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Abstract 
In this article, we study numerically a Helmholtz decomposition methodolo-
gy, based on a formulation of the mathematical model as a saddle-point 
problem. We use a preconditioned conjugate gradient algorithm, applied to 
an associated operator equation of elliptic type, to solve the problem. To solve 
the elliptic partial differential equations, we use a second order mixed finite 
element approximation for discretization. We show, using 2-D synthetic vec-
tor fields, that this approach, yields very accurate solutions at a low computa-
tional cost compared to traditional methods with the same order of approxi-
mation. 
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1. Introduction 

Several problems and applications require a deep knowledge of a vector field 
over a region. An important tool in this context is the Helmholtz decomposition 
theorem (HDT) that guarantees, under certain hipothesis [1] [2], a unique de-
composition of a vector field u  defined in a domain Ω  into its solenoidal su  
and irrotational pu  components. This is,  

 , in .s p= + Ωu u u                            (1) 

This decomposition is important, for example, because the properties like in-
compressibility and vorticity can be studied directly by studying these compo-
nents. 
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The application areas of the HD include (but are not restricted to) electro-
magnetism, linear elasticity, fluid mechanic [3], astrophysics [4], geophysics [5], 
computer vision and robotic [6] [7] [8], image processesing [9]. The HDT also 
establishes that the Helmoltz decomposition components can be obtained in 
terms of a vector potential (the solenoidal) and a scalar potential (the irrotation-
al), solution of certain Poisson equations with different kinds of boundary con-
ditions, one of them being 0s ⋅ =u n , on Γ = ∂Ω . These elliptic equations can-
not be solved explicitly, so it is necessary to apply numerical methods to solve it. 
The most common mesh dependant methods are the finite element methods 
(FEM) [6] [10] [11], Finite difference methods (FDM) [9] [12], Galerkin For-
mulation Using Finite Differences [13], Fourier and Wavelets Domains [14] [15] 
[16]. Among the meshsless methods, we can mention the Smoothed Particle Hy-
drodynamics (SPH) [17] [18] [19] and the Statistical Learning Using Matrix- 
Valued Kernels [20] [21] [22]. 

The problem we are considering in this work is the numerical decomposition, 
in a given domain Ω , of a vector field u  into its solenoidal and irrotational 
components with the more general boundary condition: 0s ⋅ =u n  is satisfied 
only in NΓ , a section of Γ  where the solenoidal vector field is tangential to the 
boundary. This kind of boundary conditions appears, for example when we want 
to adjust vector fields from experimental or incomplete data. Let u be given and 
defined in the Lipschitz bounded domain Ω , with boundary N DΓ = Γ ∪Γ . We 
want to solve numerically the following model:  

 , in ,s p= + Ωu u u                          (2) 

 0, in ,s∇ ⋅ = Ωu                           (3) 

 in ,p p= ∇ Ωu                           (4) 

 0, on ,s N⋅ = Γu n                          (5) 

where p is a scalar potential, n  is the unitary outer vector, normal to the boun-
dary Γ  and D NΓ = Γ −Γ . 

We apply a methodology based on the solution of saddle point problems to 
find simultaneously the pair ( ),s pu  (and consequently p s= −u u u ) by using 
an optimal preconditioned conjugate gradient algorithm combined with a mixed 
finite element method to solve elliptic problems. The associated stiffness matrix 
components are aproximated by a trapesoidal rule that produce a diagonal ma-
trix so that the solution of the stiffness system is easy. This property together 
with the use of an optimal preconditioned resulted in a very fast algorithm. 

The structure of this article is as follows: In Section 2, we consider the ma-
thematical formulation of the problem and we describe the classical elliptic 
problems for scalar potentials allowing the decomposition. In Section 3, we de-
scribe the variational version of the problem. After reformulating the problem, 
we describe a preconditioned conjugate gradient (PCG-algorithm), where a mixed 
finite element method is used to solve the elliptic subproblems at each iteration. 
In Section 4, we present and discuss the numerical results, and finally, in Section 
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5, we give some concluding remarks. 

2. Mathematical Formulation of the Helmholtz  
Decomposition 

The Helmholtz decomposition theorem [2], establishes that if ( )2d dΩ⊂ ≥  
is a bounded Lipschitz domain with boundary Γ , then, each ( )2∈ Ωu L  have 
a unique Helmholtz decomposition  

 ,s p= +u u u                             (6) 

if we know that the solenoidal component satisfies 0s ⋅ =u n  in Γ , i.e.  
( )s divH∈ Ωu  and ( )p G∈ Ωu , where  

 ( ) ( ){ }; : 0 & 0 in ,divH w divΩ = ∈ Ω ∇ ⋅ = ⋅ = ΓH w w n         (7) 

( ) ( ) ( ){ }2 2; :div Ω = ∈ Ω ∇ ⋅ ∈ ΩH v L v L               (8) 

and  

 ( ) ( ) ( ){ }2 2: such that .G p L pΩ = ∈ Ω ∃ ∈ Ω =∇v L v        (9) 

Spaces ( )divH Ω  and ( )G Ω  are orthogonal in ( )2 ΩL . 
If ( );div∈ Ωu H  and the boundary condition 0s ⋅ =u n  in Γ  is given, the 

irrotational vector field p p= ∇u  can be calculated by obtaining the scalar field 
( ) ( )1 /p ∈ Ωx H  , as solution of the Poisson problem with Neumann boundary 

condition  

 
, in ,
, on ,

p
p

−∆ = −∇ ⋅ Ω
∇ ⋅ = ⋅ Γ

u
n u n

                  (10) 

where ( ) ( ) ( ){ }1 1/ : d 0v
Ω

Ω = ∈ Ω =∫H v H x x . 
If we first solve the elliptic problem (10) to find ( )p x  then we calculate 

p p= ∇u  and finally we calculate s p= −u u u . 
In order to describe our methodology for finding the Helmholtz decomposi-

tion, we consider a given vector field ( );div∈ Ωu H  satisfying (2)-(5). From (2), 
we have 

,s p− =u u u  

or 

( )2, for some ,s p p L− = ∇ ∈ Ωu u  

From this,  

( ) ( )d d , ; .s p div
Ω Ω

− ⋅ = ∇ ⋅ ∀ ∈ Ω∫ ∫u u v x v x v H  

Since  

( ) ( )2d d d , ; , ,H div Lλ λ γ λ λ
Ω Γ Ω
∇ ⋅ = ⋅ − ∇ ⋅ ∀ ∈ Ω ∀ ∈ Ω∫ ∫ ∫v x v n v x v  

we can write (if 0p =  in DΓ  and 0⋅ =v n  on NΓ )  

( ) d d , ,s Np
Ω Ω

− ⋅ = − ∇ ⋅ ∀ ∈∫ ∫u u v x v x v V  

where NV  is the space of vector fields defined as  
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 ( ){ }; : 0 on .N NH div= ∈ Ω ⋅ = ΓV v v n                (11) 

Considering condition (3) we conclude that the pair ( ) ( )2,s Np L∈ × Ωu V , sa-
tisfies 

( )
( )2

d d , ,

d 0, .

s N

s

p

q q L
Ω Ω

Ω

 − ⋅ = − ∇ ⋅ ∀ ∈


∇ ⋅ = ∀ ∈ Ω

∫ ∫
∫

u u v x v x v V

u x
            (12) 

Next section is devoted to find the pair ( ) ( )2,s Np L∈ × Ωu V , satisfying (12). 

3. A Preconditioned Conjugate Gradient Algorithm  

Following [23], assume that ( ),s pu  is solution of problem (12) with 

.s p− =u u u                          (13) 

Considering that 0s∇ ⋅ =u , it follows that p∇ ⋅ = ∇ ⋅u u , so we have that p 
satisfies the following operational equation 

,A p = ∇ ⋅u                          (14) 

where ( ) ( )2 2:A L LΩ → Ω  is the operator defined by 

,A µµ = ∇ ⋅u                         (15) 

with µu  the solution of 

( ); ,

d d , .N

divµ

µ µ
Ω Ω

 ∈ Ω


⋅ = − ∇ ⋅ ∀ ∈∫ ∫

u H

u v x v x v V
              (16) 

Note that subscript s in (13) have not the same meaning as p and µ  in (16). 
The properties of operator A (linear, self-adjoint and strongly elliptic, [23]), al-
low us to solve equation (14) by using a conjugate gradient algorithm operating 
in ( )2L Ω . Also, we can use the optimal preconditioner ( ) ( )1

2 2:B L L− Ω → Ω  
defined by 

,qBq φ=                           (17) 

where qφ  solves the problem 

( )1d d , ,q Dq Hφ ψ ψ ψ
Ω Ω
∇ ⋅∇ = ∀ ∈ Ω∫ ∫x x            (18) 

 0 on ,q Dφ = Γ                        (19) 

 0 on ,q Nφ∇ ⋅ = Γn                      (20) 

with 

( ) ( ){ }1 1 : 0 on .D DH Hψ ψΩ = ∈ Ω = Γ              (21) 

Next we enumerate the three stages of the preconditioned conjugate gradient 
algorithm to solve the equation Ap b= :  

1) Initialization: 0p  given, 0 0g A p b= − , 0 0ĝ Bg= , 0 0ˆd g= − .  
2) Descent: For 0m ≥ , assuming we know ˆ, , ,m m m mp g g d , find  

1 1 1 1ˆ, , ,m m m mp g g d+ + + +  by  
1m m m

mp p dα+ = +  where ˆ, ,m m m m
m g g d Adα = . 
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1 ,m m m
mg g Adα+ = +  

( )1ˆ ˆ .m m m
mg g B Adα+ = +  

3) Test of convergence and new conjugate direction:  
If 1 1 0 0ˆ ˆ, ,m mg g g gε+ + ≤ , take 1mp p +=  and stop.  

Else 1 1ˆm m m
md g dβ+ += − +  with 

1 1ˆ,

ˆ,

m m

m m m

g g

g g
β

+ +

=  

Do 1m m= +  and return to 2.  
Using Equations (15)-(16), which define operator A, and Equations (17)-(18) 

which define operator B, the detailed preconditioned conjugate gradient algo-
rithm (PCG) to obtain p and su  (and pu ) is as follows: 

Initialization  
1) Given ( )0

2p L∈ Ω , solve 

( )
( )

0

0 0

; ,

d d , .
p

p N

div

p
Ω Ω

 ∈ Ω


⋅ = − ∇ ⋅ ∀ ∈∫ ∫

u H

u v x v x v V
 

2) Let 0 0g = −∇ ⋅u , where ( )0 0
p= − −u u u .  

3) Solve  

( )
( ) ( )

0 1

0 0 1

,

d d , .
D

D

H

g H

φ

φ ψ ψ ψ
Ω Ω

 ∈ Ω


∇ ⋅∇ = ∀ ∈ Ω∫ ∫x x
 

4) Let 0 0ĝ φ= , 0 0ˆd g= − .  
Descent  
For 0m ≥ , assuming mp , mg , ˆ mg , md , mu  are known, compute 1mp + , 

1mg + , 1ˆ mg + , 1md +  and 1m+u , using the following steps:  
5) Solve  

( )
( )

; ,

d d d , .

m

m m
N

div

Ω Ω

 ∈ Ω


⋅ = − ∇ ⋅ ∀ ∈∫ ∫

u H

u v x v x v V
 

6) Let m mg = ∇ ⋅u . 
7) Let ˆ d dm m m m

m g g g dα
Ω Ω

= ∫ ∫x x . 
8) Solve 

( )
( ) ( )

1

1

,

d d , .

m
D

m m
D

H

g H

φ

φ ψ ψ ψ
Ω Ω

 ∈ Ω


∇ ⋅∇ = ∀ ∈ Ω∫ ∫x x
 

9) Set 
1 ,m m m

mp p dα+ = +  
1 ,m m m

mα
+ = −u u u  
1 ,m m m

mg g gα+ = +  
1ˆ ˆ .m m m

mg g α φ+ = +  

Test of convergence and new descent direction  
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If 1 1 0 0ˆ ˆd dm mg g g g ε+ +

Ω Ω
<∫ ∫x x , then do 1mp p += , 1m

s
+=u u  and stop. 

Otherwise, do the following:  
10) Compute 1 1ˆ ˆd dm m m m

m g g g gβ + +

Ω Ω
= ∫ ∫x x   

11) Set 1 1ˆm m m
md g dβ+ += − + .  

12) Do 1m m= +  and return to 5.  
Note that in this algorithm, su  and p are computed simultaneously. 

To approximate the functions belonging to the spaces NV  and ( )2L Ω , we 
make use of the Bercovier-Pironneau finite element approximation using two 
triangulation of Ω , the coarse mesh 2h  and the fine mesh h  obtained from 
the coarse triangulation through a regular subdivision of each triangle 2hT ∈ , 
as shown in Figure 1. 

The vector-valued functions such as su  are approximated in the fine mesh 
and the scalar functions, such as p are approximated in the coarse mesh. Since 

su  is obtained on the fine mesh, its resolution is the same as that obtained when 
solving the elliptics problems (10) in h . 

To measure the global difference between the exact solenoidal field su  and 
the computed solenoidal field shu  we take the relative error 

2

2

.s sh
sr

s

e
−

=
u u

u
                           (22) 

Also, we computed the 2L -norm of the divergence of shu , ( )2sh L Ω
∇ ⋅u , 

which we denote by ndiv in the next section. 

4. Numerical Results  

To show the performance of the PCG-algorithm we chose two synthetic vector 
fields. In Example 1 we consider a vector field satisfying the boundary condition  

 0, on .s ⋅ = Γu n                          (23) 

In Example 2 we consider a vector field satisfying the boundary condition  

 0,s ⋅ =u n                             (24) 

but only in NΓ , a section of Γ . 
 

 
Figure 1. Element in 2h : triangle ABC. Elements in h : triangles AQP, PRC, PQR and 
QBR.  
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All numerical calculations were done in a Toshiba PC: Portege R705, Win-
dows 7, 64 Bits, Intel Processor CORE i3, 2.27 GHz, 3 GB Ram.  

Example 1. We consider the 2D vector field  

 ( ) ( ) ( ) ( ) ( ), , , , 1,1 1,1 ,s cx y x y x y= + Ω = − × −u u u          (25) 

for which the solenoidal and irrotational components are  

 ( ) ( ) ( ) ( ) ( )( ), sin cos ,cos sin ,s x y x y x yπ π= π π−u           (26) 

 ( ) ( )( ) ( )( )( ) ( )( )( ), cos , cos sin .c x y x y x y x yπ π π π + = ∇ π= + +u   (27) 

In this case,  

 0 in .s N⋅ = Γ = Γu n                       (28) 

Consequently, DΓ =∅ . To solve the elliptic problems in the PCG algorithm we 
use simultaneously a coarse triangular mesh 2h  (blue in Figure 2) to approx-
imate the scalar potential p and a fine triangular mesh 2h  (red in Figure 2) to 
approximate the solenoidal component. 

In Figure 3, we show the exact vector fields ( ),x yu , ( ),s x yu  and ( ),c x yu .  
We want to see how well we can approximate the solenoidal component and 

the scalar potential p applying the PCG algorithm. A summary of the numerical 
results is shown in Table 1, where we show the relative error sre  of the sole-
noidal component, the 2L -norm of the divergence ndiv of the solenoidal com-
ponent, as well as the number of iterations to get convergence, up to the given 
tolerance ( 410ε −= ), for several mesh sizes. 

 

 
Figure 2. An example of a 5 × 5 coarse mesh and a 9 × 9 refined mesh. The scalar poten-
tial p is approximated in the coarse mesh 2h  (blue). The solenoidal component su  is 
approximated in the fine mesh h  (red). On each blue triangle there are four red triangles. 
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Figure 3. Exact vector fields for Example 1. Left: u . Middle: solenoidal component su . Right: irrotational component cu . 

 
Table 1. Numerical results for Example 1. 410ε −= . 

h  
CG-algorithm PCG-algorithm 

re  ndiv iters. re  ndiv iters. 

33 × 33 3.84E−2 1.65E−3 9 6.87E−2 4.55E−3 4 
65 × 65 1.65E−2 3.25E−4 18 8.50E−2 3.03E−3 3 

129 × 129 1.18E−2 1.22E−4 34 5.99E−2 1.08E−3 3 
257 × 257 7.57E−3 3.38E−5 67 8.90E−2 6.89E−4 2 

 
In Figure 4, we show the stream lines for the exact (left) and aproximated 

(right) solenoidal vector fields. In Figure 5, we show the exact (left) and ap-
proximated (right) p. 

It is important to mention that the error bounds in Table 1 were obtained us-
ing in the stop criterion of the conjugate gradient algorithm the relaxed value 

410ε −=  and the results can be improved if we use a more restrictive ε , as is 
shown in the next example.  

Example 2. Here we consider the 2D vector field ( ) ( ), ,0x y x=u   

 ( ) ( ) ( ) ( ) ( ) ( ), , , ,0 , 1,2 0,1 ,s cx y x y x y x= + = Ω = ×u u u          (29) 

for which the solenoidal and irrotational components are  

 ( ) ( ), , ,s x y x y= −u                          (30) 

 ( ) ( ) ( ) ( )2, 0, , 2 , any constant.c x y y p x y y c c= = ∇ =∇ +u        (31) 

In this example,  

 ( ){ }0 on , : 0 ,s N x y y⋅ = Γ = ∈∂Ω =u n                 (32) 

so that, DΓ  is the top and vertical boundary of Ω . Our formulation implies 
that 0p =  in DΓ , but this is only possible in the top part of DΓ , and we do 
not want (and we are not able) to impose additional boundary conditions in p, 
so we impose exact boundary conditions in su  in the vertical boundary. Table 
2 shows the numerical results obtained for this test problem. 

For comparison reasons we have repeated the calculations in example 2 but 
using a more restrictive stop tolerance of 1210ε −=  for the conjugate gradient  

https://doi.org/10.4236/jamp.2023.115086


J. Lopez 
 

 

DOI: 10.4236/jamp.2023.115086 1345 Journal of Applied Mathematics and Physics 
 

 
Figure 4. Stream lines for the exact (left) and aproximated (right) solenoidal vector fields for Example 1, in a velocity mesh of 65 × 
65 (a coarse mesh of 33 × 33). 

 

 
Figure 5. Exact (left) and approximated (right) p for Example 1, in a coarse mesh of 33 × 33 (a velocity mesh of 65 × 65). 

 
Table 2. Numerical results for Example 2. 410ε −= . 

h  
CG-algorithm PCG-algorithm 

re  ndiv iters. re  ndiv iters. 

33 × 33 1.16E−3 1.24E−5 84 1.82E−3 6.19E−5 2 
65 × 65 5.04E−4 3.29E−6 170 6.40E−4 1.09E−5 2 

129 × 129 1.88E−4 9.04E−7 346 2.25E−4 1.93E−6 2 
257 × 257 9.25E−5 2.23E−7 695 9.93E−5 3.40E−7 2 

 
method with and without preconditioning. We also solved a problem equivalent 
to (10) but with exact (not diagonal) stiffness matrix. A summary of the numer-
ical results with the three algorithms is shown in Table 3, where we show the 
relative solenoidal error re , average of divergence mdiv, as well as the number 
of iterations to get convergence, up to the given tolerance ( 1210ε −= , in the CG  
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Table 3. Numerical results for Example 3. 1210ε −= . 

h  
CG-algorithm PCG-algorithm E-alg 

re  mdiv iters. CPUt re  mdiv iters. CPUt CPUt 

33 × 33 3.1E−4 −7.6E−09 260 0.25 1.9E−3 −3.4E−6 6 0.03 0.01 

65 × 65 1.1E−4 −5.0E−10 498 1.18 6.9E−4 −4.5E−7 7 0.085 0.06 

129 × 129 4.0E−5 −2.7E−11 854 7.24 2.4E−4 −5.9E−8 7 0.26 0.73 

257 × 257 1.4E−5 −1.6E−12 1688 60.69 8.6E−5 −7.5E−9 7 1.96 15.75 
 
and PCG algorithms) for different mesh sizes. This table also contains the CPU 
time (sec) spent in each numerical experiment, and, in particular, in the last 
column the CPU time spent by solving the elliptic problem equivalent to (10). 
For this elliptic problem the results for re  and mdiv were not as good as those 
of the CG algorithms.  

It is clear that the PCG-algorithm performs much better than the other algo-
rithms. Another nice feature of the performance of the PCG-algorithm in this 
example is that the number of iterations is independent of the mesh size (7 itera-
tions in each case). Also, the relative error between the computed and the exact 
solenoidal vector field is of the same order for the CG and PCG algorithms, with 
the largest difference occurring on the top boundary. For this example, we ob-
serve a loss of accuracy on the mean divergence when the PCG-algorithm is em-
ployed. Anyway, the mean divergence obtained with the PCG-algorithm is still 
very accurate, from a practical point of view, since we are using polynomial of 
degree 1 to approximate the unknowns. 

5. Conclusions 

We have applied an optimal preconditioner for the conjugate gradient algorithm, 
to solve the operator equation associated with the saddle-point formulation of 
the Helmholtz decomposition problem. Numerical results show that the new 
preconditioned conjugate gradient algorithm, and its stable approximation by a 
mixed finite element discretization, preserve the good properties of the non- 
preconditioned conjugate gradient algorithm, but it is much faster, and produces 
much better results than the methods based on the elliptic problem (10). Some 
additional nice properties of this algorithm are: 
● It enforces very accurately mass conservation in the computed vector fields, 

considering that the approximation is second order. 
● The number of iterations is reduced from several hundreds to less than 7 in 

the examples considered in this article. Also, the number of iterations of the 
PCG-algorithm is almost independent with respect to mesh refinement, while 
the number of iterations in the non-preconditioned algorithm doubles at 
each mesh refinement in most cases. Therefore, there is a substantial reduc-
tion in the computational time in both examples. However, this behavior 
must be corroborated in 3-D problems with adaptive meshes in complex 
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domains, and with millions of degrees of freedom, in order to have a better 
idea of the performance of the method with realistic scenarios. 

● It is not necessary to impose boundary conditions on the multiplier p, as it is 
done with the elliptic approaches. Furthermore, post-processing the scalar 
potential to find the vectorial field from the multiplier is not required, since 
the multiplier and the solenoidal vector field are found simultaneously by the 
algorithm. 

The application of the methodology presented here to the more realistic 
three-dimensional case is an extension of the present work.  
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