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Abstract 
In this paper, we study Riemann boundary value problems on the Curve of 
Parabola. We characterized the functions which are intergrable on the Curve 
of Parabola. We also study the asymptotic behaviors of Cauchy-type integral 
and Cauchy principal value integral on the Curve of Parabola at infinity. At 
the end, we discuss the Riemann boundary value problems for sectionally 
holomorphic functions with the Curve of Parabola as their jump curve and 
obtain the explicit form. 
 

Keywords 
Riemann-Hilbert Problem, Plemelj Formula, The Cauchy-Type Integral 

 

1. Introduction 

As we all know, monographs [1] [2] [3] systematically study the boundary value 
theory of analytic functions. The monograph [4] systematically studies the Rie-
mann boundary value problem on the positive real axis and introduces the con-
cept of the principal part and order of a holomorphic function on the complex 
plane sectioned along the positive real axis at the origin and infinity. Some scho-
lars have also discussed the boundary value problem of analytic functions on 
some curves wider than smooth curves [5]-[11]. On all sides among the value 
problems, the Riemann boundary value problem is the basic boundary value 
problem, and many boundary value problems can be transformed into Riemann 
boundary value problems to solve [12]-[17]. References [1] [2] [3] have dis-
cussed the boundary value problem on finite curves in detail. Although the Rie-
mann boundary value problem on infinitely long curves is very important, so far 
there is not much research in this area, and it is not perfect. Reference [4] dis-
cusses the Riemann boundary value problem on the positive real axis and the 
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concepts of principal parts and orders are extended. In this paper, some Rie-
mann boundary value problems on the Curve of Parabola ( 2L x ix= + ) are pre-
sented, and the definitions of principal parts and orders of infinity point in ref-
erence [4] are used. L that appears alone in this paper defaults to the Curve of 
Parabola and a bL L  defaults to the closed arc segment from aL  to bL  on L 
without special case description, and aL  defaults to the point 2

a ax ix+ .  

2. Preliminary 

We denote by 2
a a al x ix= +  for ax ∈ . As same as the case of the real axis, we  

may consider its image, Figure 1, by mapping ( ) 1z
z i

ρ =
+

, then get a new shape 

after the transformation, Figure 2. 
Definition 2.1. Let f be defined on the sub-arc L′  (closed or open, finite or 

infinite) of L. If  

( ) ( ) ,0 1,f t f t M t t µ µ′ ′′ ′ ′′− ≤ − < ≤                  (2.1) 

for arbitrary points ,t t′ ′′  on L′ , where ,M µ  are constants, then f is said to 
satisfy Hölder condition of order µ  on L, denoted by ( )f H Lµ ′∈ ,where µ  
is called the Hölder index, If the index µ  is not emphasized, it may be denoted 
briefly by ( )f H L′∈ .  

Definition 2.2. Let f be defined on the sub-arc L′  (The arc formed by all 
points on the Curve of Parabola whose modulus length is greater than or equal 
to ∆ , where 0∆ > ). If  

 ( ) ( ) 1 1 ,0 1,f t f t M
t t

µ

µ′ ′′− ≤ − < ≤
′ ′′

               (2.2) 

for arbitrary points ,t t′ ′′  on L′ , where ,M µ  are definite constants, then f is 
said to satisfy condition of µ  order in the neighborhood of ∞ , denoted by  
 

 
Figure 1. Σ1. 
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Figure 2. Σ1. 

 
( )ˆf H µ∈ ∞ , or denoted briefly by ( )ˆf H∈ ∞ . If ( )ˆf H µ∈ ∞  and ( ) 0f ∞ = , 

then denoted by ( )0
ˆf H µ∈ ∞  or denoted briefly by ( )0

ˆf H∈ ∞ .  
Definition 2.3. For any closed segment of a parabola ( )a bL L L L′ ′ = , aL  

and bL  are any two points on L′ , thus ( )f LH µ∈ ′ , it may be denoted by  
( )cf LH µ∈ ′  or denoted briefly by ( )cf LH∈ ′ . If exists rbitrary point Lδ, such 

that ( )f LH µ∈ , it may be denoted by ( )0f H µ∈  or denoted briefly by  
( )0f H∈ . 

Let f be a function defined on L. There exists 0∆ >  such that  

 ( ) ( )*

, ,
f t

f t t
tν

= ≥ ∆                       (2.3) 

where ν  is a real number and *f  is a bounded function, or equivalently,  

 ( ) ( ) , ,f t O t tν−= →∞                      (2.4) 

then denoted by ( )f Oν∈ ∞ . 
Let ( ) ( )m

mf fτ τ τ= . If ( )ˆ
mf H µ∈ ∞  and ( )ˆ

mf H µ
ν∈ ∞ , denoted by  

( )ˆ
mf H µ∈ ∞  and ( ),

ˆ
mf H µ

ν∈ ∞ , respectively. 
Sometimes, we also need to consider the following types of functions:  

 ( ) ( ) ( )
*

*, where 0 ,
f t

f t f H
t

µ
λ= ∈                (2.5) 

and  
 , 0 1.iλ α β α= + ≤ <                      (2.6) 

3. Sectional Holomorphic Functions Jumping on the Curve of  
Parabola 

To properly formulate the Riemann boundary value problem on the Curve of 
parabola, we must introduce the partitioned holomorphic function with the 
Curve of parabola as the jumping curve and its generalized principal part at the 
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end ∞  of the Curve of parabola. 
If F is holomorphic in the complex plane cut by the Curve of parabola, then 

denoted by ( )\F A L∈  . To better solve the boundary value problem, we need 
to introduce the Cauchy-type integral on the Curve of parabola. 

Definition 3.1. Let f be defined on L and locally integrable. Then 

 ( )( ) ( )1 d ,
2 L

f
C f z z L

i z
τ

τ
τ

= ∉
−π ∫                   (3.1) 

Denote by  

 ( )( )
( )

( ) ( )
2

2
2 20

1 21lim d ,
2 s m rr

f s is is
C f z s z m im L

i s m i s m− >→

+ +
= = + ∉

− + −π ∫    (3.2) 

is called the Cauchy-type integral with kernel density f along L.  
Remark. Obviously, the above integral can be regarded as the sum of the fol-

lowing two integrals  

 


( )( ) ( )


1 d ,
2

b

b

L
bL L L

f
C f z z L L

i z
τ

τ
τ−∞ −∞

−∞= ∉
−π ∫              (3.3) 

and  

 


( )( ) ( )


1 d , .
2b b

L
bL L L

f
C f z z L L

i z
τ

τ
τ

+∞

+∞
+∞=

−π
∉∫              (3.4) 

That is  

 ( )( )


( )( )


( )( ) ,
b bL L L L

C f z C f z C f z z L
−∞ +∞

= + ∉            (3.5) 

Assume ( )( )0f Oν ν∈ ∞ > . Let z L∉ . The closest point Lz  to z can be found 
on L. Take ∆  large enough that Lz zτ τ− ≥ −  and 2 2

L Lz x Im z xτ − ≥ − ≥  
and 22 2 1 2 1x ix≥ + ≥  for x > ∆ . 

( ) ( )
( )

d d
L L

vL L

f f
z z
τ τ

τ τ
τ τ τ

+∞ +∞

∆ ∆

∗

=
− −∫ ∫                      (3.6) 

 
( )2

2 2

L

vL

M d x ix

x ix x ix z
+∞

∆

+
≤

+ + −
∫                 (3.7) 

 
2

1 2
d

L

vL

M i x
x

x x ix z
+∞

∆

+
≤

+ −
∫                   (3.8) 

 
2

4
d

L

vL

M x
x

x x
+∞

∆
≤ ∫                         (3.9) 

 1
4 d .

L

vL

M x
x

+∞

∆ +≤ ∫                          (3.10) 

Thus (3.1) must exist. 
Remark. Since L is not the Lyapunov curve, the operator C is neither 2L  

bonded nor H µ  bounded on L. So we cannot deal with both Cauchy-type and 
Cauchy principal value integral as same as the references [10] [11] [12]. We have 
to reprove some results in this paper. 

https://doi.org/10.4236/jamp.2023.115089


Y. Y. Lei, H. Liu 
 

 

DOI: 10.4236/jamp.2023.115089 1378 Journal of Applied Mathematics and Physics 
 

But we still can get some elementary results by transferring it to the integral 
on the finite curve ( )Lρ . It is easy to check that (2.1) holds if and only if  

 1 2
1 2

1 1f f M w w
w w

µ   
− ≤ −   

   
                  (3.11) 

near 0w = , [10]. Thus we have, see [11], Map the plane 1 to the plane 2 with 
the following transformation.  

1w
iτ

=
+

                           (3.12) 

( )
( )

1
1

1 1 1d d12 2

i
w

L L

f if w i
i z i wi z

w

τ

ρ

τ
τ

τ

= −
 

π

−    = − − π − −
∫ ∫            (3.13) 

 
( )

1
1 1 1 d , .12 L

f i
w w z L

z i i w w
z i

ρ

 − 
 = ∉

+ −
+

π ∫             (3.14) 

where the integral is the generalized integral with the weakly singular point i− . 
So it is obvious that [ ] ( )\C f A L∈  .  

Lemma 3.2. (Analytical Properties of Cauchy-Type Integrals) Let  
( )( )0f Oν ν∈ ∞ >  and locally integrable on a bL L L⊂ . Then  

 ( ) ( )\ .C f A L∈                          (3.15) 

Proof. For w L∉ , the closest point Lw  to w can be found on L. Let  

 ( ) .Ld w w w= −                         (3.16) 

Obviously, ( )( )C f z  converges uniformly on ( ){ }| 0.5U z z w d w= − ≤ , so  

 ( )( ) ( )( ) ( ) ( ) ( )( )1 1

1lim lim d ,
2 Lz w z w

f w zC f w C f z
w z i w z

τ τ τ
τ

− −

→ →

− − −−
− −π

= ∫   (3.17) 

thus  

 ( )( ) ( ) ( )
( )2

1 d , .
2 L

f
C f w w L

i w

τ
τ

τ
′

−π
= ∉∫               (3.18) 

which shows.                                                     □ 
Lemma 3.3. Let ( )( )0f Oν ν∈ ∞ >  and locally integrable on L. Then  

 


( ) ( )\ .
a bL L

C f A L L
−∞

+∞∈ 
                   (3.19) 



( ) ( )\ .
b bL L

C f A L L
+∞

+∞∈ 
                   (3.20) 

Proof. As same as 3.2, it is Obvious that the lemma holds since 

1f i
w
w

 − 
   is 

just weak singular at origin.                                         □ 
Referring to [4], we introduce the concept of generalized principal part and 

order below.  
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Definition 3.4. Let ( )\F A L∈   If there exists an integer function ( )E z  
such that  

 ( ) ( )( )lim 0,
z

F z E z
→∞

− =                      (3.21) 

then ( )E z  is called the generalized principal part of ( )F z  at ∞ , denoted by 
[ ]( ). ,G P F z∞ .  

Remark. If F has an isolated singularity ∞ , then it has the Laurent series  

 ( )
0 1

k k
k k

k k
F z a z a z

+∞ +∞
−

−
= =

= +∑ ∑                    (3.22) 

near ∞ , the principal part in the classical sense (with constant 0a ) is  

 ( )( )
0

. , , ,k
k

k
P P F z a z z

+∞

=

∞ = ∈∑                   (3.23) 

then we can prove  

 ( ) ( ). , . , .G P F P P F∞ = ∞                    (3.24) 

Easy to prove  

 ( )( ) ( )( )( )
\ ,
lim . , . , 0.

z L z
G P F z P P F z

∈ →∞
∞ − ∞ =


           (3.25) 

Noting that both ( ). ,G P F ∞  and ( ). ,P P F ∞  are integral functions, we know 
that is equivalent to  

 ( )( ) ( )( )( )
,

lim . , . , 0.
z z

G P F z P P F z
∈ →∞

∞ − ∞ =


           (3.26) 

so, we can get  

 ( ) ( ). , . ,G P F P P F∞ = ∞                     (3.27) 

Remark. In general, may not be an isolated singularity of, so he has no prin-
cipal part in the classical sense, for example,  

 ( ) ( )ln
, 1,2, ,m

z
F z m

z
−

= =                     (3.28) 

where the logarithmic function ln w  selects the main branch on the complex 
plane cut by 2 ,x ix xΓ = + ∈ , but  

 ( )( ). , 0G P F z∞ =                       (3.29) 

It can be seen from this that the general concept of main part is more extensive 
than the concept of main part in the classical sense, and it is a kind of extension.  

Remark. The generalized principal part is unique. For proof, referring to [4].  
Definition 3.5. Let ( )\F A L∈  . If  

 ( )0 limsup ,m
m

z
z F zβ −

→∞
< = < +∞                (3.30) 

then F is said to be of order m at ∞ , denoted by ( )Ord ,F m∞ = .  
Remark. Obviously, if ( ). , 0m

mG P z F β− ∞ = ≠ , then ( )Ord ,F m∞ = . When 
( ). ,G P F ∞  is a polynomial of degree m, we have ( )Ord ,F m∞ = .  

Remark. If ( )Ord ,F ∞ , then ( )1. , 0mG P z F− − ∞ = .  
Theorem 3.6. (Generalized principal part of a Cauchy-type integral at infinity) 

https://doi.org/10.4236/jamp.2023.115089


Y. Y. Lei, H. Liu 
 

 

DOI: 10.4236/jamp.2023.115089 1380 Journal of Applied Mathematics and Physics 
 

Let ( ) ( )( )ˆ 0f H Oµ ν
ν ν∈ ∞ ∩ ∞ >  and locally integrable on L, then  

 ( ). , 0.G P C f ∞ =                          (3.31) 

Proof. Pick a fixed point L∆  arbitrarily on L, take 1∆ >  and large enough 
such that  

 ( ) ( )  

1 2 1 2
1 2

1 1 , ,f t f t M t t L L L L
t t

µ

−∞ −∆ +∆ +∞− ≤ − ∀ ∈ ∩        (3.32) 

Given z x iy L= + ∉  and take Lz L∈ . Such that { },Lz z dist z L− = . For 
any Lτ ∈ , there’s always  

 2L Lz z z z zτ τ τ− ≤ − + − ≤ −                 (3.33) 

And when z →∞ , Lz →∞  accordingly. There is 

( )( ) ( )1 d
2 L

f
C f z

i z
τ

τ
τ

=
−π ∫                                   (3.34) 

 
( ) ( ) ( )1 1

1 1

1 1 1d d d
2 2 2

L L L

L L L

f f f
i z i z i z

τ τ τ
τ τ τ

τ τ τ
− +∞

−∞ −
=

π
+

−π π
+

− −∫ ∫ ∫   (3.35) 

 ( )1 2 3
1 .

2
I I I

i
= + +

π
                               (3.36) 

For 1I ,  

 
( )1

1 d
L

L

f
I

z
τ

τ
τ

−

−∞
=

−∫                               (3.37) 

 
( ) ( )1d d

L L

L L

f f
z z
τ τ

τ τ
τ τ

−∆ −

−∞ −∆
= +

− −∫ ∫                   (3.38) 

 11 12I I= +                                   (3.39) 

For 11I ,  

 ( ) ( )
( ) ( )

*
2

11 d d
L L

vL L

f f
I x ix

z z
τ τ

τ τ τ
τ τ τ

−∆ −∆

−∞ −∞
= = = +

− −∫ ∫            (3.40) 

 ( )*

11 d
L

L

f
I

z
τ

τ
τ

−∆

−∞
=

−∫                                   (3.41) 

 
( )*

d
L

vL

f

z

τ
τ

τ τ
−∆

−∞
≤

−∫                                 (3.42) 

 
( )2

2 2

dL

vL

M x ix

x ix x ix z
−∆

−∞

+
≤

+ + −
∫                           (3.43) 

We know that 1x > . We have  

 2 21 1 2 4 , 2 ,
vvvix x x x ix x< + ≤ ≤ + ≤                (3.44) 

 12 ,
2L L Lz z z z z z zτ τ τ τ τ− ≤ − + − ≤ − − ≥ −           (3.45) 

thus  

https://doi.org/10.4236/jamp.2023.115089


Y. Y. Lei, H. Liu 
 

 

DOI: 10.4236/jamp.2023.115089 1381 Journal of Applied Mathematics and Physics 
 

 
( )2

11 2 2

dL

vL

M x ix
I

x ix x ix z
−∆

−∞

+
≤

+ + −
∫                          (3.46) 

 
2 2

1 2
d

L

vL

M ix
x

x ix x ix z
−∆

−∞

+
≤

+ + −
∫                        (3.47) 

 
8

d
L

vL
L

M x
x

x zτ
−∆

−∞
≤

−
∫                               (3.48) 

 ( )8
d is abscissa of

L
L LvL

L

M x
x x z

x x x
−∆

−∞
≤

−
∫              (3.49) 

 
( ) ( )18 d

L

vL
L

M t t x
t t x

+∞

∆
= = −

+∫                      (3.50) 

By Hölder inequality, we obtain 1p > , 1 1 1
p q
+ = , Call ,p q  a pair of conju-

gate numbers. 

( )

11

1 1 1d d d
qp qp

v v
LL

t t t
t xt t x t

+∞ +∞ +∞

∆ ∆ ∆

       ≤        ++       
∫ ∫ ∫         (3.51) 

while 0 1v< < .  

 11 1 1d d
1

p
vp

v vpt t x
vpt t

+∞+∞ +∞ −

∆ ∆ ∆

  = =  − ∫ ∫               (3.52) 

while 1v ≥ .  

 
( ) ( )

1
2

1 1d dv
L

L

t t
t t x

t t x

+∞ +∞

∆ ∆
≤

+
+

∫ ∫                 (3.53) 

By Hölder inequality,  

 
( ) ( )1 d 0 whenv

L

t t
t t x

+∞

∆
= → +∞

+∫                (3.54) 

thus 11 0I = . For 12I ,  

 ( ) ( )1 1 1
12 d d

L L L

L L L

ff MI
z z z

ττ
τ τ

τ τ τ
− − −

−∆ −∆ −∆
= ≤ ≤

− − −∫ ∫ ∫         (3.55) 

Because this is a closed interval, so 12 0I →  (when z →∞ ). So 1 0I = . 
For 2I , 1x < .  

 ( )1 1

1 1
2 d d

L L

L L

f MI
z z
τ

τ τ
τ τ− −

= ≤
− −∫ ∫                 (3.56) 

Because this is a closed interval, so 2 0I →  (when z →∞ ). For 3I , 

( )
1

3 d
L

L

f
I

z
τ

τ
τ

+∞=
−∫                        (3.57) 

 
( ) ( )

1
d d

L L

L L

f f
z z
τ τ

τ τ
τ τ

∆ +∞

∆
= +

− −∫ ∫                 (3.58) 
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 31 32I I= +                                (3.59) 

Because [ ]1,∆  with [ ], 1−∆ −  are the interval of symmetry. 12 31, 0I I →  simi-
larly (when z →∞ ).  

Because [ ],−∞ −∆  with [ ],∆ ∞  are the interval of symmetry (when z →∞ ). 

11 32, 0I I →  similarly (when z →∞ ). Thus 3 0I = . 
To sum up, when z →∞ ,  

 
( )1 d 0

2 L

f
i z

τ
τ

τ
→

π −∫                      (3.60) 

 ( ). , 0G P C f ∞ =                       (3.61) 

is evidenced.                                                     □ 
Corollary 3.7. (Finite Expansion of Generalized Principal Parts of Cauchy-Type 

Integrals at Infinity) Let ( ) ( )( ),0
ˆ 0f H Oµ ν
λ ν∈ ∞ ∩ ∞ > , where λ  is a positive 

integer, and locally integrable, then  

( )( )( ) ( )
11

0
. , d .

2

k
k

L
k

zG P z C f z f
i

λλ
λ τ τ τ

− −−

=

∞ =
π∑ ∫  

Proof. Let ( ) ( )( )0,1, ,k
kf f kτ τ τ λ= =  , since ( )f Oν∈ ∞ , ( )k

kf Oν λ+ −∈ ∞ , 

from which it follows at once ( )1 d
2 L

f
i z

λτ τ
τ

τπ −∫  is well defined.           □ 

( )( )( )
( )( ) ( )1 1d d

2 2L L

f z f
z C f z

i z i z

λ λ λ
λ

τ τ τ τ
τ τ

τ τ

−
= +

π − π −∫ ∫      (3.62) 

 ( ) ( )1
1

0

1d d ,
2 2

k
k

L L
k

fz f
i i z

λλ
λ τ τ

τ τ τ τ
τ

−
− −

=

= − +
π π −∑ ∫ ∫     (3.63) 

by Theorem 3.1 and ( )f Oν∈ ∞ ,  

( )
\ ,

1lim d 0,
2 Lz L z

f
i z

λτ τ
τ

τ∈ →∞
=

π −∫
 

then is proved. 
Let ( )\F A L∈  . For t L∈ , if F is continuous up to both sides of L, denote 

by ( )F t±  the boundary values respectively. To analyze the boundary value of 
the Cauchy-type integral, we introduce the Cauchy principal value integral. Let 

2t x ix= + . Since f is Hölder continuous,  

( ) ( )
0

1lim d d
2

L L

L L

f f
i t t

α δ

α δδ

τ τ
τ τ

τ τ
− ∞

+ −∞ +→

 
+ 

π − − 
∫ ∫  

the Cauchy-type integral exists, denoted by  

 [ ]( ) ( )1 d ,
2 L

f
C f t t L

i t
τ

τ
τ

= ∈
π −∫                 (3.64) 

the Cauchy principal value integral with kernel density f along L. Similarly, we 
define the Cauchy principal value integral with kernel density f along L 

Remark. The Cauchy principal value integral can also be divided into two 
parts, that is  
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( )( ) ( )( )( ) ( )( )( ) , .
b bL L L LC f t C f t C f t t L

∞ ∞
= + ∈  

Lemma 3.8. (Boundary Values of Cauchy-Type Integrals) Let  
( ) ( )( )0cf H L Oµ ν ν∈ ∩ ∞ > . Then the boundary values of the Cauchy-type 

integral exist and the following Plemelj formula holds  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 d ,
2 2

1 1 d
2 2

L

L

f
C f z f z

i z
f

C f z f z
i z

τ
τ

τ
τ

τ
τ

+

−


= + π −


 = − + π −

∫

∫
            (3.65) 

for z L∈ .  
Proof. Let z L∈ .Rewrite ( )( )C f z  as 

( ) ( ) [ ] ( ) [ ] ( )
c cL L L LC f z C f z C f z

−∞ ∞

± ± ±= +                      (3.66) 

 [ ] ( ) [ ] ( ) [ ] ( )
c c c cL L L L L LC f z C f z C f z

−∞ − ∞

± ± ±= + +                 (3.67) 

 ( ) ( ) ( ) ( )1 1 1 1d d d
2 2

c c

c c

L L L

L L L

f f f
f z

i z z i z z i z
τ τ τ

τ τ τ
τ τ τ

+

−∞ −

∞
= ± + + +

π − π − π −∫ ∫ ∫  (3.68) 

 ( ) ( )1 1 d
2

L

L

f
f z

z i z
τ

τ
τ

−∞

+∞
= ± +

π −∫                                (3.69) 

□ 
Corollary 3.9. If ( )( )0vf O v∈ ∞ > , and for any finite closed arc a bL L L⊂ , 

have ( )a
a bf H L L∈ ,thus their Cauchy-Type integrals 

bL LC
−∞

 and 
aL LC

+∞
 

have the positive and negative boundary values, and satisfy the following Plemelj 
formula:  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 d ,
2 2

1 1 d
2 2

1 1 d ,
2 2

1 1 d
2 2

b

b

b

b

a a

a a

L
L L L

L
L L L

L
L L L

L
L L L

f
C f z f z

i z
f

C f z f z
i z

f
C f z f z

i z
f

C f z f z
i z

τ
τ

τ
τ

τ
τ
τ

τ
τ

τ
τ

τ

−∞ −∞

−∞ −∞

+∞

+∞

+∞

+∞

+

−

+

−


= + π −


 = − + π −


= + π −

 = − + π −

∫

∫

∫

∫

          (3.70) 

Theorem 3.10. If ( ) ( ) ( )( )0 1, 0cf H H L Oµ µ ν
α α ν∈ ∩ ∩ ∞ < > , then the 

Cauchy-type integral given by is a sectionally holomorphic function with L as its 
jump curve.  

Proof. By Lemma3.1, Lemma 3.2, and Lemma 3.3, then Theorem3.3 is proved. □ 

4. Continuity and Singularity at the Origin of the Cauchy  
Principal Value Integral 

This section discusses the continuity of the Cauchy principal value integral, as 
well as singularity and hölder properties at infinity. First, we have the following 
Privalov theorem. 

Theorem 4.1. (Hölder Continuity of Cauchy Principal Value Integrals) 
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Let ( )( )0,0 1f H Lµ
ν ν µ∈ > < < , then, for the Cauchy principal value integral 

[ ]C f  and the boundary value [ ]( )C f
±

, have  

 [ ] [ ] ( ) ( )
1
2
0

ˆ,C f C f H L H
µµ

ν
± ∈ ∩ ∞                  (4.1) 

Proof. The first part of the theorem, [ ]( ) [ ] ( ) ( ),C f t C f t H Lµ
ν

± ∈ , follows 
from the Privalov theorem on the finite curve which argument is similar the 
proof or Theorem 3.2. The proof of the second part had been shown in the proof 
of Lemma3.8. 

5. Boundary Value Problem 

Consider the Riemann boundary value problem on L: Find a sectional holo-
morphic function ( )zΦ  with the jumping curve L, satisfying the boundary 
value condition and the growth condition at infinity  

 
( ) ( ) ( ) ( )

( )( )1

,

. , 0,m

t G t t g t t L

G P z

+ −

− +

Φ = Φ + ∈


Φ ∞ =
                (5.1) 

where m is an integer, G and g are given functions on L. The Riemann boundary 
value problem (5.1) is denoted by Rm. To solve the conditions that G and g need 
to satisfy in this problem, we will discuss them one by one in the following. 

The simplest Rm problem is the Liouville problem. Let’s discuss the Liouville 
problem first. 

Problem. (The Liouville Problem) Find a sectionally holomorphic function 
( )zΦ  satisfying  

 
( ) ( )

( )( )1

, ,

. , 0,m

t t t L

G P z

+ −

− +

Φ = Φ ∈


Φ ∞ =
                    (5.2) 

Lemma 5.1. When 0m ≥ , the solution of Liouville problem is an arbitrary 
polynomial of degree not exceeding m. When 0m < , there exist only trival so-
lution ( ) 0zΦ = .  

Problem. (The Jump Problem Rm) Find a sectional holomorphic function 
( )zΦ  satisfying  

 
( ) ( ) ( )

( )( )1

,

. , 0,m

t t g t t L

G P z

+ −

− +

Φ = Φ + ∈


Φ ∞ =
                 (5.3) 

where  

( ) ( ) ( ) ( ) ( ){ }0 ,0 0
ˆ 0 , max 0, 1cg H L O H m mν
µ ν∈ ∩ ∞ ∩ ∞ > = − +         (5.4) 

when 1m = − , we get the R−1 problem. 
Problem. (The Jump Problem R−1) Find a sectional holomorphic function 
( )zΦ  satisfying  

 ( ) ( ) ( )
( )

,
. , 0,

t t g t t L
G P

+ −Φ = Φ + ∈
 Φ ∞ =

                  (5.5) 
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where g is the same as the above problem. 

( ) ( ) ( ) ( )0
ˆ 0cg H L O Hν ν∈ ∩ ∞ ∩ ∞ >              (5.6) 

Lemma 5.2. The unique solution of R−1 is  

( ) ( )( )( ) ( )1 d , \ .
2 L

g
z C g z z L

i z
τ

τ
τ

Φ = = ∈
π −∫               (5.7) 

Theorem 5.3. When 0m ≥ , the solution of Rm is  

 ( ) ( ) ( )1 d , \ ,
2 mL

g
z P z z L

i z
τ

τ
τ

Φ = + ∈
π −∫              (5.8) 

where ( )mP z  is arbitrary polynomial of degree not greater than m. When 
1m = − , the unique solution of problem Rm is the solution of problem R−1. When 
1m < − , it is (uniquely) solvable with the solution if and only if the following 

conditions are fulfilled  

 ( )1 d 0, 0,1,2, , 2.
2

k
L

g k m
i

τ τ τ = = − −
π ∫             (5.9) 

Proof. When 0m ≥ , from Lemma 5.2, ( )C g  is the solution of the problem . 
Therefore, Φ  is a solution of the problem if and only if ( )C g∆ = Φ −  is a 
solution of the following Liouville problem:  

 
( ) ( )

( )( )1

, ,

. , 0,m

t t t L

G P z

+ −

− +

∆ = ∆ ∈


∆ ∞ =
                    (5.10) 

Thus, by Lemma 5.2, we prove the theorem. 
When 0m < , it is obvious that the solution of problem is the solution of 

problem. Thus, by Lemma 5.2, the unique solution of problem is ( )C g  if and 
only if the following conditions are fulfilled  

( ) ( )( )1. , 0.mG P z C g− + ∞ =                  (5.11) 

By  

( ) ( ) ( ) ( ) ( ){ }0 ,0 0
ˆ 0 , max 0, 1cg H L O H m mν
µ ν∈ ∩ ∞ ∩ ∞ > = − +           

(5.12) 

and Inference 3.2, we obtain.                                        □ 
Remark. When 0m < , by Lemma 5.2 and(5.11), the solution of (5.5) can be 

rewritten as  

( )
( ) ( )11

d , \ .
2

mm

L

gzz z L
i z

τ τ
τ

τ

− ++

Φ = ∈
π −∫   

( ) ( ) ( )1 ,0
ˆ

mz H±
− +Φ ∈ ∞ .                  (5.13) 

Problem. (The Jump Problem Om) Find a sectional holomorphic function 
( )zΦ  with L as its jump curve such that  

 
( ) ( ) ( )
( )

, ,

. , 1,m

t t g t t L

G P z

+ −

−

Φ = Φ + ∈


Φ ∞ =
               (5.14) 

where ( )cg H L∈ . When 0m ≥ , ( )0
ˆg H∈ ∞ . When 0m < , ( ),0

ˆ
mg H−∈ ∞ . 
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Remark. By Note 3.6, the order of the partitioned holomorphic function Φ  
at infinity is a fixed m order, this problem is called the fixed-order jump prob-
lem. When 0g = , the problem is called the Liouville problem of fixed order.  

Lemma 5.4. When 0m ≥ , the solution of is  

 ( ) ( ) ( )1 d , \ ,
2 mL

g
z P z z L

i z
τ

τ
τ

Φ = + ∈
π −∫                (5.15) 

where mP  is an arbitrary polynomial of degree m and the leading coefficient is 
1. When 0m < , the solution of is  

 ( ) ( )1 d , \
2 L

g
z z L

i z
τ

τ
τ

Φ = ∈
π −∫                  (5.16) 

if and only if the following conditions are fulfilled  

 
( )

( ) 1

1 d 0, 0,1,2, , 2,
2
1 d 1.

2

k
L

m
L

g k m
i

g
i

τ τ τ

τ τ τ− −

 = = − − π

 = −
 π

∫

∫



           (5.17) 

Proof. By Theorem 5.1 and Inference 3.2, Lemma 5.4 can be proved.      □ 
Problem. (Homogeneous Boundary Value Problems) Find a sectional holo-

morphic function ( )zΦ  satisfying  

 
( ) ( ) ( )
( )1

, ,

. , 0,m

t G t t t L

G P z

+ −

− −

Φ = Φ ∈


Φ ∞ =
                (5.18) 

where ( )G H L∈  and ( ) 0,G t t L≠ ∈ . In addition, G satisfies the infinity 
growth condition  

( ) ( )0
ˆ1, log ,G G H∞ = ∈ ∞                 (5.19) 

where logG  is the single-valued continuous branch such that ( )log 0G ∞ = . 
Remark. Because of the regularity condition, we can choose a single-valued 

continuous branch of logG  on L. In addition, because of ( ) 1G ∞ = , there is 
( )log 0G ∞ =  on the branch we choose. 

Assume  

( )log 0
,

2
G

i
i

α β= +
π

                    (5.20) 

then,  

[ ]κ α= −                        (5.21) 

is called the index of homogeneous boundary value problem, where [ ]α  is the 
largest integer not exceeding α .  

Problem. (Canonical Problems) Find a sectional holomorphic function with L 
as its jump curve such that  

 
( ) ( ) ( )
( )

,

. , 1.

t G t t t L

G P zκ

+ −Φ = Φ ∈


Φ ∞ =
                 (5.22) 

Denote by  
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( ) ( )log1 d , \ .
2 L

G
z z L

i z
τ

τ
τ

Γ = ∈
π −∫               (5.23) 

By (5.19), we gain  

( ) ( )0
ˆlogG H L H∈ ∩ ∞                  (5.24) 

Thus, by Theorem 3.1 and Lemma3.2, we obtain  

( ) ( ) ( ) ( ) ( )0, log ,z i z zα βΓ ∞ = Γ = − + − + ∆           (5.25) 

where ∆  is holomorphic in the neighborhood cut by L near 0, and ( )0limz z→ ∆  
exists. 

Let  

( ) ( )e , \ ,zX z z z Lκ Γ−= ∈                 (5.26) 

by (5.24), we have 

( ) ( ). ,0 0, . , 1,G P zX G P z Xκ= ∞ =             (5.27) 

then, we have  

( ) ( ) ( ) , .X t G t X t t L− += ∈              (5.28) 

so, by(5.27) and (5.28), X is the solution to the canonical problem. 
Remark. Reference to [2] [3], we classify node 0 in detail. By, and, when α  is 

an integer in, 1X −  is bounded near 0, at this time, the 0 is called a special node; 
when α  is not an integer in, the 0 is called an ordinary node, at this time, since 

( )1X z−  contains factor [ ]( )z α α−− , so ( )1 0 0X − = .  
The uniqueness of the solution is shown below. If Φ  is the solution of the 

canonical problem, let  

( ) ( )
( )

, \ ,
z

Q z z L
X z
Φ

= ∈                   (5.29) 

Q given in is a sectional holomorphic function, so, by (5.22) and (5.27),  

 ( ) ( )
( )

, ,
. , 1.

Q t Q t t L
G P Q

+ − = ∈
 ∞ =

                   (5.30) 

so, by Lemma 5.4, 1Q =  that is, Q X= . 
Summarizing the above discussion, we have the following theorem. 
Lemma 5.5. Under conditions, the canonical problem has a unique solution X, 

which is given by (5.23).  
Remark. X in is called the canonical solution of the homogeneous problem.  
If Φ  is the solution of the homogeneous problem, then Q in is the solution 

of the following Liouville problem  

 
( ) ( )

( )( )1

, ,

. , 0.m

Q t Q t t L

G P z Qκ

+ −

− + +

 = ∈


∞ =
                  (5.31) 

By Lemma 5.2, one gets  

( ) ( ) ( ) , \ ,mz X z P z z Lκ +Φ = ∈               (5.32) 
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where κ  is the index given in, where ( )mP zκ +  is arbitrary polynomial of de-
gree not greater than m κ+ , if 0mκ + < , 0mPκ + = . In addition, it is easy to 
prove that Φ  in is the solution of the homogeneous problem. 

Summarizing the above discussion, we have the following theorem.  
Lemma 5.6. When mκ ≥ − , Φ  in is the solution of the homogeneous 

problem; When mκ < − , the unique solution of problem is 0Φ = .  
Next, solve the problem . Using X in, let  

( ) ( )
( )

, \ ,
z

F z z L
X z
Φ

= ∈                   (5.33) 

F is a sectional holomorphic function, problem can be transfer into the following 
jump problem:  

 
( ) ( ) ( )

( )
( )( )1

, ,

. , 0.m

g t
F t F t t L

X t

G P z Fκ

+ −
+

− + +


= + ∈


 ∞ =

               (5.34) 

Under the conditions, and the additional condition 1 2ν µ− > , it can be 
proved that the following formula holds  

( ) ( ) ( )( ),0
ˆ 0 ,

kc m
g H L O H v

X
ν

+ ∈ ∩ ∞ ∩ ∞ >            (5.35) 

where ( ){ }max 0, 1m mκ κ= − + + . 
By Theorem 4.1 and  

( ) ( )0
ˆ ,cH L H+Γ ∈ ∩ ∞                    (5.36) 

So  

( ) ( ) ( )ˆ, e .t
cX H L H

+Γ+ ∈ ∈ ∞                  (5.37) 

Let { }1min ,µ µ µ′ = , { }12 min ,ν ν µ µ µ′ = − − . By 2 1ν µ− > , we have  
( )0,1 , 1µ ν′ ′∈ > . Then  

( ),
ˆ .m

g H
X κ

µ
ν
′
′+ ∈ ∞                      (5.38) 

By Lemma 5.1, when 0m κ+ ≥ , the solution to the jumping problem Rm κ+  
is  

 ( ) ( )
( )( ) ( )1 , \ ,

2 mL

g
F z f P z z L

i X z κ

τ
τ

τ τ ++= + ∈
π −∫        (5.39) 

where mP κ+  is an arbitrary polynomial of degree not greater than m κ+ . When 
0m κ+ < , the unique solution of problem Rm κ+  is ( )C g X + , or 0mp κ+ =  in, 

if and only if the following conditions are fulfilled:  

 
( )
( )

1 d 0, 0,1, , 2.
2

k
L

g
k m

i X
τ

τ τ
τ+ = = − −

π ∫             (5.40) 

when 1m κ+ = − , the condition does not appear. 
If Φ  is the solution to problem, then  
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 ( ) ( ) ( )
( )( ) ( ) ( )d , \ .

2 mL

X z g
z X z P z z L

i X z κ

τ
τ

τ τ ++Φ = + ∈
π −∫      (5.41) 

Summarizing the above discussion, we have the following theorem. 
Theorem 5.7. Under the conditions, and the additional condition 1 2ν µ− > , 

the solution of Rm problem is (5.41), where ( )mP zκ+  is arbitrary polynomial of 
degree not greater than m κ+ . When 1m κ+ = − , the solution of Rm problem 
is (5.41) and 0mp κ+ = . When 1m κ+ < − , the unique solution of Rm problem is 
(5.41) and 0mp κ+ =  if and only if the solvability condition (5.40) is satisfied.  
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