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Abstract 
In article, I present a study on upper and lower statistical convergence, and 
upper and lower strong fractional weighted mean convergence by moduli for 
triple sequences. One of the generalizations of the discrete operator Cesàro, 
was weighted mean operators, which are linear operators, too. Given a mod-
ulus function f, I established that a triple sequence that is f-upper or lower 
strong fractional weighted mean convergent, in some supplementary condi-
tions, is also f-lower or upper statistically convergent. The results of this pa-
per adapt the results obtained in [1] and [2] to upper and lower strong frac-
tional weighted mean convergence and to triple sequence concept. Further-
more, new concepts can be applied to the approximation theory, topology, 
Fourier analysis, analysis interdisciplinary with applications electrical engi-
neering, robotics and other domains. 
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1. Introduction and Motivation 

Many areas of mathematics, such as mathematical optimizations, analysis, statis-
tics, algebra, geometry use the opposing concepts of upper and lower. For exam-
ples, upper and lower solutions for first order problems with nonlinear boun-
dary conditions [3], upper and lower probabilities generated by a random closed 
interval [4], upper and lower bounds for the Riemann-Stieltjes integral [5], up-
per and lower solutions method for fuzzy differential equations [6], upper limit 
superior and limit inferior of soft sequences [7] and many other very interesting 
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and useful works. 
In this paper, I discuss about upper and lower strong fractional weighted 

mean convergence by moduli for triple sequences, starting to the concept of the 
average operators. 

Cesàro average operators have been used in many papers, in a discrete and 
integral form, and, also, generalizations of there, i.e. z-Cesàro operators, Rhaly 
operators, weighted mean operators, on different spaces of sequences of func-
tions.  

For a linear weighted mean operator, the weighted mean matrix A associated 
with this, is a lower triangular matrix with entries nk k na p P=  where 1 0p > , 

0kp ≥  { }2,3,k∈   and 1n kk
nP p
=

= ∑ , where ( )kp  is a bounded sequence of 
strictly positive numbers [8]. 

In present time, for these operators, some researched objectives are for statis-
tical convergence and for generalizations, i.e. for λ-statistical convergence of or-
der α [9], statistical convergence of order α in paranormed space [10]. These 
concepts have contributed to developing the fields of mathematical analysis, 
functional analysis, ergodic theory, fuzzy set theory, trigonometric series and 
approximation theory. 

The concept of the weighted statistical convergence was given by Acar and 
Mohiuddine, in 2008 [11] and the concept was generalized by Aljimi and Siri-
mark in 2021 [12] [13]. In a modular space associated with a generalized double 
sequence of function, some work analyzed a particular concept, the deferred- 
weighted summability mean [14]. A paper published in 2022 studied double se-
quences of fuzzy numbers, and some cases of weighted ideal statistical conver-
gence and strongly weighted ideal convergence [15]. The notions of ideal statis-
tically convergence for sequence of fuzzy number were defined by the same au-
thor, in 2021, in the same time with the definition for the notions ideal statisti-
cally pre-Cauchy triple sequences [16]. 

In 2019 and 2022, the authors León-Saavedra, Listán-García, Perez Fernández 
and Romero de la Rosa, analized the statistical convergence and strong Cesàro 
convergence by moduli for double sequences [1] [17].  

I extended the results from papers [1] [2], to triple sequences, because after 
researching the specialty literature, I realized that no other author has done this 
before. My motivation was generated by this. Moreover, I added new concepts, 
such as “f-upper strong fractional weighted mean convergent”, “f-lower strong 
fractional weighted mean convergent” in order to bring new elements to the 
theory from mathematical analysis. 

The concept of strong Cesàro convergence was given by Hardy-Littlewood [18] 
and Fekete [19]. 

In the recent specialty literature, in many papers the authors obtained result 
for different kinds of statistical convergence defined by moduli (i.e. in [1] [2] [17] 
[20]). In [21], Mursaleen and Edely obtained Connor’s [22] result for double 
sequences. In [23], Șahiner et al. present results for triple sequences. 
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In this paper, I aim to obtain the results triple sequences and for different 
types of statistical convergence, which are defined by a density in N using a ge-
neralized compatible unbounded modulus function f. 

Pringsheim introduced the definition of the convergence for double sequences 
in 1900. The concept of statistical convergence was first used by Fast in 1951. 
After, in year 2003, Tripathy and Mursaleen et al. used the statistical convergence 
for double sequences [24]. Extensions of the concept of statistical convergence 
were introduced by Kolk [25] which studied statistical convergence to normed 
spaces; by Maddox [26] which defined the locally convex Hausdorff topological 
linear spaces; Çakalli [27] which extended to topological Hausdorff groups; etc. 
Also, Fridy and Orhan presented in 1997, details about the statistical limit supe-
rior and limit inferior [28]. 

Kolk [29] extended the definition of statistical convergence with the help of 
nonnegative regular matrix ( )nkA a=  calling it A-statistical convergence. 

Also, in year 2009, the notion of the weighted statistical convergence was in-
troduced and analyzed by Karakaya and Chishti [30]. After three years, in 2012, 
Mursaleen et al. [31] presented a modified concept. In 2013, Belen and Mohiud-
dine [32] created a generalization of this concept through de la Vallée-Poussin 
mean. After a year, in 2014, Esi [33] defined and analyzed studied the notion sta-
tistical summability through de la Vallée-Poussin mean in probabilistic normed 
spaces and Mohiuddine et al., for a nonnegative regular matrix A, introduced 
the concept of weighted A-statistical convergence of a sequence and demon-
strated the Korovkin approximation theorem by using this concept [34]. Recent, 
in year 2022, Özger et al. used the statistical approximation properties, the mod-
ulus of continuity and presented local approximation results [35]. 

The paper is organized as follows. In the “Introduction and Motivation” sec-
tion, I wrote about literature review and motivation for the subject. The second 
section, “Definition and Notations”, contains new definitions and new notations. 
In the third section, entitled “Main results”, I suggest theorems with conditions 
in which a triple sequence is f-upper or lower strong fractional weighted mean 
convergent, or is f-lower or upper statistically convergent. The conclusions are 
stated in the “Conclusions and Future Research Directions” section. 

2. Definitions and Notations 

In this paper, ( ),X ⋅  will denote a normed space, α is a proper fraction and 
( )kp  is a bounded sequence of strictly positive real numbers. |B| denotes also 
the cardinality of the subset B from the set of the natural numbers. 

Definition 2.1. [1] [17] A sequence (xn) ⊂ X was said to be strong Cesàro 

convergent to L if 
1

1lim 0n k
n
k x L

n→∞ =
− =∑ .  

In this paper, used the notions of lim sup, and lim inf from [22], I generalize 
this definition as follows: 

Definition 2.2. Let (pi) a sequence of strictly positive real numbers and  
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1n nk
nP p
=

= ∑  with limn nP→∞ = ∞  and n

n

P n
p

α 
≥ 

 
 for all n. A sequence (xn) ⊂ 

X was said to be upper strong fractional weighted mean convergent to L if  

1

1limsup 0n kk
n

n

n x L
P
p

α→∞ − =
− =

 
 
 

∑ .  

Definition 2.3. Let (pi) a sequence of strictly positive real numbers and  

1n nk
nP p
=

= ∑  with limn nP→∞ = ∞  and n

n

P n
p

α 
≥ 

 
 for all n. A sequence (xn) ⊂ 

X was said to be lower strong fractional weighted mean convergent to L if  

1

1liminf 0n kk
n

n

n x L
P
p

α→∞ − =
− =

 
 
 

∑ . 

Let 0ε >  and { }, kM n x Lε ε= − >  a subset of the natural set of num-
bers. 

Definition 2.4. [1] [17] A sequence (xn) ⊂ X is called statistically convergent 
to L if for any ε, Mε  has zero density on the set of the natural numbers.  

Definition 2.5. [36] A function :f R R+ +→  is said to be a unbounded 
modulus function if it fulfills the following conditions: f(x) = 0 if and only if x = 
0; ( ) ( ) ( )f x y f x f y+ ≤ +  for every ,x y R+∈ ; f is increasing; and continuous 
from the right at 0; ( )limx f x→∞ = ∞ . 

Throughout the paper, we denote by A  the cardinality of a finite set A. Ac-
cording to [20] [36] we have: 

Definition 2.6. Let A a subset of the set of natural numbers.  
1) The lower fractional density of A is the limit  

( )
1,

liminf

n

n

n

n

n

PA
p

d A
P
p

α

α

−

→∞ −

  
  
   =
 
 
 



. 

2) For f, a unbounded modulus function, the f-lower fractional density of A is 

the limit 

1,

liminf

n

n

n

n

n

Pf A
p

Pf
p

α

α

−

→∞ −

           
       



. 

3) The upper fractional density of A is the limit  

( )
1,

limsup

n

n

n

n

n

PA
p

d A
P
p

α

α

−

→∞ −

  
  
   =
 
 
 



. 

4) For f, a unbounded modulus function, the f-upper fractional density of A is 
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the limit 

1,

limsup

n

n

n

n

n

Pf A
p

Pf
p

α

α

−

→∞ −

           
  
     



. 

Every triple limit we use will be considered in Pringsheim’s sense. Pringsheim 
[37], in 1900, defined the concept of convergence of real double sequences and 
of real triple sequences:  

Definition 2.7. A triple sequence ( )mnlX x=  , ,m n l∈  converges to a∈ , 
if for every ε > 0 there is 0n ∈  such that mnlx a ε− <  for all 0, ,m n l n>  (see 
[38], and also [17] [18]). The limit a is called the Pringsheim limit of X. 

Because statistical convergence depends on the density of the subsets of N, 
then the concept of statistically convergent double sequences is a function of the 
density of subsets of N × N, and the notion of statistically convergent triple se-
quences depends on the density of subsets of N × N × N. 

The theory of triple sequences is a generalization of the single sequences and 
of the double sequences. A triple sequence of real numbers is a function  

:x N N N R× × → . In the article, I will use the notation (xmnl). 

For example, for 1
mnl m

x
n l

=
+ +

, the limit a is obviously equal to 0. 

According to [1] [17] we observed that the f-strong Cesàro convergence for 
triple sequences is a generalization of the f-strong Cesàro convergence for 
double sequences: 

Definition 2.8. Let f be the unbounded modulus function. A sequence (xmnl) is 
said to be f upper strong Cesàro convergent to L if 

( )
( )

1 1 1

, ,
limsup 0.

ijki j k

m n

m

l

n lf x L

f mnl
= = =

→∞

−
=

∑ ∑ ∑
 

Definition 2.9. Let f be the unbounded modulus function. A sequence (xmnl) is 
said to be f-lower strong Cesàro convergent to L if 

( )
( )

1 1 1

, ,
liminf 0.

ijki j k

m n

m

l

n lf x L

f mnl
= = =

→∞

−
=

∑ ∑ ∑
 

Starting from f-strong Cesàro convergence for triple sequences, I define in this 
paper the notion of f-upper strong fractional weighted mean convergence for 
triple sequences f-lower strong fractional weighted mean convergence for triple 
sequences, as follows: 

Definition 2.10. Let (pi) a sequence of strictly positive real numbers and  

1n nk
nP p
=

= ∑  with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let f be a unbounded  

modulus function. A sequence (xmnl) is said to be f-upper strong fractional 
weighted mean convergent to L if 
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( )1 1 1

,
limsup 0.

ijki j k

m n
n

l

n

m nf x L

Pf m l
p

α

= = =

−
→∞

−
=

       

∑ ∑ ∑
 

Definition 2.11. Let (pi) a sequence of strictly positive real numbers, and  

1n nk
nP p
=

= ∑  with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let f be a unbounded  

modulus function. A sequence (xmnl) is said to be f-lower strong fractional 
weighted mean convergent to L if 

( )1 1 1

,
liminf 0.

ijki j k

m n
n

l

n

m nf x L

Pf m l
p

α

= = =

−→∞

−
=

  
     

∑ ∑ ∑
 

In [38], by means of a new concept of density of a subset of N, was defined the 
following concept of convergence: 

Definition 2.12. [38] A sequence (xn) is said to be f-statistically convergent to 
L if for every ε > 0, 

( )
( )

:
lim 0.k

n

f k n x L

f mn

ε
→∞

≤ − >
=  

Starting from [38] we can give the following definitions: 
Definition 2.13. Let (pi) a sequence of positive real numbers and 1n nk

nP p
=

= ∑   

with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let f be a unbounded modulus function.  

A subset A N N N⊆ × ×  has f-upper fractional density if the following limit 
exists 

( )
( )( )

3,
, ,

, , : , ,
limsup .f
m n l

n

n

f i j k N N N i m j n k l
d A

Pf m l
p

α−
→∞

∈ × × ≤ ≤ ≤
=

       

 

Definition 2.14. Let (pi) a sequence of positive real numbers and 1n nk
nP p
=

= ∑   

with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let f be a unbounded modulus function.  

A subset A N N N⊆ × ×  has f-lower fractional density if the following limit ex-
ists 

( )
( )( )

3, , ,

, , : , ,
liminf .f m n l

n

n

f i j k N N N i m j n k l
d A

Pf m l
p

α−→∞

∈ × × ≤ ≤ ≤
=

       

 

Also, starting from [10] we can give the following definitions: 
Definition 2.15. Let (pi) a sequence of positive real number and 1n nk

nP p
=

= ∑   
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with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let (xijk) be a triple sequence and  

L X∈ , for any ε > 0, p ≤ m, q ≤ n, r ≤ l ( , , , , ,p q r m n l N∈ ).  
Let the following subsets ( ), , , , ,M p q r m n lε : 

( )
( ){ }

, , , , ,

, , : , , , .ijk

M p q r m n l

i j k N N N p i m q j n r k l x L

ε

ε= ∈ × × ≤ ≤ ≤ ≤ ≤ ≤ − >
 

Let f be an unbounded modulus function. Then (xijk) is f-upper statistically 
convergent to L if 

( )( )
, , , ,

, , , , ,
lim limsup 0.

p q r m n l
n

n

f M p q r m n l

Pf m l
p

α

ε
−→∞ →∞

=
       

 

Definition 2.16. Let (pi) a sequence of positive real number and 1n nk
nP p
=

= ∑   

with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let (xijk) be a triple sequence and  

L X∈ , for any ε > 0, p ≤ m, q ≤ n, r ≤ l ( , , , , ,p q r m n l N∈ ).  
Let the following subsets ( ), , , , ,M p q r m n lε : 

( )
( ){ }

, , , , ,

, , : , , , .ijk

M p q r m n l

i j k N N N p i m q j n r k l x L

ε

ε= ∈ × × ≤ ≤ ≤ ≤ ≤ ≤ − >
 

Let f be an unbounded modulus function. Then (xijk) is f-lower statistically 
convergent to L if 

( )( )
, , , ,

, , , , ,
lim liminf 0.

p q r m n l
n

n

f M p q r m n l

Pf m l
p

α

ε
−→∞ →∞

=
       

 

In the specialty literature, is says that, in many cases, the above limit may not 
exist (in Pringsheim’s sense). 

For double and analogous for triple sequences, in [17] it has been shown that 
Definition 2.14, 2.15 can be replaced to the definitions 2.17 and 2.18. 

Definition 2.17. Let (pi) a sequence of positive real numbers and 1n nk
nP p
=

= ∑   

with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let (xijk) be a triple sequence and  

L X∈ , , ,m n l N∈ . Let us define the subsets ( ), ,M m n lε : 

( ) ( ){ }, , : , , , ., , ijki j k N N N i m j n k l xM m n l L εε ∈ × × ≤ ≤ ≤ − >=  

Let f be a compatible unbounded modulus function. Then (xijk) is f-upper sta-
tistically convergent to L if 

( )( )
, ,

, ,
limsup 0.
m n l

n

n

f M m n l

Pf m l
p

α

ε
−

→∞
=
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Definition 2.18. Let (pi) a sequence of positive real numbers and 1n nk
nP p
=

= ∑   

with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let (xijk) be a triple sequence and  

L X∈ , , ,m n l N∈ . Let us define the subsets ( ), ,M m n lε : 

( ) ( ){ }, , : , , , ., , ijki j k N N N i m j n k l xM m n l L εε ∈ × × ≤ ≤ ≤ − >=  

Let f be a compatible unbounded modulus function. Then (xijk) is f-lower sta-
tistically convergent to L if 

( )( )
, ,

, ,
liminf 0.
m n l

n

n

f M m n l

Pf m l
p

α

ε
−→∞

=
  
     

 

Also, from [17] we known the following definition: 
Definition 2.19. [17] A modulus function f is said to be compatible if for any 

ε > 0, there exist ε' > 0, ( )0n Nε ∈  such that the following inequality take place,  
( )
( )

f n
f n
ε

ε
′
< , for all n ≥ n0. 

In this article, we define a generalized compatible modulus function, as fol-
lows: 

Definition 2.20. Let (pi) a sequence of positive real numbers and 1n nk
nP p
=

= ∑   

with limn nP→∞ = ∞ , n

n

P n
p

α 
≥ 

 
 for all n. Let f be an unbounded modulus func-

tion. The function f is said to be generalized compatible if for any ε > 0, there ex-

ist ε' > 0 and ( )0n Nε ∈  such that ( )

n

n

f n

Pf m l
p

α

ε
ε

−

′
<

       

 for all n ≥ n0 and for all 

,m l N∈ . 

3. Main Results 

Let ε > 0. 
I denote by ( ) ( ) ( ), , , , , , , , ,M m n l M m n l M p q r m n lε ε ε′ = − . 
Theorem 3.1. Let (pi) a sequence of positive real numbers, 0 0p > , and  

1n nk
nP p
=

= ∑  with limn nP→∞ = ∞  and n

n

P n
p

α 
≥ 

 
. Let f be a generalized com-  

patible unbounded modulus function. For which exist NN ∈  and for m ≥ N > 
p, n ≥ N > q, l ≥ N > r, we have for all m, n, l ≥ N, the inequality  

( )( ), ,

2
n

n

f M m n l

Pf m l
p

α

ε ε
−

′
<

       

. Then (xijk) is f lower statistically convergent to L if and 

only if for any ε > 0, 
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( )( )
, ,

, ,
liminf 0.
m n l

n

n

f M m n l

Pf m l
p

α

ε
−→∞

=
       

 

Proof. The proof idea from Theorem 2.5 of [17] is applied. 
We see that ( ) ( ), , , , , , ,M p q r m n l M m n lε ε⊆ ; and, from the hypothesis that f 

is an increasing function, we have: 

( )( ) ( )( ), , , , , , ,f M p q r m n l f M m n lε ε≤  

the implication follows dividing the above inequality by n

n

Pf m l
p

α−  
     

 and 

taking limits as (m, n, l) → ∞. 
Let ε > 0. Since (xijk) is f-statistically convergent to L, there exist  

( ), ,p q r N N N∈ × ×  and 0 Nn ∈  such that, if m ≥ n0 > p, n ≥ n0 > q, l ≥ n0 > r, 
we have the relations 

( )( ), , , , ,
.

2
n

n

f M p q r m n l

Pf m l
p

α

ε ε
−

<
  
     

                     (1) 

From hypothesis, for all m, n, l ≥ N 

( )( ), ,
.

2
n

n

f M m n l

Pf m l
p

α

ε ε
−

′
<

       

                       (2) 

Finally, the result follows from (1) and (2). If { }0, , max ,m n l N n≥  I obtain the 
relations: 

( )( ) ( )( ) ( )( ), , , , , , , , ,

2 2
n n n

n n n

f M m n l f M p q r m n l f M m n l

P P Pf m l f m l f m l
p p p

α α α

ε ε ε ε ε ε
− − −

′
≤ + < + =

                                   

, 

which implies the equality from the theorem. 
Theorem 3.2. Let (pi) a sequence of positive real numbers, 0 0p > , and  

1n nk
nP p
=

= ∑  with limn nP→∞ = ∞  and n

n

P n
p

α 
≥ 

 
. Let f be a generalized com-  

patible unbounded modulus function. For which exist NN ∈  and for m ≥ N > 
p, n ≥ N > q, l ≥ N > r, we have for all m, n, l ≥ N, the inequality  

( )( ), ,

2
n

n

f M m n l

Pf m l
p

α

ε ε
−

′
<

       

. Then (xijk) is f upper statistically convergent to L if and 

only if for any ε > 0, 
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( )( )
, ,

, ,
limsup 0.
m n l

n

n

f M m n l

Pf m l
p

α

ε
−

→∞
=

       

 

Proof. The proof is analogous which the proof for the Theorem 3.1. 
Also, in [17] was proved that: 
Theorem 3.3. [17] Let f be a compatible unbounded modulus function. If (xij) 

is statistically convergent to L, then (xij) is f-statistically convergent to L.  
The theorem can be generalized and the demonstration is analogous, for the 

following: 
Theorem 3.4. Let f be a compatible unbounded modulus function. If (xijk) is 

statistically convergent to L, then (xijk) is f-lower statistically convergent to L.  
Theorem 3.5. Let f be a compatible unbounded modulus function. If (xijk) is 

statistically convergent to L, then (xijk) is f-upper statistically convergent to L.  
Theorem 3.6. Let (pi) a sequence of positive real numbers, 0 0p > , and  

1n nk
nP p
=

= ∑  with limn nP→∞ = ∞  and n

n

P n
p

α 
≥ 

 
. Let (xijk) be a triple sequence  

and let f be a generalized compatible unbounded modulus function. If (xijk) is 
f-upperr strong fractional weighted mean convergent to L, then (xijk) is f-upper 
statistically convergent to L. 

Proof. We show that (3) is true for all t N∈ , 

( )1

, , ,

, , , , ,

lim limsup 0.t

p q m n l
n

n

f M p q r m n l

Pf m l
p

α−→∞ →∞

 
  
  =

       

               (3) 

Let ε > 0 be small enough, then there exists Nt∈  such that 1 1
1t t

ε≤ <
+

, 

which implies that for any , , , , ,p q r m n l N∈  

( ) ( ) ( )1 1
1

, , , , , , , , , , , , , , ,
t t

M p q r m n l M p q r m n l M p q r m n lε
+

⊆ ⊆ , 

( ) ( ) ( )1 1
1

, , , , , , , , , , , , , , , .
t t

M p q r m n l M p q r m n l M p q r m n lε
+

≤ ≤  

Since f is increasing, dividing by n

n

Pf m l
p

α−  
     

, we get the result follows 

taking limits. 
Thus, let Nt∈  be large enough, and we will show that (3) is satisfied. Let 
, , , , ,p q r m n l N∈  with p ≤ m, q ≤ n, r ≤ l then 

( ) 11 1 1 1 1
1

ijk

ijk ijkki j k i j
x L

m l

t

n l m nf x L f x L== = = = =
− ≥

 
 − ≥ − 
 
 

∑ ∑ ∑ ∑ ∑ ∑  
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( ) ( )

( ) ( )

1
1 11 1 1 1
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1 1

1 1
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k ki j i j
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t

t t

m n l m n l

t

f M m n l f M p q r m n l

= == = = =
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  ≥ ≥   

      
   

= ≥      
   

∑ ∑ ∑ ∑ ∑ ∑
         (4) 

Since (xijk) is strong weighted mean convergent to L, we have that 

( )1 1 1

, ,
liminf 0.

ijki j k

m n l
n

n

m n lf x L

Pf m l
p

α

= = =

−→∞

−
=

       

∑ ∑ ∑
 

Therefore, dividing by n

n

Pf m l
p

  
     

 the inequalities (8), results 

( )1

, ,

, , , , ,

liminf 0t

m n l
n

n

f M p q r m n l

Pf m l
p

α−→∞

 
  
  =

       

 

for all , ,p q r N∈ , which gives that the sequence (xijk) is f-upper statistically 
convergent to L as in theorem. 

Theorem 3.7. Let (pi) a sequence of positive real numbers, 0 0p > , and  

1n nk
nP p
=

= ∑  with limn nP→∞ = ∞  and n

n

P n
p

α 
≥ 

 
. Let (xijk) be a triple sequence  

and let f be a generalized compatible unbounded modulus function. If (xijk) is 
f-lower strong fractional weighted mean convergent to L, then (xijk) is f-lower 
statistically convergent to L. 

Proof. The proof is analogous which the proof for the Theorem 3.6. 

4. Conclusions and Future Research Directions 

A triple sequence that is f-upper and lower strong fractional weighted mean 
convergent, in some supplementary conditions, also is f-upper and lower statis-
tically convergent.  

The new concepts from this article can be applied to the approximation theory, 
topology, Fourier analysis, analysis interdisciplinary with applications electrical 
engineering, robotics and other domains. 

Future research directions for our fractional models would be using the rela-
tion between f-upper and lower strong fractional weighted mean convergent and 

, ,m n p
Mλ -statistical convergence for triple sequences (which was studied in [39]), 
and Wijsman lacunary statistical convergence, ϕ-convergence (which was stu-
died in [40]), and statistical convergence of triple sequences in intuitionistic 
fuzzy normed spaces (which was studied in [41]). 

Future research directions could be done by extending the results in the paper 
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for triple sequences of fuzzy number and by analyzing their statistical conver-
gence in software specific to solving mathematical problems, which apply pro-
cedures, codes, etc. Such software can be Maple, MATLAB, Python, C++, etc. 
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