For a ring R, we write R-Mod (resp. Mod-R) for the category of left 
(resp. right) R-modules. For a left R-module C, we use AddR(C) (resp. addR(C)) 
to represent the class that contains all left R-modules that are isomorphic to di-
rect summands of (resp. finite) direct sums of copies of C, and we use ProdR(C) 
to represent the class that contains all left R-modules that are isomorphic to di-
rect summands of direct products of copies of C. ( )R  and ( )R  denote 
the classes of projective and flat left R-modules respectively. The character mod-
ule ( ),om /H M    of a module M is signed by M+. 

Next, we will review some concepts and facts about formal triangular matrix 
rings. By [[5], Theorem 1.5], T-Mod corresponds to the category Ω, whose ob-

jects are triples 1

2 M

M
M

M ϕ

 
=  
 

, where 1 -ModM A∈ , 2 -ModM B∈  and  

1 2:M
AU M Mϕ ⊗ →  is a B-morphism and whose morphisms from 1

2 M

M
M ϕ
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to 1

2 N

N
N ϕ

 
 
 

 are pairs 1

2

f
f

 
 
 

 such that ( )1 1 1Hom ,Af M N∈ ,  

( )2 2 2Hom ,Bf M N∈  satisfying that the following diagram 

 

is commutative. Given a triple 1

2 M

M
M

M ϕ

 
=  
 

 in Ω, there is an A-morphism 

 ( )1 2: Hom ,M
BM U Mϕ →  given by  ( )( ) ( )M Mx u u xϕ ϕ= ⊗  for each u U∈ , 

and 1x M∈ . 

It is worth noting that a sequence 1 1 1

2 2 2

0 0
M M M

M M M
M M Mϕ ϕ ϕ′ ′′

′ ′′     
→ → → →     ′ ′′     

 

of left T-modules is exact if and only if both the sequences  

1 1 10 0M M M′ ′′→ → → →  and 2 2 20 0M M M′ ′′→ → → →  are exact. 

Throughout this article, 
0A

T
U B
 

=  
 

 is a formal triangular matrix ring. 

Given a left T-module 1

2 M

M
M

M ϕ

 
=  
 

, the B-module Coker Mϕ  is denoted as 

2M  and the A-module ker Mϕ  is denoted as 1M . 

Analogously, Mod-T is equivalent to the category Γ whose objects are triples 
( )1 2,

W
W W W ϕ= , where 1 Mod-W A∈ , 2 Mod-W B∈  and 2 1:W BW U Wϕ ⊗ →  is 
an A-morphism, and whose morphisms from ( )1 2,

W
W W ϕ

 to ( )1 2,
X

X X ϕ
 are 

pairs ( )1 2,g g  such that ( )1 1 1Hom ,Ag W X∈ , ( )2 2 2Hom ,Bg W X∈  satisfying 
that the following diagram 

 
is commutative. 

Given such a triple ( )1 2,
W

W W W ϕ=  in Γ, there is the B-morphism  
 ( )2 1: Hom ,W AW U Wϕ →  given by  ( )( ) ( )W Wy u y uϕ ϕ= ⊗  for each u U∈ , 

and 2y W∈ . 
In the remaining sections of the paper, we will identify T-Mod (resp. Mod-T) 

with the category Ω (resp. Γ) 
According to [2], the following functors exist between the category T-Mod 

and the product category -Mod -ModA B× : 
1) : -Mod -Mod -ModA B T× →p  is defined as follows: for each object  

( 1 2,M M ) of -Mod -ModA B× , let ( ) ( )
1

1 2
1 2

,
A

M
M M

U M M
 

=  ⊗ ⊕ 
p  with the  

obvious map and for any morphism ( 1 2,f f ) in -Mod -ModA B× , let  
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( ) ( )
1

1 2
1 2

,
1 A

f
f f

f f
 

=  ⊗ ⊕ 
p . 

2) : -Mod -Mod -ModA B T× →h  is defined as follows: for each object  

( 1 2,M M ) of -Mod -ModA B× , let ( ) ( )1 2
1 2

2

Hom ,
, BM U M

M M
M

⊕ 
=  
 

h  with 

the obvious map and for any morphism ( 1 2,f f ) in -Mod -ModA B× , let 

( ) ( )1 2
1 2

2

Hom ,
, Bf U f

f f
f

⊕ 
=  
 

h . 

3) : -Mo- dMod -ModT A B→ ×q  is defined as follows: for each left T-module 

1

2

M
M
 
 
 

 as ( )1
1 2

2

,
M

M M
M
 

= 
 

q , and for each morphism 1

2

f
f

 
 
 

 in T-Mod as 

( )1
1 2

2

,
f

f f
f

 
= 

 
q . 

Note that p  is a left adjoint of q  and h  is a right adjoint of q . It is clear 
that q  is exact. p , in particular, preserves projective objects, while h  pre-
serves injective objects. 

Between the category Mod-T and the product category Mod- Mod-A B× , 
there are similar functors , ,p q h . 

Let 1

2

-Mod
M

M
M T

M ϕ

 
= ∈ 
 

. By [6], ( )1 2,
M

M M M
ϕ +

+ + +=  is the character  

right T-module of M , where 2 1: BM
M U Mϕ +

+ +⊗ →  is defined by  

( )( ) ( )( )M
M

f u x f u xϕ ϕ+ ⊗ = ⊗  for any 2f M +∈ , u U∈  and 1x M∈ . 

2. Preliminaries 

Definition 2.1. ([[7], Definition 2.1]) A ( ),R S -bimodule C is called semidua-
lizing if the following conditions are satisfied:  

1) R C  and SC  permit a degreewise finite projective resolution in the cor-
responding module categories. 

2) The natural homothety morphisms ( )Hom ,SR C C→  and  
( )Hom ,RS C C→  are ring isomorphisms. 

3) ( ) ( )1 1Ext , Ext , 0R SC C C C≥ ≥= = . 
Definition 2.2. ([[8], Section 3]) A Wakamatsu tilting module is a left 

R-module R C  satisfying the following properties:  
1) R C  permits a degreewise finite projective resolution. 
2) ( )1Ext , 0R C C≥ = . 
3) There exists a ( )Hom ,R C− -exact exact sequence of R-modules 

0 1: 0 ,R C C→ → → →X   
where ( )addi

RC C∈  for every i∈ . 
By [[8], Corollary 3.2], R SC  is semidualizing if and only if R C  is a Waka-

matsu tilting module with ( )EndRS C≅  if and only if SC  is a Wakamatsu 
tilting module with ( )EndSR C≅ . 
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Definition 2.3. ([[9], Definition 3.1]) Let , -ModC M R∈ , M is said to be 

C -flat if M +  belongs to the class ( )Prod opR
C+ , and we will denote the class 

of all C -flat modules as ( )C R . 
When C R= , ( ) ( )C R R=  . Thus ( )R  is a special case of ( )C R . 
Remark 2.4. If R SC  is semidualizing, then ( ) ( )C SR C S= ⊗   by [[9], 

Proposition 3.3]. 

Lemma 2.5. ([[10], Lemma 4]) Let 1

2

-Mod
X

X
X T

X ϕ

 
= ∈ 
 

 and  

( )1 2, -Mod -ModC C A B∈ × . 

( )( )1 2Add ,TX C C∈ p  if and only if  
1) ( )1 2,X X X≅ p ; 
2) ( )1 1Add AX C∈  and ( )2 2AddBX C∈ . 
In this instance, Xϕ  is injective. 

Lemma 2.6. ([[11], Theorem 3.1]) Let 1

2

-Mod
M

M
M T

M ϕ

 
= ∈ 
 

. ( )M T∈  

if and only if ( )1M A∈ , ( )2M B∈  and Mϕ  is injective. 

Lemma 2.7. Let ( )1 2, Mod-
X

X X X Tϕ= ∈  and ( )1 2, -Mod -ModC C A B∈ × . 
( )( )1 2Prod ,opT

X C C+∈ p  if and only if  

1) ( )( )1, ker XX X ϕ≅ h ; 

2) ( )1 1Prod opA
X C+∈  and ( ) ( )2ker Prod opX B

Cϕ +∈ . 
In this instance, Xϕ  is surjective. 
Proof. “⇐ ” If ( )1 1Prod opA

X C+∈  and ( ) ( )2ker Prod opX B
Cϕ +∈ , then  

( ) 1

1 1 1

I
X C+⊕ ϒ =  and ( ) ( ) 2

2 2ker
I

X Cϕ +⊕ ϒ =  for some  

( )1 2, Mod- Mod-A Bϒ ϒ ∈ ×  and some sets 1I  and 2I . Without loss of general-
ity, we can assume that 1 2I I I= = . Then: 

( ) ( )( ) ( )

( ) ( )( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( )( ) ( )

( )( )

1 2 1 1 2

1 1 1 1 2

1 1 2

1 1 2

1 1 2

1 2

, , ker ,

,Hom , ker ,Hom ,

,Hom ,

,Hom ,

,

, .

op op

op

op

X

XA A

I I I

A

I I I

A

II I

A

I

X X

X U X U

C U C C

C U C C

C U C C

C C

ϕ

ϕ

+ + +

+ + +

++ +

+

⊕ ϒ ϒ ≅ ⊕ ϒ ϒ

= ⊕ ⊕ ϒ ϒ ⊕ϒ

 = ⊕ 
 

≅ ⊕

 ≅ ⊗ ⊕ 
 

=

h h h

p

 

Hence, ( )( )1 2Prod ,opT
X C C+∈ p . 

“⇒ ” Let ( )( )1 2Prod ,opT
X C C+∈ p  and ( )1 2 Mo -, d Tϕϒ

ϒ = ϒ ϒ ∈  such that 

( )( )1 2,
I

X C C+⊕ ϒ = p  for some set I. Then Xϕ  is surjective as X is a submo-

dule of ( )( )1 2,
I

C C+p  and 
C

ϕ +  is surjective. Now, let ( )1 2: ,C C C= p , there is 
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an exact split sequence: 

( ) ( ) ( )1 2 1 2, ,0 0,
I p pC Xλ λ +→ ϒ→ → →

 

which induces the following commutative diagram with exact rows and col-
umns: 

 
where , ,h j k  are the canonical injections. Clearly, 1p  and 1*p  are split epi-
morphisms. Thus, ( )1 1Prod opA

X C+∈ . Next, we prove that the short exact se-
quence: 

( )  ( )2 10 ker Hom , 0Xk
X AX U Xϕϕ→ → → →  

splits. Let r be the retraction of *
1p . If  

( )( ) ( )( ) ( )1 1 2: Hom ,op

II I

AA
i U C U C C++ +→ ⊗ ⊕  denotes the canonical injection 

by ( )( ) ( )1 1Hom ,op AA
U C U C ++ ≅ ⊗ , then  

( )12 1* 1* Hom ,1
AX U XC

p ir p ir p rϕ ϕ += = = . 

Thus ( ) ( )2 1Hom , kerA XX U X ϕ≅ ⊕  and the first row is a split exact sequence 

too. So ( ) ( )2ker Prod opX B
Cϕ +∈  and ( )( )1, ker XX X ϕ≅ h . 

Corollary 2.8. Let 1

2

-Mod
X

X
X T

X ϕ

 
= ∈ 
 

 and ( )1 2, -Mod -ModC C A B∈ × . 

If ( )1 2,C C C= p , then ( )CX T∈  if and only if  
1) ( )1 2,X X X+ + +≅ h ; 
2) ( )

11 CX A∈  and ( )
22 CX B∈ . 

In this instance, Xϕ  is injective. 
Proof. ( )CX T∈  if and only if ( ) ( )1 2, Prod op

X
T

X X X C
ϕ +

+ + + += ∈  if and 

only if ( )( )1 , ker
X

X X ϕ +
+ +≅ h , ( )1 1Prod opA

X C+ +∈ , ( ) ( )2ker Prod opX B
Cϕ +

+∈  

by Lemma 2.7. Note that 
X

ϕ +  is surjective. Hence, Xϕ  is injective. Then we 

get an exact sequence 

1 2 20 0.
X

AU X X Xϕ→ ⊗ → → →  

Consider the commutative diagram with exact rows shown below. 
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Thus ( ) ( )2 2ker Prod opX B
X Cϕ +

+ +≅ ∈ . So ( )CX T∈  if and only if  

( )1 2,X X X+ + +≅ h , ( )
11 CX A∈  and ( )

22 CX B∈ , and the proof is finished. 

3. Relative Ding Projective Modules 

This section will characterize relative Ding projective modules over a formal 
triangular matrix ring. 

Definition 3.1 ([[12], Definition 1.1]) Let R SC  be a semidualizing bimodule. 
A left R-module M is said to be CD -projective if there exists a ( )Hom ,R SC F− ⊗
-exact exact sequence in R-Mod: 

0 1
1 0P P A A→ → → → →   

with ( )Addi
RA C∈ , ( )iP R∈  for every i∈  and ( )F S∈ , such that 

( )0
0ImM P A≅ → . 

The class of all CD -projective R-modules is denoted by ( )CD P R . 
Note that if C R= , then CD -projective R-modules are Ding projective 

R-modules. 
We introduce the following concept, which is critical to the rest of this study, 

inspired by the definition of C-compatible bimodule in [[10], Definition 4]. 
Definition 3.2. Let ( )1 2, -Mod -ModC C A B∈ ×  and ( )1 2,C C C= p . A bi-

module B AU  is said to be Ding C-compatible if the following two conditions 
hold:  

(a) The complex 1AU ⊗ X  is exact for every exact sequence in A-Mod: 
1 0 0 1

1 1 1 1 1: P P A A→ → → → →X    
with ( )1

iP A∈  and ( )1 1Addi
AA C∈  for every i∈ . 

(b) The complex ( )( )12Hom ,B A CU A⊗X   is exact for every  
( )( )2

Hom ,B C B−  -exact exact sequence in B-Mod: 
1 0 0 1

2 2 2 2 2: P P A A→ → → → →X    
with ( )2

iP B∈  and ( )2 2Addi
BA C∈  for every i∈ . 

Furthermore, U is said to be weakly Ding C-compatible if it meets (b) and the 
following condition:  

(a') The complex 1AU ⊗ X  is exact for every ( )( )1
Hom ,A C A−  -exact exact 

sequence in A-Mod: 
1 0 0 1

1 1 1 1 1: P P A A→ → → → →X    
with ( )1

iP A∈  and ( )1 1Addi
AA C∈  for every i∈ . 

Proposition 3.3. Suppose that ( )1 2,C C C= p  be a left T-module and U be 
weakly Ding C-compatible. If 1A C  and 2B C  are semidualizing, then ( )1 2,C Cp  
is semidualizing. 
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Proof. Assume that 1A C  and 2B C  are semidualizing. By [[8], Corollary 3.2], 

1A C  and 2B C  are tilting. To prove C is tilting, the functor p  preserves finitely 
generated modules by [13]. Then ( )1

1 1Ext , 0i
A C C≥ =  and ( )1

2 2Ext , 0i
B C C≥ = . 

Observe that ( )
11 CC D P A∈  and ( )

22 CC D P B∈  by [[12], Proposition 1.8]. 
Since U satisfies (a'), ( )1 1,or 0T A

i U C≥ = . And, as U satisfies (b),  
( )1

2 1,E 0xt i
B AC U C≥ ⊗ = . For every 1n ≥ , by [[10], Lemma 3], we get that: 

( ) ( ) ( )( )
( ) ( ) ( )

1 2 1 2

1 1 2 1 2 2

Ext , Ext , , ,

Ext , Ext , Ext ,
0.

n n
T T

n n n
A B A B

C C C C C C

C C C U C C C

=

≅ ⊕ ⊗ ⊕

=

p p

 
Furthermore, there exist exact sequences: 

0 1
1 1 1: 0 ,A C C→ → → →X   

and: 
0 1

2 2 2: 0 B C C→ → → →X   
which are ( )( )1,AdHom dA A C− -exact and ( )( )1,AdHom dB B C− -exact, respec-
tively, and ( )1 1addi

AC C∈ , ( )2 2addi
BC C∈ , i∀ ∈ . Note that every cokernel 

in 1X  and 2X  are finitely presented. Thus, ( )( )11,HomA C AX   and  
( )( )22 ,HomA C BX   are exact. Since U is weakly Ding C-compatible, the com-

plex 1AU ⊗ X  is exact. As a result, we get the following exaxt sequence 

( ) ( ) ( )0 0 1 1
1 2 1 2 1 2, : 0 , , ,T C C C C→ → → →X X p p p

 

with ( ) ( )( )1
1 2 1 2

1 2

, add ,
i

i i
Ti i

A

C
C C C C

U C C
 

= ∈ 
⊗ ⊕ 

p p , i∀ ∈ , by Lemma 2.5. 

Let ( )AddTX C∈ , by Lemma 2.5, ( )1 2,X X X≅ p  where ( )1 1Add AX C∈  
and ( )2 2AddBX C∈ . There is a complex isomorphism using adjointness 
( ,p q ): 

( )( ) ( ) ( ) ( )1 2 1 1 2 1 2 2Hom , , Hom , Hom , Hom , .T A B A BX X U X X≅ ⊕ ⊗ ⊕X X X X Xp
 

It should be noted that the complexes ( )1 1Hom ,A XX  and ( )2 2Hom ,B XX , 
as well as the complex ( )2 1Hom ,B AU X⊗X  are exact since U is weakly Ding 
C-compatible. Then ( )( )1 2Hom , ,T XX Xp  is exact. So ( )1 2,C Cp  is semidua-
lizing by [[8], Corollary 3.2]. 

Lemma 3.4. Assume that 1A C  and 2B C  are semidualizing. Let ( )1 2,C C C= p  
be a left T-module and U be weakly Ding C-compatible. 

1) If ( )
11 CM D P A∈ , then ( ) ( )1,0 CM D P T∈p . 

2) If ( )
22 CM D P B∈ , then ( ) ( )20, CM D P T∈p . 

Proof. By Proposition 3.3, the functor p  preservers semidualizing. Thus 
( )S CC F T⊗ ≅   by Remark 2.4. 

1) Assume that ( )
11 CM D P A∈ . There exists a ( )( )1

,HomA C A−  -exact exact 
sequence in A-Mod: 

1 0 0 1
1 1 1 1 1: ,P P C C→ → → → →X    

where ( )1
iP A∈  and ( )1 1Addi

AC C∈  i∀ ∈  and ( )0 0
1 1 1ImM P C≅ → . 
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Since U is weakly Ding C-compatible, we have the complex 1AU ⊗ X  is exact in 
B-Mod. So we get an exact sequence 

( )
1 0 0 1

1 1 1 1
1 1 0 0 1

1 1 1 1

,0 :
A A A A

P P C C
U P U P U C U C
       

→ → → → →       
⊗ ⊗ ⊗ ⊗       

X  p
 

with 
0 0

1 1 1
0 0

1 1 1

Im .
A A A

M P C
U M U P U C

     
≅ →       ⊗ ⊗ ⊗        

Clearly, ( ) ( )1
1

1

,0
i

i
i

A

P
P T

U P
 

= ∈ 
⊗ 

p   and ( ) ( )1
1

1

,0 Add
i

i
Ti

A

C
C C

U C
 

= ∈ 
⊗ 

p  

for every i∈  by Lemmas 2.6 and 2.5. 

If ( )1

2 N
C

N
N T

N ϕ

 
= ∈ 
 

 , then ( )
11 CN A∈  by Corollary 2.8. Then using 

the adjointness, we get that ( )( ) ( )1 1 1Hom ,0 , Hom ,T AN N≅X Xp  is exact. 

Thus 1

1A

M
U M
 
 ⊗ 

 is CD -projective. 

2) Assume that ( )
22 CM D P B∈ . There exists a ( )( )2

Hom ,B C B−  -exact ex-
act sequence in B-Mod: 

1 0 0 1
2 2 2 2 2: ,P P C C→ → → → →X    

where ( )2
iP B∈  and ( )2 2Addi

BC C∈  i∀ ∈  and ( )0 0
2 2 2ImM P C≅ → . As 

a result, we have an exact sequence 

( )2 1 0 0 1
2 2 2 2

0 0 0 0
0, :

P P C C
       

→ → → → →       
       

X  p
 

with 0 0
2 2 2

0 0 0
Im

M P C
      

≅ →      
      

, ( ) ( )2
2

0
0, i

iP T
P

 
= ∈ 
 

p  and  

( ) ( )2
2

0
0, Addi

TiC C
C
 

= ∈ 
 

p  for every i∈  by Lemmas 2.6 and 2.5 respec-

tively. Let ( )1

2 N
C

N
N T

N ϕ

 
= ∈ 
 

 , then ( )
11 CN A∈ , ( )

22 CN B∈  and Nϕ  

is injective by Corollary 2.8. Thus we obtain a short exact sequence: 

1 2 20 0.AU N N N→ ⊗ → → →  
Because U is weakly Ding C-compatible, 1 0

2 2 2 0P P M→ → → →  is a 
( )1,HomB AU N− ⊗ -exact exact sequence. Then ( )1

2 1Ext , 0B AM U N⊗ = . Con-
sider a short exact sequence 0

2 20 0M C L→ → → →  with ( )0
2 2ImL M C≅ →  

is 
2CD -projective by [[12], Proposition 1.13]. Thus ( )1

1Ext , 0B AL U N⊗ = , and 
then ( )1 0

2 1Ext , 0B AC U N⊗ = . Consequently, ( )1
2 1Ext , 0i

B AC U N⊗ = . Then we 
obtain the exact sequence of complexes shown below. 

( ) ( ) ( )2 1 2 2 2 20 Hom , Hom , Hom , 0B A B BU N N N→ ⊗ → → →X X X
 

As U is weakly Ding C-compatible, ( )2 1Hom ,B AU N⊗X  is exact and  

( )2 2Hom ,B NX  is exact. Thus ( )2 2Hom ,B NX  is exact. Then  
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( )( ) ( )2 2 2Hom 0, , Hom ,T BN N≅X Xp  is exact. Above all, ( ) ( )20, CM D P T∈p . 
Theorem 3.5. Assume that 1A C  and 2B C  are semidualizing. Let  

1

2 M

M
M

M ϕ

 
=  
 

, ( )1 2 -Mo, dC C C T= ∈p  and U be Ding C-compatible. Then the 

following statements are equivalent:  
1) M is CD -projective. 
2) Mϕ  is injective, 1M  is 

1CD -projective and 2 : Coker MM ϕ=  is 
2CD - 

projective. 
In this instance, 1AU M⊗  is 

2CD -projective if and only if 2M  is 
2CD - 

projective. 
Proof. (1) ⇒  (2) There exists a ( )( ),HomT C T−  -exact exact sequence in 

T-Mod: 

1 0 0 1

1 0 0 1
1 1 1 1
1 0 0 1
2 2 2 2

,
P P C C

P P C C
P P C C

ϕ ϕ ϕ ϕ

       
= → → → → →       

       
X  

 

where ( )1

2 iP

i
i

i

P
P T

P
ϕ

 
= ∈ 
 

  and ( )1

2

Add
iC

i
i

Ti

C
C C

C
ϕ

 
= ∈ 
 

 i∀ ∈ , and such 

that ( )0 0ImM P C≅ → . Then we get an exact sequence in A-Mod: 

1 0 0 1
1 1 1 1 1: ,P P C C→ → → → →X    

where ( )1
iP A∈  and ( )1 1Addi

AC C∈  i∀ ∈  by Lemmas 2.6 and 2.5 and 
such that ( )0 0

1 1 1ImM P C≅ → . As U is Ding C-compatible, the complex 

1AU ⊗ X  is exact with ( )0 0
1 1 1ImA A AU M U P U C⊗ ≅ ⊗ → ⊗ . Let 0

1 1 1:l M C→  
and 0

2 2 2:l M C→  be the inclusions, then 11U l⊗  is injective. Consequently, 
the commutative diagram is as follows: 

 
According to Lemma 2.5, 

0Cϕ  is injective, then Mϕ  will be as well. Fur-
thermore, for every i∈ , 

iCϕ  and 
iPϕ  are injective by Lemmas 2.5 and 2.6. 

The result is the commutative diagram with exact columns shown below. 
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Since the first and the second rows are exact in the above diagram, we get an 
exact sequence in B-Mod: 

1 0 0 1
2 2 2 2 2: ,P P C C→ → → → →X    

where ( )2
iP B∈  and ( )2 2Addi

BC C∈  for every i∈  by Lemmas 2.6 and 

2.5, and such that ( )0 0
2 2 2ImM P C≅ → . Let ( )

11 CN A∈  and ( )
22 CN B∈ , 

then ( ) ( )1,0 CN T∈p  and ( ) ( )20, CN T∈p  by Corollary 2.8. Then by us-

ing adjointness, ( )( ) ( )2 2 2Hom , 0, Hom ,T BN N≅X Xp  is exact. Thus, 2M  is 

2CD -projective. Note that ( )1 2,i i iC C C≅ p  by Lemma 2.5. Then  

( )1 1
2 1

1

0
Ext , Ext , 0i

T i B A
A

C C U N
U N

  
≅ ⊗ =  ⊗  

 by [[10], Lemma 3] and U is 

Ding C-compatible. As a result, when we apply the functor ( )Hom ,T −X  to the 
sequence: 

1 1

1 1

0
0 0,

0A A

N N
U N U N
     

→ → → →     ⊗ ⊗       
we get the exact sequence of complexes: 

1 1

1 1

0
0 Hom , Hom , Hom , 0.

0T T T
A A

N N
U N U N

          
→ → → →          ⊗ ⊗          

X X X
 

By applying adjointness, we obtain that 

( )2 1
1

0
Hom , Hom ,T B A

A

U N
U N

  
≅ ⊗  ⊗  

X X
 

and 

( )1
1 1Hom , Hom , .

0T A

N
N

  
≅  

  
X X

 

Note that 1

1

Hom ,T
A

N
U N

  
  ⊗  

X  is exact, and since U is Ding C-compatible, 

( )2 1Hom ,B AU N⊗X  is exact too. It implies that ( )1 1Hom ,A NX  is exact. So 

1M  is 
1CD -projective. 

2) ⇒  1) Because Mϕ  is injective, an exact sequence exists in T-Mod: 

1

21

0
0 0.

A

M
M

U M M
  

→ → → →  ⊗     

By Theorem 3.5, 1

1A

M
U M
 
 ⊗ 

 and 
2

0
M
 
 
 

 are CD -projective T-modules. 

Hence, M is CD -projective according to [[12], Theorem 1.12]. Finally, there ex-
ists an exact sequence 

1 2 20 0.
M

AU M M Mϕ→ ⊗ → → →  
Since 2M  is 

2CD -projective, 1AU M⊗  is 
2CD -projective if and only if 
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2M  is 
2CD -projective by [[12], Theorem 2.12]. 

Corollary 3.6. Assume that 1R C  is semidualizing. Let R be a ring,  

( )
0R

T R
R R

 
=  
 

, ( )1 1,C C C= p  and 1

2 M

M
M

M ϕ

 
=  
 

 be a left ( )T R -module, 

then the following conditions are equivalent:  
1) M is a CD -projective left T(R)-module. 
2) 1M  and 2M  is 

1CD -projective, and Mϕ  is injective. 
3) 1M  and 2M  is 

1CD -projective, and Mϕ  is injective. 
Proof. It is an immediate consequence of Theorem 3.5. 

4. Relative Ding Projective Dimension 

This section aims to search in the CD -projective dimension of T-modules as 
well as the left CD -projective global dimension of T. We now recall [12] that the 
concept of relative Ding projective dimenion. The CD -projective dimension 

CD -pd(M) of a left R-module M is defined as inf{n| there there is an exact se-
quence 

1 00 0nD D D M→ → → → → →  
with ( )i CD D P R∈  for every { }0, ,i n∈  . The left global CD -projective di-
mension of R is defined as: ( ) ( ){ }- sup - -M d| oC CD PD R D pd M M R= ∈ . 

Lemma 4.1. Assume that 1A C  and 2B C  are semidualizing. Let ( )1 2,C C C= p  
and U Ding C-compatible. Then the following statements hold.  

1) ( )
2 2

2

0
- -C CD pd M D pd

M
  

=   
  

. 

2) ( ) ( )( )1 2 1- - ,0C CD pd M D pd M≤ p , and the equality is true if  
( )1 1Tor , 0A

i U M≥ = . 
Proof. 1) Consider the following exact sequence 

1 0
2 2 2 20 0n nK D D M−→ → → → → →  

with 2
iD  is 

2CD -projective. As a result, we have an exact sequence in T-Mod: 

1 0
2 2 2 2

0 0 0 0
0 0n nK D D M−

       
→ → → → → →       

       


 

with 
2

0
iD

 
 
 

 CD -projective by Theorem 3.5. Furthermore, by Theorem 3.5, 

2

0
nK

 
 
 

 is CD -projective if and only if 2
nK  is 

1CD -projective. This means that 

2

0
-CD pd n

M
  

≤  
  

 if and only if ( )
2 2-CD pd M n≤  by [[12], Theorem 2.4]. 

2) We may assume that 1

1

-C
A

M
D pd m

U M
  

= < ∞  ⊗  
. There exists an exact 

sequence in T-Mod: 

11 0

1

0 0m m

A

M
D D D

U M
−  

→ → → → → → ⊗ 
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with ( )1

2 iD

i
i

Ci

D
D D P T

D
ϕ

 
= ∈ 
 

. Then there is an exact sequence 

1 0
1 1 1 10 0m mD D D M−→ → → → → →  

with ( )
11

i
CD D P A∈  by Theorem 3.5. Thus ( )

1 1-CD pd M m≤ . 

In contrast, we demonstrate that ( )
1

1
1

1

- -C C
A

M
D pd D pd M

U M
  

≤  ⊗  
 when 

( )1 1Tor , 0A
i U M≥ = . We may assume that ( )

1 1-CD pd M m= < ∞ . So there is an 

exact sequence 
1 0

1 1 1 1 1: 0 0m mK P P M−→ → → → → →X   
with ( )1

iP A∈ . As a result, the complex 1U ⊗ X  is exact and each 1
iP  is 

1CD -projective by [[12], Proposition 1.8], and then, 1
mK  is 

1CD -projective by 
[[12], Theorem 2.4]. So there is an exact sequence 

1 0
11 1 1

1 0
11 1 1

0 0.
m m

m m
AA A A

MK P P
U MU K U P U P

−

−

       
→ → → → → →       ⊗⊗ ⊗ ⊗       



 

We obtain that 1

1

m

m
A

K
U K
 
 

⊗ 
 and all 1

1

i

i
A

P
U P
 
 

⊗ 
 are CD -projective by 

Theorem 3.5. Thus we get ( )
1

1
1

1

- -C C
A

M
D pd m D pd M

U M
  

≤ =  ⊗  
. 

Inspired by the strong notion of the 
2CG -projective global dimension of B in 

[10] for estimating the CG -projective dimension of a T-module and the left 
global CG -projective dimension of T, we give the strong notion of the 

2CD - 
projective global dimension of B. Set:  

( ) ( ) ( ){ }2 2 1
- sup - |C C B A CSD PD B D pd U D D D P A= ⊗ ∈ . 

Theorem 4.2. Assume that 1A C  and 2B C  are semidualizing. Let  

( )1 2,C C C= p  and U Ding C-compatible. If 1

2 M

M
M

M ϕ

 
=  
 

 be a left T-module 

and ( )
2
-CSD PD B < ∞ , then: 

( ) ( ) ( )( ){ } ( )

( )( ) ( )( ) ( ){ }
1 2 2

1 2 2

1 2

1 2

max - , - - -

max - - 1, - .

C C C C

C C C

D pd M D pd M SD PD B D pd M

D pd M SD PD B D pd M

− ≤

≤ + +
 

Proof. Let ( )
2

: -Ck SD PD B= . Firstly, we prove that 

( ) ( )( ){ } ( )
1 21 2max - , - -C C CD pd M D pd M k D pd M− ≤ . 

We may assume that ( ): -Cn D pd M= < ∞ . Then there is an exact sequence 
1 00 0nD D D M→ → → → → →  

with ( )1

2 iD

i
i

Ci

D
D D P T

D
ϕ

 
= ∈ 
 

. Thus we achieve an exact sequence. 

1 0
1 1 1 10 0n nD D D M−→ → → → → →  
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with ( )
11

i
CD D P A∈  by Theorem 3.5. Thus, ( )

1 1-CD pd M n≤ . 
Furthermore, according to Theorem 3.5, there is an exact sequence in B-Mod 

for each i 

1 2 20 0i i i
AU D D D→ ⊗ → → →  

with ( )
22

i
CD D P B∈ . Then ( ) ( )2 22 1- -i i

C C AD pd D D pd U D k= ⊗ ≤  by [[14], 
Theorem 3.2]. There exists an exact sequence in B-Mod: 

1 0
2 2 2 20 0.n nD D D M−→ → → → → →  

By [[14], Theorem 3.2], ( )
2 2-CD pd M n k≤ + . 

Next, we prove that ( ) ( )( ) ( ){ }1 21 2- max - 1, -C C CD pd M D pd M k D pd M≤ + + . 
We may assume that: ( )( ) ( ){ }1 21 2: max - 1, -C Cm D pd M k D pd M= + + < ∞ , 

( )
11 1: -Cn D pd M= < ∞  and ( )

22 2: -Cn D pd M= < ∞ . Since  
( )

1 1 1- 1CD pd M n m k= ≤ − − , we have an exact sequence in A-Mod: 
1 0

1 121 0
1 1 1 10 0f fn km kD D D M−− −→ → → → → → →   

with ( )
11

i
CD D P A∈ . There exists an epimorphism 

0
20

2 2 0gD M→ →  with 

( )
2

0
2 CD D P B∈  by [[12], Proposition 1.8]. Let 1 1keri iK f=  and define the map 
0 0 0

2 1 2: Af U D D⊗ ⊕  to be ( )( )0 0
1 21M

u f gϕ ⊗ ⊕ . Then we get an exact sequence 

( )

0
1
0
2

1

01
11

1 0 0
2 1 2

0 0.
K

f

f

A

DK
M

K U D D
ϕ

 
 
 
 

  
 → → → →   ⊗ ⊕     

In a similar way, there exists an exact sequence of B-modules  
1
21 1

2 2 0gD K→ →  with ( )
2

1
2 CD D P B∈ . So we obtain an exact sequence 

( )2 1

12 1
11 1

2 1 1 1
2 1 2 2

0 0.
K KA

DK K
K U D D K

ϕ ϕ

    
 → → → →    ⊗ ⊕      

Repeating this process, we obtain an exact sequence 

( )

( ) ( )

1
1

1
2

1 0
1 1
1 0
2 2

1
1

1 1
2 1 2

1 0
1 1 1
1 1 0 0

21 2 1 2

0
0

0.

m k

m k
fm k
f

m k m k m k
A

f f

f f

A A

D

K U D D

D D M
MU D D U D D

− −

− −

 
− −  

 
 

− − − − −

   
   
   
   

    → → →   ⊗ ⊕   

        → → → →    ⊗ ⊕ ⊗ ⊕     



 

Note that ( )( ) ( )2 21 2 1- -i i i
C A C AD pd U D D D pd U D k⊗ ⊕ = ⊗ ≤ ,  

{ }0, , 1i m k∈ − − . By [[14], Theorem 3.2], the exact sequence 20 m kK −→ →

( ) ( ) ( )1 1 1 1 0 0
1 2 1 2 1 2 2 0m k m k

A A AU D D U D D U D G M− − − −⊗ ⊕ → → ⊗ ⊕ → ⊗ ⊕ → →

gives that ( ) { }
2 2 2- max ,m k

CD pd K k n m k k− ≤ − + = . As a result, we have an exact 

sequence in B-Mod 
1

2 2 2 20 0,m m k m k m kD D D K− + − −→ → → → → →  
which induces an exact sequence in T-Mod: 
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( )

( ) ( )

1
1

1
2

1 0
1 1
1 0
2 2

1
2 2 2

1
1

1 1
1 2

1 0
1 1 1
1 1 0 0

21 2 1 2

0 0 0
0

0.

m k

m k

m m k m k

fm k
f

m k m k
A

f f

f f

A A

D D D

D

U D D

D D M
MU D D U D D

− −

− −

− + −

 
− −  

 
 

− − − −

   
   
   
   

     
→ → → →     

     

 
 → →
 ⊗ ⊕ 

        → → → →    ⊗ ⊕ ⊗ ⊕     





 

Since all ( )
1

0
1 2

i

i
A

D

U D D

 
 
 ⊗ ⊕ 

 and 
2

0
jD

 
 
 

 are CD -projective by Theorem 

3.5, ( )-CD pd M m≤ . 
Corollary 4.3. Assume that 1A C  and 2B C  are semidualizing. Let  

( )1 2,C C C= p  and U Ding C-compatible. If ( )
2
-CSD PD B < ∞ , then  

( )-CD pd M < ∞  if and only if ( )
1 1-CD pd M < ∞  and ( )

2 2-CD pd M < ∞ . 

Theorem 4.4. Assume that 1A C  and 2B C  are semidualizing. Let  
( )1 2,C C C= p  and U Ding C-compatible. Then 

( ) ( ){ } ( )

( ) ( ) ( ){ }
1 2

1 2 2

max - , - -

max - - 1, - .

C C C

C C C

D PD A D PD B D PD T

D PD A SD PD B D PD B

≤

≤ + +
 

Proof. Firstly, we show that the left side of the inequality. Assume that  
( ): -Cn D PD T= < ∞ . Let 1 -ModM A∈  and 2 -ModM B∈ . Because  

1

1

-C
A

M
D pd n

U M
  

≤  ⊗  
 and 

2

0
-CD pd n

M
  

≤  
  

, ( )
1 1-CD pd M n≤  and  

( )
2 2-CD pd M n≤  by Lemma 4.1. Consequently, ( )

1
-CD PD A n≤  and  

( )
2
-CD PD B n≤ . 

Secondly, we show that the right side of the inequality. Assume that: 

( ) ( ) ( ){ }1 2 2
: max - - 1, -C C Cm D PD A SD PD B D PD B= + + < ∞ . 

Then ( )
1
-CD PD A < ∞  and ( ) ( )

2 2
- -C CSD PD B D PD B≤ < ∞ . Let  

1

2 M

M
M

M ϕ

 
=  
 

 be a left T-module. According to Theorem 4.2,  

( ) ( ) ( ) ( ){ }1 2 2
- max - - 1, -C C C CD pd M D PD A SD PD B D PD B≤ + + . 

Corollary 4.5. Assume that 1A C  and 2B C  are semidualizing. Let  
( )1 2,C C C= p  and U Ding C-compatible. Then ( )-CD PD T < ∞  if and only if 
( )

1
-CD PD A < ∞  and ( )

2
-CD PD B < ∞ . 

Corollary 4.6. Assume that 1R C  is semidualizing. Let ( )
0R

T R
R R

 
=  
 

 and 

( )1 2,C C C= p . Then ( )( ) ( )
1

- - 1C CD PD T R D PD R= + . 

Proof. We know that R is Ding C-compatible and ( )
1
- 0CSD PD R = . There-

fore by Theorem 4.4, 
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( ) ( )( ) ( )
1 1
- - - 1C C CD PD R D PD T R D PD R≤ ≤ +

. 

It is obvious in the case ( )
1
-CD PD R = ∞ . We may assume that  

( )
1

: -Cn D PD R= < ∞ . Then there exists a left R-module M with  
( )

1
-CD pd M n=  and ( )Ext , 0n

R M X ≠  for some ( )
1CX R∈  by [[12], 

Theorem 2.4]. Now we consider an exact sequence in ( )T R -Mod: 

1

0
0 0.

0
M

M M
M M
     

→ → → →     
       

By applying the long exact sequence theorem to the preceding exact sequence, 
we obtain that 

( ) ( )

( ) ( )
1 1

0 0 0
Ext , Ext ,

0 0
Ext , Ext , .

0

n n
T R T R

n n
T R T R

M
M X M X

M M
X M X

+ +

          
→ →          

          
          

→ → →          
          





 

By [[10], Lemma 3], we know that ( ) ( )1 10
Ext , Ext , 0 0i i

RT R

M
M

M X
≥ ≥    

≅ =    
    

. 

Thus by [[10], Lemma 3] and the above exact sequence, 

( ) ( ) ( )10 0 0
Ext , Ext , Ext , 0.

0
n n n

RT R T R

M
M X

M X X
+          

≅ ≅ ≠          
            

As ( )( )0
C T R

X
 

∈ 
 

  by Corollary 2.8, we have -
0C

M
D pd n

  
>  

  
 by 

[[12], Theorem 2.4]. Besides, ( )( )- - 1
0C C

M
D pd D PD T R n

  
≤ ≤ +  

  
. Thus 

- 1
0C

M
D pd n

  
= +  

  
, which implies that ( )( )- 1CD PD T R n= + . 
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