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Abstract 
Based on the standard definition of the product (concatenation), the natural 
non-negative degree of the language is introduced. Root extraction is the re-
verse operation to it, and it can be defined in several different ways. Despite 
the simplicity of the formulation of the problem of extracting the root, the 
authors could not find any description of it in the literature (as well as on the 
Internet), including even its formulation. Most of the material in this article is 
devoted to the simplest version of the formulation: the root of the 2nd degree 
for the 1-letter alphabet, but many of the provisions of the article are genera-
lized to more complex cases. Apparently, for a possible future description of a 
polynomial algorithm for solving at least one of the described statements of 
root extraction problems, it is first necessary to really analyze in detail such a 
special case, that is: either describe the necessary polynomial algorithm, or, 
conversely, show that the problem belongs to the class of NP-complete prob-
lems. Thus, in this article, we do not propose a polynomial algorithm for the 
problems under consideration; however, the models described here should 
help in constructing appropriate heuristic algorithms for their solution. A 
detailed description of the possible further application of such heuristic algo-
rithms is beyond the scope of this article. 
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1. Introduction 

The definition of a product (otherwise called concatenation) of two languages is 
introduced in the usual way [1]. Based on the introduced definition of the prod-
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uct, also in the usual algebraic method, an integer non-negative degree of the 
language is introduced. Root extraction is an inverse operation, and it can be de-
fined in different ways, see below for some details. In the paper, we shall consid-
er the problem of extracting the root from a given finite language. 

Despite the simplicity of the formulation of the problem, the authors could not 
find any description of it in the literature (as well as on the Internet), including 
even its formulation. At the same time, we believe that all the material of the article 
is simple; therefore, it is very puzzling that at least there are no formulations of 
such problems in the monographs known to the authors [1] [2] and others. 

Most of the material in this article is devoted to the simplest version of the 
formulation, the root of the 2nd degree for the 1-letter alphabet, but many of the 
provisions of the article are generalized to more complex cases. And, apparently, 
for a possible future description of a polynomial algorithm for solving at least 
one of the described problem statements, it is first necessary to really analyze in 
detail such a special case (in our usual notation 2 A , |Σ| = 1), that is: 
• either describe the required polynomial algorithm, 
• or, conversely, show that the problem belongs to the class of NP-complete 

problems. 
Let us present the contents of the article by sections. In Section 2, the applied 

designations and variants of the statements of the tasks solved in the article are 
given. Section 3 discusses some simple models designed to describe algorithms 
for solving the problem also in the simple case: for a 1-letter alphabet and a 
square root; one of the corresponding mathematical models is formulated in the 
language of graph theory. In Section 4, we shall again assume that N potential 
roots are obtained based on the in-put data. For some ordering of these potential 
roots (the natural ordering in the case of a 1-letter alphabet is an increase in the 
length of the potential root), consider an N-dimensional cube. The material of 
Section 5 describes the part of the subject of the article that seems to be the only 
non-trivial one; it considers adding a new coordinate to an already existing solu-
tion. It is on the basis of the results of the theorem proved in the section, that we 
can assert that the search for (at least one) root can be performed as a search for 
the vertex of the hypercube (the Boolean) closest to the maximum vertex and at 
the same time not included in any of the taboo planes. 

2. Applicable Designations and Options for Setting the 
Problem 

Let us start the section with a description of the standard notation. For the ob-
jects under consideration, the “multiplication” (we shall continue to use it with-
out quotes) is simply the result of the product of two languages; in particular, 
consider this example for 1-letter alphabet: if 

C = {ai | i ∈ I} and D = {aj | j ∈ J} 

(where I and J are some finite subsets of non-negative integers), then 

C · D = {ak | (∃ i ∈ I, j ∈ J) (k = i + j)}. 
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On the basis of the product, the degree of the language is naturally defined; 
then we proceed to the description of the root extraction operation. Throughout 
the description of tasks and examples to them, we shall adhere to the following 
conventions. 

1) Everywhere further, the problem of finding the language X, which is the 
root of the equation 

XM = A                            (1) 

is solved, where the language A and the number M ⩾ 2 are predetermined. In 
most of the article, we shall solve the equation for M = 2. In this case, the poten-
tial root is some word u ∈ Σ*, such that uM ∈ A. Unlike them (i.e. words), we 
shall call X by the root (not by the potential root), if condition (1) is met. It is 
obvious that it is possible to find all potential roots in polynomial time (relative 
to the size of the initial data of the problem). 

2) N is the number of potential roots, we number them from 1 to N, here we 
use “usual Pascal indexing”. 

3) Only for the case 1-letter alphabet: if “the problem is formed” by raising to 
the power of M some language (let it be a language B; we assume that when 
solving, we get the language X), then the representation of this language (as a set, 
B or X) we perform an enumeration from 0 to some given n; here we use “usual 
C (or similar algorithmic languages) indexing”. In this case, M·n + 1 will be the 
dimension of the source language A (for example, in the case of the 2nd degree, 
we need to somehow determine the digits from the 0th to the 2nth). 

In the last agreement, in all cases (i.e., for both A and B/X), we shall use 4 va-
riants of the designation of a set of words: 
• “the most common”: for example, {a, ab, ba, bab}, or 

{ε = a0, a = a1, aaa = a3, aaaaaa = a6}.                (2) 

The remaining three variants of the notation will be used both for subsets of 
the set of potential roots, and for several elements of the set 

{ε, a, aa,... aK−1, aK} 

(in the case of a 1-letter alphabet); in the last case, it will usually be either K = n 
or K = 2n. 

Here are examples for the language (2): 
• [0 1 3 6], the set of degrees used is written in square brackets in ascending 

order; 
• 1001011 is a binary number in which the digits of the previous list are 

marked with 1; the digits of the binary number are numbered starting from 0 
from right to left; 

• 75, it is the number belonging to N0, representing the decimal equivalent of 
the previous item. 

As already noted, we shall use the same notation when K = N, and at the same 
time we consider subsets of the set of potential roots; however, in this case, we 
shall write the digits of the binary number from left to right and number them 
starting from 1. For example, let there be only 5 elements, and the considered 
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subset is {2, 5}: 
• [2 5], sometimes just 2 5, even sometimes 25, it will not cause a difference; 

the empty set is marked in the usual way, i.e. ∅; 
• 01001; the empty set here is the sequence of zeros; 
• 9; empty set 0. 

Only subsets of the set of potential roots (recall that we assumed that their 
number is N) will usually be considered as vertices of an N-dimensional hyper-
cube. Now we define some auxiliary concepts related to such a hypercube. 
• The definition of the maximal vertex of the hypercube is naturally (1, 1, ..., 1, 

1). 
• For further, in the case of considering the problem of extracting the root of 

the 2nd degree, so-called pairs of potential roots will often be used; in particu-
lar, the so-called taboo pairs (more details on them below). 

For example, if: 
– we accept the “third agreement” (i.e. we consider the case of the 1-letter 

alphabet only), 
– at the same time, we consider the set [0 1 2 3 6], 
– the pair is {2, 6} (of course, the order of the elements of the pair is arbi-

trary), 
then the following designations of such pair are also possible: 

– 


2,6  (this is just their values); is the same as 


6,2 ; 

– 


#3,#5  (those are their numbers, counting the numbers on the rank from 1). 
• For some taboo pair, a taboo hyperplane is such an N−2-dimensional hyper-

plane of an N-dimensional hypercube for which both coordinates of the ele-
ments of the pair are equal to 1. 

• Note that the maximum vertex of the hypercube is included in the intersec-
tion of any number of any taboo hyperplanes. 

• For some hypercube’s point (b1 b2... bN), the value (b1 b2... bN)+k means the 
vertex obtained from the previous one by changing the kth coordinate for 1. 

Let us clarify a few statements of the tasks to be solved. As it was noted in [3], 
considering the problem of extracting the root of a given degree for a given finite 
language, we are actually dealing not with one problem, but with a whole group 
of problems, since there are several options for the required answer: a) find any 
(root from the language); b) find all; c) find the minimum (by some metric); etc. 

The exponential algorithm for any variant of the root extraction problem is 
obvious: we only need to consider all the subsets of the set of potential roots, and 
among these subsets choose the appropriate (the suitable). Therefore, the problem 
is to describe possible polynomial algorithms for these variants of the problem. 

3. The Case of the 1-Letter Alphabet and the Square Root: 
Simple Models for Solving the Problem 

Thus, we shall assume that based on the input data we have obtained N potential 
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roots; we repeat that all potential roots can be found using a simple polynomial 
algorithm. Here we shall try to find a solution to the simplest version of the 
problem: we need to extract the square root (the root of the 2nd degree), despite 
the fact that the alphabet consists of 1 letter; but, as already noted, the problem is 
not simple even in this case. We do not know a polynomial algorithm for such a 
“simple” option, so we are trying to use various approaches to solve the problem; 
at the same time, here we shall consider the simplest approaches, they seem to be 
immediately clear from the description of the problem. 

We shall work with a set of potential roots. And, since each root is determined 
by its length, without the loss of generality, we shall assume that this length is in 
the range from 0 to some n; moreover, in the examples discussed below, there is 
always a potential root of the length 0. 

Arrange the selected values from 0 to n in the form of marks of rows and 
columns of the table (n + 1) × (n + 1), while in the cells of the table we write the 
sum of the numbers that are the marks of the corresponding row and column. In 
the cells of the table, note the values included in the given set (in the specific 
example shown in Figure 1(a), marked with asterisks), also note the values of 
potential roots (in the figure marked with a green background). 

Of course, on each of the diagonals (we call those that are perpendicular to the 
main diagonal) all the elements correspond to the same value. 

It is clear that the problem of extracting the square root can be reformulated 
as follows: to choose among the “green” elements a subset such that: 
• the intersection of each pair of selected elements is marked (with an asterisk); 
• on each of the diagonals there is at least one element included in such a pair. 

However, with such a reformulation, among the details of this problem, only 
one reduction to the already mentioned problem of covering the set seems ob-
vious. 

Moreover, here we can see a big analogy with the problem of minimizing 
nondeterministic finite automata, which we have considered in many publica-
tions (see [4] [5] [6] [7] [8] and many others): in the root extraction problem 
solved here, the requirements for the selected subset of potential roots practically 
coincide with the requirements for the grid (block) to minimize automata. At  

 

   
(a)                               (b) 

Figure 1. The first (a) and second (b) variants of the model for the square root in the case 
of a 1-letter alphabet. Example for the source language [0 1 3 6]. 
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the same time, we will note separately the articles related to the language (auto-
maton) Waterloo [4] [9] [10] and others. Thus, in the model under considera-
tion, we obtain a binary relation, but, unlike the problem of automata minimiza-
tion, defined on matching sets. In the same way, certain binary relations can be 
considered as adjacency matrices of the corresponding graphs, which we will do 
below. 

Let us consider Figure 1 in a little more detail. For it: 
• the language used to form the example is [0 1 3 6]; 
then: 
• its square (we consider it to be the source language for this task) 

 [0 1 2 3 4 6 7 9 12];                       (3) 

• the potential roots are [0 1 2 3 6]. 
It is easy to show that the potential roots 0 and 6 are necessarily included in 

the answer, as the minimum and maximum in length. 
All of the above (with changes corresponding to a specific task) can be applied 

to any square root extraction problem, however further reasoning applies only to 
the problem under consideration. In it, 1 is included in the answer for the reason 
that without it there can be no 1 in the source language (3), and 3 is included for 
a similar reason. However, 2 cannot be included in the answer, for example, be-
cause the element of this matrix (2, 3) is not the asterisk. 

Thus, for this particular task, it is possible to prove that the language [0 1 3 6], 
taken to form an example, is the only possible answer. However, in the general 
case, we do not have an appropriate “algorithm”. The obvious reduction of the 
problem is only the consideration of the problem of covering the set. And we 
have not yet been able “to improve the situation” (i.e., to get a description of the 
polynomial algorithm), but the subsequent models seem quite interesting. 

The next model is some modification of the previous one. Here, the rows and 
columns of the table are marked only with potential roots (which can be consi-
dered logical: after all, only subsets of answers are selected from them), and at 
the same time, instead of asterisks, we can put the sum at the intersection. But 
we shall not use numerical values of possible sums, because, apparently, it is 
more obvious to replace them with some other signs, which we do. 

In the example considered for the same source language (3), instead of 9 ele-
ments of this language, we put the letters A B ... H I in the tables; we get the re-
sult in the table shown in Figure 1(b). 

At the same time, the goal is somewhat different. We also select a subset of 
potential roots (in this model, they are clear; besides, we do not need the green 
background), and the differences from the previous model are as follows: 
• the intersection of each pair of selected elements is marked (by some letter); 
• any of the letters used should be included in at least one such pair. 

It is clear that the result of solving the problem is the same, however, here it is 
immediately visible, we believe that the description of the corresponding algo-
rithms for finding a subset of the set of potential roots and the implementation 
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of these algorithms in the form of computer programs are much simpler. 
As the last simple model, let us consider a graph that can be built on the basis 

of any of the previous models (of course, the second model is more suitable). 
The vertices of the graph are marked with potential roots, and the edges are 
marked with letters that coincide with those shown in the table in Figure 1(b). 

We also believe that all vertices have loops belonging to them, and we shall 
not draw them, but we shall also put the letters corresponding to these loops 
near all the vertices, which fall together with the letters placed on the main di-
agonal of the table. 

Thus, for our example, we get the graph shown in Figure 2. 
We shall indicate some references to books on graph theory, with which the 

names of the concepts used in the article are consistent: [11] [12]. 
The further material of the article can, somewhat simplifying, be characterized 

as follows: we shall consider the addition of the graph considered at the end of 
the previous section. At the same time, we note the following. 

 

 
Figure 2. Graph model for the example under consideration. 

 

 
Figure 3. A graph with colored vertices and edges reflecting options for including poten-
tial roots. 
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1) Although we are talking about graphs, we will hardly use the “graph” ter-
minology anymore: it will be applied implicitly. 

2) The possible answers found as a result of the models described in the fol-
lowing sections will need to be considered “preliminary” solutions: all of them 
will need further verification. 

4. The Case of the 1-Letter Alphabet and Square Root: Taboo 
Pairs and Taboo Hyperplanes 

In this section, we again assume that N potential roots are obtained based on the 
input data. For some ordering of these potential roots (the natural ordering in 
the case of a 1-letter alphabet is an increase in the length of the potential root), 
consider an N-dimensional cube, in which N binary coordinates of each vertex 
have the following meaning: 
• 0 means that the corresponding potential root is not included in the assumed 

root-answer; 
• 1 means that it is included. 

It is clear that the answer to any of the problems of extracting the root can be 
obtained by iterating over the vertices of such an N-dimensional cube, and each 
check is carried out in a trivial way in polynomial time. However, due to the fact 
that the total number of vertices of the cube is 2N, all such final root extraction 
algorithms are obtained exponentially. 

For further consideration, we shall consider the pairs of potential roots; note 
in advance that the enumeration of all pairs is polynomial (carried out by a trivi-
al quadratic algorithm). Since each such pair represents two potential roots, we 
can tell whether their product is valid (whether the sum of their lengths is in-
cluded in a given word). If the product is not valid, then we shall call such a pair 
of potential roots the taboo (the taboo pair). 

Each such pair in the considered N-dimensional cube defines an N-2-dimensional 
hyperplane (we will call each of them a taboo plane) and all elements of this 
hyperplane are obviously not roots. 

However, of course, it is impossible to solve the root extraction problem only 
on the basis of this fact: for example, the vertex of an N-dimensional cube, all 
coordinates of which are equal to 0, is not included in any taboo plane by defini-
tion (since all vertices of all taboo planes have at least two coordinates equal to 
1), but when this answer can only be in degenerate cases. 

But, despite the example given, the title “taboo plane” fully corresponds to the 
application of these hyperplanes in the problem we are considering. The applica-
tion of the set of all taboo planes is understandable. Exactly, based on the ma-
terial of this article, it can be shown that some improvement in the algorithm for 
finding (at least one) root is possible: it is enough to sort through only such ver-
tices of an N–dimensional cube (we assume that the vertex is B = (b1 b2... bN), 
and the source data itself is A ∈ 22n), which: 

• they do not enter into any taboo plane; i.e. (∀ i, j ∈ 1, …, n, i ≠ j) (


# ,#i j  ∉ 
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T(A)); 

• they have the property (∃ i ∈ 1, …, n, bi =0) (∃ j ∈ 1,…,n, bj =1) (


# ,#i j  
∈ T(A)). 

That is, when changing the value of some coordinate from 0 to 1 (i-th coordi-
nates in the given entry), the previous condition will be violated; only among 
such vertices of an n-dimensional hypercube and it is necessary to check the ful-
fillment of condition B2 = A. 

Let us consider a specific example. 1-letter alphabet, 2nd degree, at the entrance 
is the square of the language B = [0 1 3 6] (we specifically note that this language 
B is unknown in the formulation of the problem), then A = B2 = [0 1 2 3 4 6 7 9 
12]. 

Theotential roots in our example are as follows: B = [0 1 2 3 6], and the set of 
taboo pairs is 

  

T { , } {2,3 2,6 #3,#4 #, }3,#5= = . 

Let us consider Figure 3 of a 5-dimensional hypercube. In this figure: 
• For clarity, not all of the 32 vertices of the cube (so as not to “overload” the 

drawing with information), but the markings of the rest can be determined 
based on the markings given. The marks are 5-digit binary numbers con-
taining, if necessary, insignificant 0 in the highest digits, they are written be-
fore the notation in parentheses (see below). 

• At the same time, the “origin of coordinates” is not specifically marked with 
binary code (so as not to “overload” the drawing); this is a vertex drawn with 
a black inner circle. 

• In parentheses after the binary notation of the hypercube vertex, we write the 
values of the corresponding potential roots without spaces; these are the val-
ues themselves, not their numbers (i.e., in the example under consideration, 
2, not #3), and we select only those values that correspond to 1 in the binary 
notation of the hypercube vertex. 

• The hyperplane (actually an ordinary 3-dimensional cube) corresponding to 

the taboo pair is shown in red 


2,3 . The “anchor” vertex of the hyperplane, 
i.e. the vertex in which only two coordinates defining this hyperplane have 
values of 1, is underlined. 

• Similarly, the hyperplane corresponding to the taboo pair 


2,6  is shown in 
green. 

• The intersection of these two hyperplanes (actually an ordinary square) is 
shown in purple. Of course, the maximum point of the hypercube belongs to 
this intersection. 

We can consider such a hypercube in the form of a boolean (and it is custo-
mary to draw a boolean differently), it is more convenient to work with the latter 
because you can draw “edges up” from any of its taboo vertices, while marking 
new vertices (which we get into at the same time) as taboo ones. But, certaily,  
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Figure 4. The Boolean graph of dimension 5 for the problem under consideration [0 1 3 6]. 

 
these 2 variants of graphs are isomorphic, Figure 4 shows the Boolean graph for 
the problem under consideration. The same colors are used as in Figure 3. In 
fact, the graph is isomorphic to the graph shown in Figure 4. 

So, we will consider a Boolean corresponding to an N-dimensional cube. 

5. On Adding a New Coordinate to an Existing Solution 

The material in this section seems to be the most non-trivial in this article. It is 
on the basis of the results of the theorem proved below that we can assert that 
the search for (at least one) root can be performed as a search for the vertex of 
the hypercube (Boolean) closest to the maximum vertex and at the same time 
not included in any of the taboo planes. It can also be argued that the problem 
can be solved in the same way for an arbitrary alphabet. 

Theorem 1. Let B = (b1 b2... bN) ϵ 2N be some root of equation (1), M = 2. Let 
bk = 0 for some k ∈ 1,…, N. Let also for every i ∈ 1,…, N \{k}, such that bi = 
1, the condition 



,k i  ∉ T(A) is satisfied. Then B+k = (b1 b2... bN)+k is also the root 
of equation (1). 

Proof. Obviously, Bn ⊆ (B+k)n. Therefore, if the inequality (B+k)n ≠ A were ful-
filled, then there would be a rank i ∈ 1,…, N \{k}, such that bi = 1, and at the 
same time, when squared, the product would have a new a digit equal to 1. Since 
we have added only one, the k-th digit, to B, the latter fact is possible only at 


,k i  ∈ T(A), which contradicts the condition of the theorem.             □ 
Thus, it is on the basis of the results of this theorem that it can be argued that 

in order to find at least some solution to the original problem, it is possible to 
look for “untaboo” Boolean points lying closest to the maximum vertex. The so-
lution (if there is at least one) will necessarily be among those “untaboo” points 
for which there is no neighboring “untaboo” one lying closer to the maximum 
vertex. 
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