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Abstract 
In this review article, we begin with reviewing Calculus of variations giving 
few examples on its use to solve a large number of problems in geometry, 
physics, and other branches of knowledge. Afterwards, we direct our atten-
tion to different methods of variations which evolved during the last century 
and which include their use in eigenvalue problems and in finite difference 
methods and those adopted in classical and quantum mechanics. The me-
thods used in evaluating products and quotients of functionals are also dis-
cussed along with variational iteration methods. Later on, a good number of 
applications in different areas are presented and discussed; then a concluding 
discussion is given. 
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1. Introduction 

There is no doubt that the importance of calculus of variations and the varia-
tional methods (in general) lies in their great use in solving so many problems in 
various areas and fields of learning. That usage is, immensely, manifested in the 
fields of geometry and physics; accordingly, this review article came into light. 

In the next section, we present a quick review of calculus of variations giving 
some of its applications [1] [2]. In Section 3, we introduce the variational theory 
of eigenvalues [3] [4]. The Rayleigh-Ritz method is then introduced in Section 4 
[3] [4]. In Section 5, we present a very important problem, namely, the variational 
problem of an elastic plate [3] [4] [5]. 

In Section 6, a very important physical problem is tackled which is the variational 
method in quantum mechanics [3] [6] [7]. Other selected different applications 
are given in Section 8 [8]. Finally, we conclude with a discussion in Section 9.  
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2. A Quick Review of Calculus of Variations 

Calculus of variations (CV) deals with taking extreme values of some integrals, 
for instance when the curve connecting the two pints ( )1 1 1,p x y  and ( )2 2 2,p x y  
is rotated about the x-axis so that the resulting surface, due to this roation, is 
minimum; then this problem concerns CV. In this geometric example and if we 
denote the surface as S, then S will be a function of the curve y, i.e. S = S(y) and 
the problem is summarized in choosing y such that S(y) is minimum. In other 
words the goal behind calculus of variations is to find the extreme values (also 
called stationary values) of an integral I of a certain function f. Here, the neces-
sary conditions to attain such a result are discussed [1] [2]. 

2.1. One Independent and One Dependent Variables 

If the considered integrand is ( ), ,f x y y′ , where d
d
yy
x

′ = ; then what we are in-

terested in is to find y such that ( )I y  is stationary, where  

( ) ( )2

1
, , d

x

x
I y f x y y x′= ∫                        (1) 

f is a given function which is differentiable with respect to x, y, and y'; y is the 
curve joining the two points ( )1 1,x y  and ( )2 2,x y . Now letting  

( ) ( ) ( )y x y x xαη→ + , α  is a very small parameter          (2) 

while ( )xη  is an arbitrary function satisfying the condition ( ) ( )1 2 0x xη η= = . 
We see that Equation (2) represents an infinite number of curves in terms of the 
parameter η; we, now, compute Iδ  to get 

( ) ( ){ }2

1
, , , , d

x

x
I f x y y f x y y xδ αη αη′ ′ ′= + + −∫             (3) 

Note that the differentiation is with respect to x. From Equation (3), we see that 
Iδ  can be written as 

( )2
1I I Oδ α α= +                         (4) 

where 1I  is given by 

2

1
1 d

x

x

f fI x
y y

η η
 ∂ ∂′= + ′∂ ∂ 

∫                      (5) 

In order that I is an extreme value 1 0I = , i.e. 

2

1
d 0

x

x

f f x
y y

η η
 ∂ ∂′+ = ′∂ ∂ 

∫                      (6) 

with few mathematical manipulations, which include integration by parts and 
using the conditions at the end points, one gets 

2

1

d d 0
d

x

x

f f x
y x y

η
  ∂ ∂ − =  ′∂ ∂   

∫                     (7) 

And since η is an arbitrary function, Equation (7) leads to 
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d 0
d

f f
y x y

 ∂ ∂
− = ′∂ ∂ 

                       (8) 

This is the required and necessary condition for I to be an extreme value. Equa-
tion (8) is called Euler equation [1] [2]. 

There are few special cases: 

1) f does not depend on y explicitly; this will lead to constantf
y
∂

=
′∂

. 

2) f does not depend on y′  →  0f
y
∂

=
∂

. 

3) f does not depend on x explicitly; this implies that constantff y
y
∂′− =
∂

. 

Example 1 
To evaluate the least value of the surface of revolution (S) of the curve 1 2p p   

around the x-axis; we see that ( )2 2

1 1

22 d 2 1 d
x x

x x
S y s y y x′= π = π +∫ ∫ ; f is then giv-

en by ( )21f y y′= + , and using Euler equation we get the solution as  

cosh xy b d
b

 = + 
 

. This is the well-known catenary curve. The constants b and 

d can be obtained using the two end points. 
Example 2 

Since ( ) ( )2 2d d ds x y= +  and looking for the shortest distance between two 

points, we see that ( )2 2 2

1 1
d d 1I s x y′= = +∫ ∫ , and ( )21f y′= + ; using Euler 

equation, we get y ax b= + , a and b are constants; and hence our solution is a 
straight line as expected. 

It is worthwhile to mention that the previous examples are just few examples 
showing the applications of the calculus of variations in geometry. Moreover, 
calculus of variations is also very beneficial in physics, especially in mechanics 
when we deal with several independent and dependent variables, as in the case of 
studying the motion of a system of particles where we get the famous Lagrange 
equations. 

2.2. Hamilton Principle 

As we mentioned before, one of the important applications of calculus of varia-
tions is to deal with a number of Euler equations describing a number of depen-
dent variables and an independent one. In this case f L= , and L is the Lagran-
gian given by L T V= − , where T is the kinetic energy of the system and V is 
the potential energy. The independent variable in this case is the time (t), and 
the dependent variables are the coordinates of particles ( ( ) , 1,iq t i n= ). 

Now, mathematically, we state Hamilton principle, used in classical mechan-
ics, as 

( )1 2 1, , , ; , , , d 0n nL q q q q q t tδ ′ ′ =∫                       (9) 

And hence, applying the same technique, adopted in the subsection 2.1, we get 
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Euler or Lagrange equations as 

d , 1,2, ,
d i i

L L i n
t q q
 ∂ ∂

− = ′∂ ∂ 
                     (10) 

Note that we deal here with a conservative system (forces are derived from cer-
tain potentials) [1]. 

Example 3 

If the Lagrangian is given by ( ) ( )2 2 2
0 1 1L m c v c V r= − − −

 , then f L=  

and i
i i

f V F
x x
∂ ∂

= − =
∂ ∂

; 0
2 21

i

i

m xf
x v c

′∂
=

′∂ −
. Applying Euler equations, we get  

0
2 2

d , 1,2,3
d 1

i
i

i

m x V F i
t xv c

 ′ ∂  = − = =  ∂−  
. These equations are Lagrange equations 

for a relativistic particle moving in a potential V. 

2.3. A Number of Independent Variables with One Dependent  
Variable 

Assume, as a special case, that ( ), ,u u x y z= , and 

( ), , , , , , d d dx y zI f u u u u x y z x y z= ∫∫∫                  (11) 

And where , ,x y z
u u uu u u
x y z
∂ ∂ ∂

= = =
∂ ∂ ∂

; then, the problem of calculus of variations  

relies in fact on finding u which makes the integral I an extreme value i.e. we 
find the equation governing u, which means that 

0

0II
α

δ
α =

∂
= =
∂

                        (12) 

In the same manner we put 

( ) ( ) ( ), , , , , ,0 , ,u x y z u x y z x y zα αη= +                (13) 

with some mathematical manipulations we reach the result 

0
x y z

f f f f
u x u y u z u

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂    

              (14) 

Example 4 (Laplace equation) 
In electrostatics, it is required that the integral ( )2 , , d d dI x y z x y zϕ= ∇∫∫∫  has 

to be a minimum; this means that the energy of the system should be minimum. 
Accordingly we see that ( )2 2 2 2, , x y zf x y zϕ ϕ ϕ ϕ=∇ = + + , and hence, applying 
Equation (14), we obtain 0xx yy zzϕ ϕ ϕ+ + = ; which is Laplace equation [1] [2]. 

2.4. Several Independent and Dependent Variables 

If 

( ), , , , , , , , , , , , , ,x y z x y z x y zf f p p p p q q q q s s s s x y z=           (15) 

where, p, q, and s are functions of the independent variables x, y and z. Follow-
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ing the same steps in the subsection 2.1, we put 

( ) ( )
( ) ( )
( ) ( )

, ,0

, ,0

, ,0

p r p r

q r q r

s r s r

α αχ

α α

α αϕ

= +

= + Ψ

= +

 

 

 

                      (16) 

where χ, Ψ, and φ are arbitrary functions. 
As in the procedure followed before we get 

0

0

0

x y z

x y z

x y z

f f f f
p x p y p z p

f f f f
q x q y q z q

f f f f
s x s y s z s

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂    

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂    

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂    

              (17) 

Equations (17) are Euler equations. In general, if the independent variables are 
( )1,ix i n=  and the dependent ones are ( )1,jy j m= , then Euler equations are 

0, where i
ijj

i j ij j

yf f y
y x y x

  ∂∂ ∂ ∂
− = =  ∂ ∂ ∂ ∂ 
∑                (18) 

2.5. Lagrange Multipliers 

Lagrange multipliers are involved when constraints are present in a physical 
problem; the constraint is usually a function relating the independent variables, 
for example the motion of the body is constrained to be on a plane (e.g. in the 
x-y plane where z = 0 in this case). In this situation Lagrange multipliers play a 
very vital role in solving the given problem in a simple way as will be shown in 
this section. 

Let us consider the equation 
d d d d 0x y zf f x f y f z= + + =                     (19) 

which is an equation leading to the extreme values of f; this requires that  
0x y zf f f= = = ; we note that in most problems there exists one or more con-

straints of the type 

( ), , 0x y zϕ =                           (20) 

From which we see that 
d d d d 0x y zx y zϕ ϕ ϕ ϕ= + + =                     (21) 

From Equation (19) and Equation (21), we get 

( ) ( ) ( )d d d d d 0x x y y z zf f x f y f zλ ϕ λϕ λϕ λϕ+ = + + + + + =     (22) 

Now we can choose x and y as independent variables so that 
0x xf λϕ+ =                         (23) 

and 
0y yf λϕ+ = ,                       (24) 
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while we choose λ so that 

0z zf λϕ+ =                           (25) 

Accordingly, d 0f =  implies that f has an extreme value. Note also that we have 
four variables { }, , ,x y z λ  governed by four Equations (20, 23, 24, 25). In gener-
al, if we have k constraints, we will get Euler equations as [1] 

0; 1,2, ,k
kk

i i

f i n
x x

ϕ
λ

∂∂
− = =

∂ ∂∑                   (26) 

Example 5 (Particle in a box) 
Here, we present the benefit of using Lagrange multipliers in a quantum me-

chanical problem: A box, in the form of a rectangular parallelopiped shape 
whose sides are a, b, and c, contains a particle with mass m and energy  

( )
2

2 2 2
1 1 1, ,

8
hE a b c
m a b c
 = + + 
 

; we search for the shape of the box so as E is  

minimum with the constraint that the volume of the box is fixed (constant), i.e. 
( ), ,V a b c abc K= = ; K is a constant.  
It is clear that f E=  and abc Kϕ = − ; hence, adopting the Lagrange multip-

liers procedure, we get the equations 
2

3 0
4

E V h bc
a a ma

λ λ∂ ∂ −
+ = + =

∂ ∂
,  

2

3 0
4

E V h ac
b b mb

λ λ∂ ∂ −
+ = + =

∂ ∂
, and 

2

3 0
4

E V h ab
c c mc

λ λ∂ ∂ −
+ = + =

∂ ∂
, from these  

equations, we get a b c= = , which means that the box, for the particle with 
minimum energy, is a cube [1]. 

Example 6 (The simple pendulum) 
This is a well-known problem from classical mechanics and the Lagrangian,  

and hence f, here is given by ( )2 2 21 cos
2

L f T V r r mgrθ θ= = − = + +

 . While  

the constraint is 0r l= = . Note that we are using polar coordinates, and m, g, 
and l are the mass, the gravitational acceleration and the length of the string of 
the pendulum respectively. 

Using the above Langrangian and Euler equations we get the two equations 

( ) 2d cos 0
d

mr mr mg
t

θ θ λ− − − =

  and ( )2d sin 0
d

mr mgr
t

θ θ+ = ; λ  gives the  

tension in the string (this is one of the beautiful outcomes of using calculus of 
variations). The second equation leads to the usual equation governing the mo-
tion of the simple pendulum. We note that if θ  is small, then we get from the  

second equation: the equation sin 0gm
l

θ θ+ = , which represents the equation 

of simple harmonic motion [1] [2]. 
Example 7 (Schrodinger wave equation) 
This is a very interesting problem applied in quantum mechanics where we 

require that ( ) ( )* , , , , d d d 0x y z H x y z x y zδ Ψ Ψ =∫∫∫ ; with the constraint  

* d d d 1x y zΨ Ψ =∫∫∫ . H is the Hamiltonian given by ( )
2

2 , ,
8
hH V x y z

m
= − ∇ +

π
  

which represents the total energy of the particle; while the constraint refers to 
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the probability of finding the particle somewhere in space. Choosing a large surface  

and integrating we get 
2

* * d d d 0
8
h V x y z

m
δ

 
∇Ψ ∇Ψ + Ψ Ψ = π 

⋅∫∫∫ , therefore, we 

obtain the function to deal with, in writing Euler equation, as  
2

* * *

8
hg V

m
λ = ∇Ψ ∇Ψ + Ψ Ψ − ⋅ Ψ Ψ

π
. Using *Ψ  as the independent variable 

we get Schrodinger equation ( )
2

2 , ,
8
h V x y z

m
λ− ∇ Ψ + Ψ = Ψ

π
 [1] [2]. λ  

represents the energy eigenvalue. 

3. Variational Theory of Eigenvalues 

In this section, we study the relation of the variational methods with Sturm- 
Louiville problem; if we consider the following functional 

( ) ( ) ( )2 2 d
b

a
I y P x y Q x y x ′= + ∫                  (27) 

with the boundary conditions 

( ) ( )0y a y b= =                         (28) 

and if ( )P x  and ( )Q x  are two continuous functions in the interval a x b≤ ≤  
with ( ) 0P x >  in the same interval, then the given functional satisfies Euler 
equation which is 

( ) ( ) 0P x y Q x y′′  − =                       (29) 

Moreover, if we have the constraint on ( )y x  as 

( ) 2d 1
b

a
w x y x =∫                         (30) 

where ( )w x  is a continuous in [a, b] and ( ) 0w x > ; then the functional ( )I y  
is bounded below and 

( ) ( ) [ ]
( )
( ) ( ) [ ]

( )
( )

2 2
, ,d min d min

b b

a b a ba a

Q x Q x
I y Q x y x w x y x

w x w x
≥ ≥ =∫ ∫     (31) 

We put 1y y= , which satisfies Equation (28) and Equation (30) and which 
makes ( )I y  to attain minimum values [3]. 

Using Lagrange multiplies technique, we can easily see that the function 1y  
satisfies the equation 

( ) ( ) ( ) ( )1 1 1 0P x y Q x w x y xλ′′   − − =                  (32) 

Hence we rewrite Equation (32) in the shape 

[ ] ( )1 1 1L y w x yλ=                        (33) 

and the linear operator L is given by 

( ) ( ) ( ) ( )L y P x y x Q x y′′ = − +                   (34) 

The last equation shows that ( )1y x  is an eigenfunction corresponding to the 
eigenvalue 1λ .  
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Now, if ( )U x  and ( )V x  are two functions satisfying the boundary condi-
tions given by Equation (28), and using Equation (34) with integration by parts, 
we get 

d d
b b

a a
ULV x VLU x=∫ ∫                        (35) 

Note that the two functions ( )U x  and ( )V x  can be considered as elements 
from the Hilbert space [ ]2 ,L a b . Hence L is a self-adjoint operator. 

Once we compose the function 1y , we proceed to determine the function 2y  
which makes the functional ( )I y  a minimum value satisfying the boundary 
conditions (Equation (28)) and with the constraint given by Equation (30) and 
the constraint 

( ) 1d 1
b

a
w x yy x =∫                         (36) 

Again, we use Lagrange multipliers to get 

( )2 1 1 2 2L y wy wyµ λ= +                      (37) 

with some mathematical manipulations and with reference to the involved equa-
tions, we reach the result that 1 0µ = . Hence, 2y  is an eigenfunction of L with 
eigenvalue 2λ . 

We can proceed, in the same manner, to obtain other elements of the Hilbert 
space, , 3,4,iy i =  , which will form an infinite sequence of orthonormal set of 
functions [4]. 

Moreover we can easily prove, through integration by parts, that 

( )( ) ( ) ( ) ( )d
b b

aa
I y x L y x y x x P x yy′   = +   ∫            (38)  

From Equation (28) and the equation ( )n n nL y y wλ= , we get 

[ ] 2d ; 1,2,3,
b

n n n na
I y w y x nλ λ= = =∫                (39) 

and hence, we obtain 

[ ] [ ] [ ]1 2 3I y I y I y≤ ≤ ≤                    (40) 

Note that if one adds an additional constraint, then the set of functions under 
investigation will be reduced. For instance, if one takes into account the func-
tional 

( ) 2
0

d
l

I y x y x′  =  ∫                       (41) 

with the condition 

( ) ( )0 0y y l= =                        (42) 

Moreover if the weight function is of the form ( ) 1w x = ; then, we get 

0y yλ′′ + =                          (43) 

In this case, it is clear that the solutions are given by 
22 sin ; , 1,2,3,k k

k x ky k
l l l

λπ π = = = 
 


             (44) 

https://doi.org/10.4236/jamp.2023.115082


A. A. Awin et al. 
 

 

DOI: 10.4236/jamp.2023.115082 1271 Journal of Applied Mathematics and Physics 
 

where the factor 2
l

 is a normalization one [4]. 

We have to note that if ( )P x  and ( )Q x  or the two ends a and b were 
changed, then the eigenvalues also get changed. There are various cases which 
we summarize as follows: 

If ( )P x  and ( )Q x  are replaced by ( )P x  and ( )Q x  respectively, satis-
fying the inequalities 

( ) ( ) ( ) ( ); withP x P x Q x Q x a x b≥ ≥ ≤ ≤              (45) 

Then every new eigenvalue nλ  is a neighbor of the corresponding one nλ ; e.g. 
( ) ( )1 1 1 1I y I yλ λ= ≥ = .  

To assert our conclusion, cited above, we introduce Courant’s theorem which 
states that given an 1n −  of piecewise continuous functions { }1 2 1, , , np p p −  
in G, and if ( )1 2 1, , , nd p p p −  is the greatest lower bound of the resulting ei-
genvalues for the functional ( )I ϕ , where ϕ  is any continuous function with 
piecewise continuous derivatives with ( ) 0H ϕ =  and orthogonality conditions 
given as 

( ) ( ), 0, 1,2, , 1iH i nϕ ρ = = −                   (46) 

Then, nλ  is the greatest eingenvalue which implies that the lower bound d is 
attained when the set of functions { }1 2 1, , , np p p −  ranges over all acceptable 
functions and the minimax is satisfied when 

 1 1 2 2 1 1, , , ,n n nu u p u p u p u− −= = = =                (47) 

Accordingly, nλ  is the greatest element among the eigenvalues, and this prop-
erty is called the minimax property for the eigenvalues [4]. 

Moreover, if ( ) ( )Q x Q x c→ + , then all the obtained values of the functional 
increase with the same amount c.  

Now, if the eigenvalues are ordered in the manner 

1 2 3 1n nλ λ λ λ λ +≤ ≤ ≤ ≤ ≤ ≤                   (48) 

And putting ( ) ( )1 4z t wP u=  and 
1 2

d
x

a

wt x
P

 =  
 ∫ , and using the analysis  

performed before in the last subsection, we see that Sturm-Louiville problem will 
take the form 

( )
2

2
d 0
d

z f t z z
t

λ− + =                       (49) 

where ( )f t  is a continuous function. Equation (49) can be written as 
2

2
d 0
d

z z
t

λ′+ =                          (50) 

On the interval [ ]0,τ ; and τ  conforms with the eigenvalue t. The boundary 
conditions are, then, ( ) ( )0 0z z τ= = ; moreover, we see that 

2
2

0

dmin d
d
z fz t
t

τ
λ

    = +        
∫                   (51)  
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and 
2

0

dmin d
d
z t
t

τ
λ

   ′ =      
∫                       (52) 

From which we get 

( )2

0
df z t

τ
λ λ′ ′≤ + ∫                        (53) 

Leading to the fact that λ  differs from λ′  by a finite quantity [3]. 
Note that, from Equation (50) along with boundary conditions, the eigenvalues  

are 
2 2

2
2n

n cnλ
τ
π′ = = , which implies that 2

n cnλ ≈  as n →∞ . This reflects the  

asymptotic behavior of the eigenvalues [3] [4]. This is of course true when we 
deal with a finite interval; but when the range of t is not finite, the last result is 
not true. For instance, for Hermite equation with an infinite domain, the eigen-
values are proportional to n instead of n2 [4].  

4. Finite Difference Method (Euler’s Equation) 

In this case, the basic idea is that the values of the functional 

( ) ( ) ( ) ( )1 2, , d ; ,
b

a
I y f x y y x y x A y x B′= = =∫              (54) 

are taken on multi-curves formed by a finite number of straight line segments 
defined by the coordinates ( ) ( ) ( )1 1 1 2, , , 1 ,x a x x x n x x b= + ∆ + − ∆ = ;  

2 1x xx
n
−

∆ = . Then the functional is reduced to the form ( )1 2, , , ny y yϕ  ; the 

extreme values of I are determined from the equations 

, 1,2,,
i

i n
y
ϕ∂

=
∂

                         (55) 

From which, one gets 

1
1 1, , , ,

, , 0

i i
y i i y i i

i
y i i

y yx y x y
y x xx y
x x

ϕ ϕ
ϕ

−
′ ′ − −

∆ ∆   −   ∆ ∆ ∆     − = ∆ ∆ 
        (56) 

These equations give the approximate solution to the variational problem, while 
if we take the limits 0x∆ →  and n →∞ , we obtain the usual Euler equation [3] 
[4] 

( )d 0
dy yx

ϕ ϕ ′− =                         (57) 

5. Rayleigh-Ritz Method 

Here, the values of the functional are taken as a linear combination of the ac-
ceptable arbitrary functions, i.e. on ny , where 

( )1n i ii
ny w xα
=

=∑                        (58) 

iα  are constants and { }1 2 3, , , , nw w w w  is a suitable set of functions. These 
equations with the determination of the constraints will lead to a functional of 
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the form ( )1 2, , , nα α α∅   with the coefficients iα ’s; so that ∅  attains an 
extreme value. Moreover, if the limit exists when n →∞ , then we have a varia-
tional problem; otherwise, we get an approximate solution to the problem. 

If the boundary conditions are of the homogeneous and linear type  
( ) ( )1 20y x y x = =  , then the method of handling the variational problem will 

be easier in choosing the functions iw ; for example, we can choose the func-
tions as 

( )( ) ( )1 2i iw x x x x xϕ= − −                      (59) 

while if the boundary conditions are not homogeneous and of the form  
( ) ( )1 1 2 2,y x y y x y= = ; then we search for a solution of the type  

( ) ( )01n i ii
ny w x w xα
=

= +∑  with ( )0 1 1w x y=  and ( )0 2 2w x y= . This will pro-
duce the previous boundary conditions ( ) ( )1 20y x y x= = . 

It is easy to prove that the system of functions given as 

( ) ( )( )1
1 2 , 1,2,3,i

iw x x x x x x i−= − − =                (60) 

and 

( )1

2 1

sin , 1,2,3,k

k x x
w k

x x
π −

= =
−


                (61) 

Is linearly independent and form a complete set in [ ]1
1 2,C x x  [3]. 

According to the previous piece of information, let us discuss getting the ex-
treme value of the functional using the Rayleigh-Ritz method: 

( ) ( ) ( ) ( )1 2 2
0

d ; 0 0, 1 1I y y y x y y+′= = =∫             (62) 

The exact solution of the Euler equation in this case is exact
sinh
sinh1

xy =  [4]. Now 

putting ( )0w x x=  and taking into account Equation (60), we get 

For 1n =  

( )1,approximate 1y x cx x= + − , c is a constant.             (63)  

Substituting Equation (63) in Equation (62), and putting d 0
d

I
c
= , we obtain the 

value of the constant as 5
22

c = − .  

In the same manner, for 2n =  we get ( ) ( )2
2,app. 1 21 1y x c x x c x x= + − + − , and  

following a similar procedure (by putting 
1 2

0I I
c c
∂ ∂

= =
∂ ∂

),we find that the ap-

proximate solution is 
2 3

2,app. 0.8541 0.0169 0.1628y x x x= − + .           (64) 

Table 1 shows a comparison between the exact and approximate solutions [3] 
[4] [5]. 

6. Variational Problem of an Elastic Plate 

If we consider the matter of evaluating the amplitude, of the very small deviations  
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Table 1. A comparison between the exact and approximate solutions for 1n =  and 
2n = , using Ratleigh-Ritz Method. 

x ( )y x  ( )1y x  ( )2y x  error1 error2 

0 0 0 0 0 0 

0.1 0.085234 0.079545 0.085404 0.005689 0.000170 

0.2 0.171320 0.163636 0.171446 0.1549564 0.000126 

0.3 0.259122 0.252273 0.259105 0.006849 0.000017 

0.4 0.349517 0.345455 0.349355 0.004062 0.000162 

0.5 0.443409 0.443182 0.443175 0.000227 0.000234 

0.6 0.541740 0.545455 0.541541 0.003715 0.000199 

0.7 0.645493 0.652273 0.645429 0.006780 0.000064 

0.8 0.755705 0.763636 0.755818 0.007931 0.000113 

0.9 0.873482 0.879545 0.873682 0.006063 0.000200 

1 1 1 1 0 0 

 
for an elastic plate with small thickness, g with ( ),P x y  as the acting force; 
then the related differential equation is 

4 2 0D g g Pρω∇ − − =                         (65) 

where D is the rigidity constant, ω  is the angular velocity, and ( )xρ  is the 
linear mass density of the plate. Our plate is a rectangular one with dimensions 
0 x a≤ ≤  and 0 y b≤ ≤ . Multiplying Equation (65) by gδ  and integrating on 
the plate surface, we get  

( ) ( )

( ) ( )

( )

4 2 2

2

1 1
2

2 2

12 1
2

xx xxx xx x xy xx yyx

xyy yy x xxy xx yx y

xy yy yyy yy yxy y

g g g g g g g g g g

g g g g g g g g

g g g g g g g

δ δ δ δ δ α α

α δ α δ α δ α δ

α δ δ δ δ

   ∇ = + − + − +    
   + − − + − −   

  − − + + −   
 

 (66) 

α  is an arbitrary parameter which takes the values between 0 and 1.5; it is 
called Poisson’s ratio and depends on the matter of the plate [3]. Note that simi-
lar quantities are evaluated applying the given boundary conditions. Moreover, if 
the boundary conditions are such that the plate does not move or rotate (i.e. the  

plate is fixed), then 0g =  on the whole boundary which implies that 0g
x
∂

=
∂

 

on the whole boundary ( c∂ = ) and 0g
y
∂

=
∂

 on 0y =  and y b= . 

Having in mind that the variations go to zero according to the proposed con-
ditions and performing integration by parts, the variational problem becomes 

( )2 2 2 2 2
0 0

1 12 2 1 d d 0
2 2

a b
xx yy xx yy xyD g g g g g Pg g x xδ α α ρω  + + + − − − =   ∫ ∫  (67) 

D is the stress energy per unit area, while Pg−  is the additional stress energy  
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due to loading, and the term 2 21
2

gρω  represents the kinetic energy per unit  

area. All these quantities are estimated at maximum deflection; hence we obtain 
the natural boundary conditions for the problem via putting the boundary integrals 
of the integrand equal to zeros. For instance, on the boundaries 0,x x a= = , we 
have one of two alternatives: 

( )
2

1 0xyy
gD Dg

x
α∂∇

+ − =
∂

; values on g              (68) 

or 

( ) 0xx yyD g gα+ = ; values on gx                 (69) 

Similarly, for the boundary conditions 0,y y b= = , we have the two choices 

( )
2

1 0yxx
gD Dg

y
α∂∇

+ − =
∂

; values on g             (70) 

or  

( ) 0yy xxD g gα+ = ; values on gy                 (71) 

From the theory of elasticity, the amount 
2 gD
x

∂∇
∂

 represents the shear stress  

on the boundary x c= , c is a constant; and the amount ( )1 xyDgα− −  is the 
torsion, while the quantity ( )xx yyD g gα− +  is the torque ( xxM ) [5]. Moreover, 
we see from Equation (67) that the effective force on the transverse edge along  

x c=  is gδ  and is equal to 
2

xy
x

MgR D
x y

∂∂∇
= −

∂ ∂
. This physical result led to 

the distinct advantage in the theory of small deflections for an elastic plate [5].  

7. Variational Methods in Quantum Mechanics 

It is a very difficult job to solve Schrodinger Equation (SE) for a multi-electrons 
atomic system, but using variational methods we can obtain approximate solu-
tions for such a system. If we take into consideration the ground state of an arbi-
trary system, then the eigenfunction 0Ψ  corresponding to the energy 0E  ob-
eys SE and 

0 0 0EΨ = Ψ                           (72) 

  is the Hamiltonian. From Equation (72), we can deduce that 
*
0

0 *
0

d

d
E

τ

τ

Ψ Ψ
=

Ψ Ψ
∫
∫


                        (73) 

Now, replacing 0Ψ  by ∅ , we get 
*

*

d

d
E

τ

τ∅

∅ ∅
=

∅ ∅
∫
∫


                       (74) 

Hence, from variational point of view, it is easy to prove that 0E E∅ ≥  [3]. This 
can be seen as follows: 
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Since  

n n nEΨ = Ψ                          (75) 

and ∅  is an approximate solution; hence it can be written as a linear combina-
tion in { }nΨ  as 

n nn c∅ = Ψ∑                          (76) 

where  
* dn nc τ= Ψ ∅∫                          (77) 

It is simple to show, also, that for any eigenfunction kΨ , kc  is given by 
* dk kc τ= Ψ ∅∫                          (78) 

Note that we assume that the set { }nΨ  is a set of normalized eigenfunctions. 
Substituting Equation (76) in the variational Equation (74), we get 

( )*
0

0 *
n n nn

n nn

c c E E
E E

c c∅

−
− = ∑

∑
                   (79) 

From the last equation, it is clear that 

0 00E E E E∅ ∅− ≥ → ≥                      (80) 

This is because * 0n nn c c >∑  and 0nE E≥ . 
It is to be noted here that the reason behind presenting the above paragraph is 

to shed light on the process of finding an arbitrary wave function ∅  which 
gives the lowest possible value for the energy E∅  [3]. 

We choose ∅  which depends on certain parameters { }, , ,α β γ  ; these pa-
rameters are called the variational parameters and the energy is a function of 
them i.e. 

( ) 0, , ,E Eα β γ∅ ≥                        (81) 

To proceed towards the evaluation of the lowest value of the energy E∅ , which 
corresponds to that eigenstate nearest to 0Ψ , we give the following example: 
The Helium Atom 

The Hamiltonian for the He atom is given by 

( )
2 2 2

2 2
1 1 12 1 2

0 1 2 0 12

2 1 1 1 ,
2 4 4e

e e r r r
m r r rε ε

 
= − ∇ +∇ − + + = − π π 

      (82) 

Equation (82) can be written as 

1 2

2

0 12

1
4H H

e
rε

= + +
π

                       (83) 

where 
2 2

2

0

2 1 ; 1,2.
2 4jH j

e j

e j
m rε

= − ∇ − =
π

                 (84) 

jH  represents the Hamiltonian for the two single electrons of the He atom 
and they satisfy the eigenvalue problem 
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( ) ( ), , , , ; 1,2
jH H j j j j H j j jr E r jθ ϕ θ ϕΨ = Ψ =             (85) 

HΨ  is the wave function similar to that of the Hydrogen atom [6], and the cor-
responding eigenenergy, jE , is given by 

2 4

2 2 2 2
0

; 1,2
32

e
j

j

Z m eE j
nε

= − =
π 

                  (86)  

If the repulsion between the two electrons is ignored, then the Hamiltonian is 
separable and the ground state wave function takes the form 

( ) ( )0 1, 1 2, 2s sr r∅ = Ψ Ψ                      (87) 

where 

( )
1 2

1
,

0 0

1 exp ; 1,2
l

j s j
ZrZr j

a a
   

Ψ = − =   
π    

              (88) 

0a  is Bohr radius. 
Now, we use 0∅  as the arbitrary function and using Z as a variayional para-

meter, i.e. we write 

( ) ( ) ( )*
0 1 2 0 1 2 1 2, , d dE Z r r r r r r= ∅ ∅∫                   (89) 

Using the last equation one gets 

( )
4

2
2 2 2

0

27
816

em eE Z Z Z
ε

 = − π  

                    (90) 

Differentiating with respect to Z one gets the minimum value of the energy as  
4

min 2 2 2
0

2.8477 2.8477 hartree
16

em eE
ε

 
= − = − π 

. minE  is the ground state energy 

of the He atom. 
The above calculations, related to the ground state energy for He atom, can 

also be obtained via perturbation techniques and the results are comparable [7]. 
Variational Method and the Characteristic Determinants  
If there exists symmetry in the problem, the eigenfunction can be formulated 

accordingly. For instance, in the problem of a particle in a box, the ground state 
wave function is symmetrical about the center of the box [6]. 

As seen before the eigenfunction ∅  can be written as a linear combination 
of the functions { }nf , i.e. 

1 n nn
n N c f=

=
∅ =∑                           (91) 

The nc ’s are the variational parameters and E∅  is evaluated as 
**

,
**

,

d

d
n m m nmn m

n m nmn m

c c E H
E

c c S
τ

τ∅

∅ ∅
= =

∅ ∅
∑∫
∑∫


                 (92) 

where 
* *d and dnm n n nm n nH f f S f fτ τ= =∫ ∫                 (93) 

and since the Hamiltonian is Hermitian, nm mnH H=  and nm mnS S= . These 
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quantities are called matrix elements. The energy is now expressed in terms of 
the coefficients 1 2, , , Nc c c  and 

( )1 2, , , NE E c c c∅ ∅=                        (94) 

Differentiating with respect to the N coefficients, we get N equations in N in 
knowns. 

Example 8 (Particle in a box) 
If the boundaries of the box are at 0x =  and 1x = , and if we take the linear 

combination of the two functions ( )1 1f x x= −  and ( )22
2 1f x x= − ; and since  

the Hamiltonian, in this case, is 
2 2

2
d

2 dm x
= −

 , we see that  

( )
2 2

12
1 2

1 2 0
d 1 2 12 12 d

2 30
H f f x x x x x

m m
τ  = = − − − + = ∫ ∫

  ; similarly we get the 

following results for the rest of the matrix elements  
2 2

11 22 11 12 22
1 1 1, , , ,

6 105 30 140 630
H H S S S

m m
= = = = =
 

. 

Hence, the energy is given by ( )
2 2
1 11 1 2 12 2 22

1 2 2 2
1 11 1 2 12 2 22

2,
2

c H c c H c HE c c
c S c c S c S

+ +
=

+ +
; differen-

tiating with respect to the two parameters, we get the two equations  
( ) ( )1 11 11 2 12 12 0c H ES c H ES− + − =  and ( ) ( )1 12 12 2 22 22 0c H ES c H ES− + − = . 

Accordingly, we have a solution to these equations only if  

11 11 12 12

12 12 22 22

0
H ES H ES
H ES H ES

− −
=

− −
; from which we obtain the characteristic equation 

whose solution leads to 
2

min 0.125002E
m

=


 and this is exactly equal to the 

ground state energy ( 0E ) for the particle (m) in a box [3] [8]. 

8. More Applications 

In this section we give few more applications on the use of variational methods 
in different areas. 

8.1. Product and Quotient of Functionals 

Calculus of variations, as mentioned before, deals with functionals of the form 

( ) ( )( )1

0
, , d

x

x
I f x y x y x x′= ∫                     (95) 

where ( ) ( )( ), ,x y x y x′  belongs to a suitable space. Note that there are func-
tionals with their minimum values not necessarily equal to the extreme values of 
the functionals. However, we shall deal, here, with a functional which is given by 

( ) ( )( )1

0
, , d

x

x
F F f x y x y x x ′=   ∫                  (96) 

with ( )1 2, , , nf f f f f=   and F is a function of n independent variables. 
In particular, if we consider ( 2n = ), then, we get a product and a quotient of 

the forms 
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( ) ( )( )( ) ( ) ( )( )( )1 1

0 0
1 2, , d , , d

x x

x x
P f x y x y x x f x y x y x x′ ′= ∫ ∫       (97) 

and 

( ) ( )( )
( ) ( )( )

1

0

1

0

1

2

, , d

, , d

x

x
x

x

f x y x y x x
Q

f x y x y x x

′
=

′

∫
∫

                   (98) 

Respectively. P can also be written in the form of double integral as 

( ) ( )( ) ( ) ( )( )1 1

0 0
1 2, , , , d d

x x

x x
P f t y t y t f s y s y s t s′ ′= ∫ ∫            (99) 

These products and quotients will be of value in tackling some problems  

8.2. Euler-Lagrange Equations 

To get Euler-Lagrange equations related to the functional in Equation (95), one 
has to derive the ideal and necessary conditions involved in the theory of calcu-
lus of variations using Taylor series for the functional dependent on the first 
variational parameter. This is clarified by the following theorem. 

Theorem 1 
If the function in Equation (96) with the functional iG  is given by 

( ) ( )( )1

0
, , d

x
i ix

G f x y x y x x′= ∫                     (100) 

and if it is expansion using Taylor series up to second order terms with respect 
to the variable i, then the Euler-Lagrange, related to F, is given by 

( )1

d 0
dii

n
iy iyF f f

x ′=

 ′ − = 
 

∑                      (101) 

where iF ′  is the partial derivative of F with respect to the ith variable. Moreover 
the second variation is given by [8] 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

1 1

0 0

2 2
1

,

1 2 d
2

1 d , ,
2 d

d , , d d
d

i iyy iyy iy yi

x xn
ij iy iyi j x x

iy i

n

y

nF F f y f y y f y y x

F f f r y r y r
x

f f s y s y s y r y s r s
x

δ δ δ δ δ δ

δ δ

′ ′ ′=

′

′

 ′ ′ ′ ′= + + 

  ′+ −  
  ′× −  

∫ ∫

∑

∑         (102) 

Proof 
Getting ( )( )0 1, ,iG x x y x  as a Taylor series up to second order implies the 

evaluation of iGδ  as 

( ) ( )( ) ( )( )0 1 0 1, , , ,i i iG G x x y x y x G x x y xδ δ= + −           (102) 

and hence, we get 

( )1

0

1

0

2

d d
d

1 2 d
2

x
i iy iyx

x
iyy iyy iy yx

G f f y x
x

f y f y y f y y x

δ δ

δ δ δ δ

′

′ ′ ′

 = − 
 

 ′ ′ ′+ + + 

∫

∫
         (103) 
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Similarly 

( ) ( )( ) ( ) ( )( )( )
( )( ) ( )( )( )

( )

( ) ( )

1

0

1
2

0

1

0

1 0 1 0 1

1 0 1 0 1

11

2
11

1

, , , , , ,

, , , , , ,

d d
d

1 2 d
2
1 d dd
2 d d

n

n

x
iy iyi x

x
iyy iyy y y iy y yx

x
ij iy iy iy iyx

n

n

n

F F G x x y x y x G x x y x y x

F G x x y x G x x y x

F f f y x
x

F f y f f x

F f f y x f f
x x

δ δ δ

δ δ δ

δ

δ

δ

′=

′ ′ ′ ′ ′

′ ′

= + +

−

 ′≈ −  

 ′+ + + 

   ′′+ − −    

∫

∫

∫

∑

∑

∑





1

0
d

x

x
y xδ 

    
∫

   (104) 

Note that when 0yδ =  in the first term of the last equations, we get Eu-
ler-Lagrange equation. Moreover, one can, also, derive the second order term of 
the expansion for the second variation [3] [8]. 

8.3. The Product Functional 

For the product functional, we see that  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

0 0

1 1

0 0

1 1

0 0

1

2

1 2

, , d

, , d

, , d , , d

x

x

x

x

x x

x x

P f x y x w x y x w x x

f x y x w x y x w x x

f x y x y x x f x y x y x x

α

α

α

α

δ
+

+

+

+

′ ′= + +

′ ′× + +

′ ′−

∫

∫

∫ ∫

       (105) 

with ( )( )0 1, ,w xα α  as the probable restricted variation. 
Again, with the use of Taylor series, keeping the lowest order terms, and let-

ting the variations in ( )y x  to vanish, we get 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

1

0

1

0

1 1 2

2 2 1

d , , d
d

d , , d 0
d

x
y y x

x
y y x

f f f x y x y x x
x

f f f x y x y x x
x

′

′

  ′−  
  ′+ − =  

∫

∫
           (106) 

leading to the related Euler-Lagrange equation [8]. 
Note that we can do the same thing with the quotient functional to obtain the 

related Euler-Lagrange equation [3]. 

8.4. Variational Iteration Method 

In this subsection, we will use variational iteration methods to solve three kinds 
of non-linear partial differential equations; namely, the coupled Schrodinger-kdv 
equation, the generalized kdv equation and the shallow water equation. 

To explain the variational iteration method, we consider the differential equa-
tion 

( )Lu Nu g x+ =                         (107)  

where L is a linear operator, N is a non-linear one and ( )g x  is a function of x. 
According to the method, we can build the functional 

( ) ( ) ( ) ( ) ( )1 0
d

x
n n nu x u x Lu Nu gλ τ τ τ τ+  = + + − ∫            (108) 
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λ  is the Lagrange multiplier. 
We assume that ( )nu τ  is a constrained variation which implies that  
( ) 0nuδ τ = .  

8.4.1. Coupled Schrodinger-kdv Equations 
If we consider the coupled Schrodinger-kdv equations 

( ) ( )2
1 10; 6 0xx x xxx

x
iu u uv v uv v u− + = + + − =            (109) 

with the initial conditions 

( ) ( ) ( )
2

2 2 2 216,0 6 2e sech ; ,0 16 tanh ( )
3

i x ku x k kx v x k kxα α +
= = −     (110) 

where α  and k are arbitrary constants. 
To solve these equations for this special example using the variational method, 

we see that the functionals are given by  
( ) ( ) ( )( )1 10

, , d
t

n n nt nxx n nu x t u x t u i u u vλ τ+ = + + +∫   and  
( ) ( ) ( )2

1 20
, , 6 d

t
n n nt n nx nxxxv x t v x t v u v v uλ τ+ = + + + −∫   ; where 2u  and n nxu vδ   

are constrained variations. Moreover, one can get the required conditions for 
stability as ( )1 0λ τ′ = , ( )11 0tλ+ = , ( )2 0λ τ′ = , ( )21 0tλ+ = . These equations 
are known to be Euler-Lagrange equations; from which one obtains that 

1 2 1λ λ= = − . Taking into account Equation (110) and the values of Lagrange 
multipliers, one gets the following results for 1u  and 1v   

( ) ( ) ( ) ( )

( )

2 2 2 2 2
1

2 2 2

, 6 2e sech 6 2 e sech 4 tanh

20 110 sech
3 3

i x i xu x t k kx k it kx i k kx

k k kx

α α α α= + +
+ − − 

 and  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

4 2 2
1 0

2 3

2 2 2 2

, , sech 256 sech tanh

1152 2 e sech tanh 128 tanh

288 e sech tanh 144 e sech

i x

i x i x

v x t v x t tk kx k kx kx

k kx kx k kx

k kx kx i kx

α

α αα

= − 

− +

+ − 

 

Hence, we can continue to evaluate ju  and jv  on the basis of the obtained 
data using the variational iteration process [3]. The following figure (Figure 1) 
shows the numerical solution of ( ),u x t ; while in Figure 2 we show that of 
( ),v x t  [3]. 

8.4.2. Shallow Water Equations 
The shallow water system is governed by the two equations 

( )0;t x x t x xu vu uv v u vv h x′+ + = + + =                (111) 

u and v represent the total depth of the canal and the water speed respectively; 
while ( )h x  is the depth of the point x with respect to the water surface. The 
system is subject to the initial conditions 

( ) ( ) ( ) ( )
2

2

sech e,0 ; ,0 0 and
4 1 e

x

x

xu x h x v x h x
−

−
= + = =

+
      (112) 

Again, to solve the last equations using the variational iteration method, we write 
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Figure 1. ( ),u x t  in terms of the two parameters x and t. 

 

 
Figure 2. Graph of ( ),v x t  numerically. 

 

( ) ( ) ( )( )1 10
, , d

t
n n nt n nx nx nu x t u x t u u v u vλ τ+ = + + +∫            (113) 

and 

( ) ( ) ( )( )1 20
, , d

t
n n nt nx n nxv x t v x t v u u v h xλ τ+ ′= + + + −∫         (114) 

n nxu vδ   and n nxv uδ   are constrained variations. Moreover, the required stability 
conditions are 

( ) ( ) ( ) ( )11 2 20, 1 0, 0,1 0t tλ τ λ λ τ λ′ ′= + = = + =            (115) 

In the same manner, one gets 1 2 1λ λ= = − . 
Using the fore-mentioned recurrence relations with the conditions in Equa-

tion (112), we obtain 

( )
( ) ( )

( )( )
2 2

1 2

4exp cosh 1 exp1,
4 cosh 1 exp

x x x
u x t

x x

 − + + − =
 + − 

,          (116) 
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( )1 2
1 sinh,
4 cosh

t xv x t
x

= ,                       (117) 

( ) ( )

( )
( ) ( ) ( )

( ) ( )( )( )
( )

2 1

2 2 2
2

4 2 2

2 2 2

2

, ,

6 sinh cosh 3sinh 2 exp sinh1 exp
32cosh 1 2exp cosh exp 2

4cosh exp 1 exp cosh 2

1 exp

u x t u x t

x x x x x x x
x

x x x x

x x x x

x

=

 − + −
 + −
  + − + − 

− + + − −
+
+ −


 (118) 

and 

( ) ( )
( ) ( )

( )( )
( ) ( )

( ) ( )( )

2 2 2

2 1 2 2 22

2 2

2 2 2

sinh cosh 2 2 expsinh, ,
4cosh 48cosh 1 exp

6 cosh 3sinh 2 exp sinh exp

4 1 2exp cosh exp 2 cosh

t x x tx xt xv x t v x t
x x x

t x x x x x x x

x x x x

 − −= − − +
+ −

 − + − −  −
+ − + − 

 (119) 

Of course, one can, now, make the desired calculations using certain values for 
the parameter t. Figure 3 and Figure 4 shows ( ),u x t  and ( ),v x t  for 0.8t =  
[3]. 

8.4.3. The Generalized-kdv Equation 
In this model the generalized equation is of the form 

0p
t x xxxu u u u+ + =                         (120) 

with the initial condition 

( ) ( )
12

0,0 sech
p

u x A kx x−  =                    (121) 

 

 
Figure 3. ( ),u x t  for 0.8t =  [3]. 
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where 
( )( ) 2

2

2 1 2p p
kA

m
+ +

=  and 0, ,k m x  are constants with 2p ≥ .  

Using the variational iteration method, we get 

( ) ( )1 0
, ,

t p
j j tn n nx nxxxu x t u x t u u u uλ+ = + + +  ∫              (122) 

And 0p
n nxu uδ = . Moreover, the stability condition yields ( )1 0λ τ′ = , ( )11 0tλ+ = ; 

which implies that 1λ = − . 
Putting 4p = , we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )

24
1 0 0 0

3 3 3
0 0 0

1, sech 8 4 sech tanh
8

tanh 15 sinh sech

u x t A kx x Akt kx x kx x

k t kx x tk kx x kx x

= − + − −

+ − − − − 

 (123) 

 

 
Figure 4. ( ),v x t  for 0.8t =  [3]. 

 

 
Figure 5. ( ),u x t  for 0.3375A = , 0.3k = , and 0.00675c =  [3]. 
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Hence 

( ) ( )
1 2

2
0 2

4, sech , wherep ku x t A kx ct x c
m

  == − − .       (124) 

Figure 5 shows ( ),u x t  for 0.3375A = , 0.3k = , and 0.00675c =  [3]. 

9. Concluding Discussion 

The variational methods will remain to be the most powerful tool in the field of 
approximations in various directions and especially when dealing with Schro-
dinger eigenvalue equation when it cannot be solved exactly [9]. They will, al-
ways, be of importance in approximations for many subjects such as systems 
theory and control, optimization, analysis of complex systems, theoretical, ma-
thematical and computational physics; and especially in the applications to 
non-linear partial differential equations and Hamiltonian systems [10]. 

Their applications are almost everywhere in the fields of learning: in fluid 
mechanics, in statistics, and in quantum neural networks, where variational me-
thods are used in quantum machine learning based on a quantum mechanical 
network for the binary classification of points of a specific geometric pattern [11] 
[12] [13]. 
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