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Abstract 
The rotation-minimizing frame is the main research object for a spatial curve. 
Although the mathematical description is not complicated, it is not easy to 
directly make an exact minimizing-rotation frame for the Euler-Rodrigues 
frame. The condition for the non-normalized Euler-Rodrigues frame of the 
Pythagorean-Hodograph curve to become the rotation-minimizing frame is 
given in this article, which is an ordinary differential equation with rational 
form, the analytical solution that does not always exist. To avoid calculating 
the solution of ordinary differential equations, a global optimization algo-
rithm for the conditions is proposed, that has a weight function in the objec-
tive function. The quintic Pythagorean-Hodograph curve is analyzed con-
cretely with the method, and its objective function and constraint conditions 
of optimization are clarified. The example is analyzed by using this method 
with different weight functions and contrasting that approach with its exact 
value. 
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1. Introduction 

Pythagorean-Hodograph (PH) curve is a kind of polynomial parametric curve 
based on offset curve research. Its characteristic is that its rate function is also 
polynomial, and the arc length of curve can be calculated accurately. A poly-
nomial parametric curve ( ) ( ) ( ) ( ), ,t x t y t z t=   P  is called spatial PH curve, if 
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and only if the derivative ( ) ( ) ( ) ( ), ,t x t y t z t′ ′ ′ ′=   P  of the polynomial pa-
rametric curve satisfies the condition ( ) ( ) ( ) ( )2 2 2t x t y t z tσ ′ ′ ′= + +  being a 
polynomial. The equivalent condition is that there are four polynomials  
( ) ( ) ( ) ( ), , ,u t v t p t q t  satisfying  

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 2 2 ,

2 2 ,

2 2 .

x t u t v t p t q t

y t u t q t v t p t

z t v t q t u t p t

 ′ = + − −
 ′ = +
 ′ = −

                (1) 

The arc length of the PH curve can be computed precisely by simply calculat-
ing a polynomial. The PH curve plays an important role in CAGD, which not 
only offers unique computational advantages over ordinary polynomial parame-
tric curves in CAD/CAM applications, but also retains full compatibility with 
standard Bézier/B-spline representations [1]. 

In 1994, Farouki extended the planar PH curves to spatial PH curves and sur-
faces, and gave an explicit expression of developable surfaces with rational off-
sets [2]. At the same time, the further theoretical and applied research on PH 
curve was carried out in [3] [4]. Hermite interpolation and continuous analysis 
of PH curves have attracted much attention [5] [6] [7] [8] [9]. 

An orthogonal frame ( ) ( ) ( )( )1 2 3, ,t t tf f f  is on a given spatial curve ( )tP , if 
the ( )1 tf  is the unit tangent, and the others orthogonal unit vectors ( ) ( )2 3,t tf f  
span the normal plane. The derivative of the frame concerning to arc length s 
determines its angular velocity ( )1 2 3, ,ω ω ω=ω  as follow  

 31 2
1 2 3

dd d
, , .

d d ds s s
= × = × = ×

ff ff f fω ω ω              (2) 

where i× fω  represents the vector product of both vectors. There are many 
ways to comprise a frame [10]. A familiar case is the Frenet frame that is formed 
by the tangent t , the principal normal n , and the binormal = ×b t n . If there 
are unit orthogonal vectors ,u v  in the normal plane, and the frame angular 
velocity satisfies 0⋅ ≡tω , then the ( ), ,t u v  is named as a rotation-minimizing 
(RM) adapted frame [11] [12], which is also called as a Bishop frame. Another 
equivalent condition of RM frames is 1 0ω ≡ . Its physical meaning is that the 
frames do not rotate around the tangent direction when it moves along the 
curve. 

The RM frames of the spatial curve are of great value in research areas of 
computer graphics, computer animation, motion planning, and other research 
fields. It is specifically used in swept surface modeling, 3D roaming and motion 
interpolation, and has a wide range of application value. As there is hardly a way 
to find an exact formulation directly to calculate the RM frames, the computa-
tion of the RM frames to a spatial curve attracts a good deal of attention. Many ef-
fective geometric algorithms have been proposed; especially, using the Euler- 
Rodrigues (ER) frames to construct the RM frames with orthogonal transforma-
tion is a pretty good way [11] [13]. ER frame is a special rational adaptive frame 
base on spatial PH curve. It is always non-singular at the inflection point. It 
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makes it different from the adaptive method, but this kind of approach does not 
offer a complete solution to solve the RM frame, and the authors have raised 
some open questions [14]. 

The perfect combination of PH curve and the RM frames can be achieved 
through the ER frames [15], and this frame is raised by the quaternion poly-
nomial. But the frame is a rational form, which increases the difficulty to calcu-
late the geometric attributes of a spatial curve [11] [13] [14]. In this paper, based 
on the ER frame of spatial PH curve, we propose an optimization method to ap-
proximate the RM frame, which avoids the existence to the ER frames with the 
transformation, and reduces the calculation of rational polynomials. 

The remainder of this paper is organized as follows: In Section 2, the condi-
tions for the non-normalized ER frames of the PH curve to become the RM 
frames are given, and the optimization algorithm for the conditions is proposed. 
The quintic PH curve is analyzed concretely, and the objective function and 
constraint conditions of optimization are clarified in Section 3. Some examples 
are analyzed by using this method in Section 4. The 5th section is the summary 
of the full text.  

2. Preliminary Work  
2.1. Quaternion  

This section briefly introduces quaternion and the construction of PH curves 
with the quaternion. 

A spatial Pythagorean-Hodograph (PH) curve can be represented in a compact 
form with the quaternion. Here is a brief introduction to the concept and basic 
operations of the quaternion. In the four-dimensional real vector space 4R , the 
space formed by the quaternions represented by the standard base { }1, , ,i j k  is 
denoted by H , which is defined as  

2 2 2 1.= = = = −i j k ijk  

and derive the relation  
, , .= − = = − = = − =ij ji k jk kj i ki ik j  

A quaternion A  in space H  is written as 0 1 2 3α α α α= + + +A i j k , where 

0 1 2 3, , ,α α α α  are the real numbers. For convenience, the quaternion is written 
in the form of ( )0 ,α=A α , 0α  is called the scalar part of the quaternion, and 

1 2 3α α α= + +i j kα  is the vector part, it is called the pure quaternion when 

0 0α = , at this time it can be regarded as a vector in three-dimensional space, 
and the space it constitutes is isomorphic to 3R . For any two quaternions 

( )0 ,α=A α , ( )0 ,β=B β  the algorithm is defined as  

( )0 0 , ,α β± = ± ±A B α β  

( )0 0 0 0, ,α β α β= − ⋅ + + ×AB α β β α α β  

here ⋅α β  represents the scalar product of vectors. Therefore, the quaternion 
multiplication is non-commutative, that is ≠AB BA . The conjugate quater-
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nion is defined as ( )*
0 ,α= −A α , and its norm is 3 2

0 ii α
=

= = ∑*A AA . A  
is called a unit quaternion when 1=A , the pure unit quaternion can be re-
garded as a unit vector in 3R . 

Let ,A B  be two real quaternions in H , there define three commutative al-
gebraic operations [16] as  

 ( )* *1 ,
2

= +A B AiB BiA                     (3) 

( )* *1 ,
2

= +A B AjB BjA  

( )* *1 .
2

⊗ = +A B AkB BkA  

there are three squares denoted by 2 2,= =* *A AiA A AjA   and 2 *⊗ =A AkA . 
Now given a polynomial quaternion ( ) ( ) ( ) ( ) ( )t u t v t p t q t= + + +A i j k , it 

follows from the formula (3) that as a pure quaternion ( ) 2t′ =P A   meets the 
conditions Equation (1). The PH curve ( )tP  can be obtained through integral 
with its initial position. This PH curve can be presented by the Bézier method, 
and its control vertexes are directly expressed with the quaternion [17], the next 
review this method to produce the quintic PH curve.  

2.2. Quintic PH Curve with Quaternion  

For a quintic Bézier curve segment, it can be constructed as follows, given two 
points and its tangents { }0 0,Q ε  and { }5 1,Q ε . 

Choose 0A  and 2A  as formula in [9] as  

( )

, ,

, else, 0, 2 ,

i

i
i i

ii

i

i i

 +
 ≠ −=  +


 =

i
i

A i

k

ε
ε

ε ε
ε
ε

ε

 

and 1A  is free. Let  

( )

( )

( )

2
0 0 0

1 0 1

2
2 0 2 1

3 2

2
4 1 2

1 ,
5

1 ,
5
1 ,

15
1 ,
5

1 .
5

∆ = =

∆ =

∆ = +

∆ =

∆ = =

d

d

d

d

d

1

A

A A

A A A

A A

A













ε

ε

 

then the vertexes of Bézier curve are these  
1

0
0

, 1, 2,3, 4,5,
i

i j
j

i
−

=

= + ∆ =∑Q Q d  

https://doi.org/10.4236/jamp.2023.115081


F. F. Peng et al. 
 

 

DOI: 10.4236/jamp.2023.115081 1254 Journal of Applied Mathematics and Physics 
 

the Bézier curve can be produced by the vertexes ( )0,1, ,5i i =Q  , that is a spa-
tial PH curve. The quaternions 0A  and 2A  can also be defined as others 
forms including the rotation angle parameters. This segment has good geometric 
properties, such as it having tangent 0ε  at 0Q  and 1ε  at 5Q . Because the 
quaternion 1A  is free, there are some freedoms for adjusting and designing the 
spatial PH curve. 

3. Rotation-Minimizing ER Frames  
3.1. Condition of Rotation-Minimizing ER Frames  

If the coefficient is quaternion ( )tA , construct velocity vector curve ( ) 2t′ =P A  , 
and then get a Bézier curve ( )tP  through integration. It has an ER orthogonal  

frame ( ) ( )2 2 2
1 2 3

1, , , ,
σ

⊗=e e e A A A  , in which  

( ) * * *tσ = = =AiA AjA AkA . To comprise the RM frames for the ER 
frames, set the rotation angle as ( )tθ , and construct the orthogonal transfor-
mation  

 ( )
( )

( )
( )

2 2

3 3

cos2 sin2
.

sin2 cos2
t t
t t

θ θ
θ θ

   − 
=    ± ±    

e e
e e

                   (4) 

In Equations (4), there is a rotation transformation when it takes the positive 
signs, otherwise, it is the specular transformation. To make ( )1 2 3, ,e e e  become 
a RM frame, it must satisfy 2 3 0′ ⋅ =e e , for details, refer to the literature [9], and 
deduce the relationship (All of the derivatives are with respect to parameter t in 
this text unless noted otherwise)  

 ( )2 3
d 1 ,
d 2t
θ ′= ⋅e e                            (5) 

For the convenience of calculation, when rotating the above ER frame, we do 
not consider the normalization of the coordinates. It is still an orthogonal frame, 
and directly rotate the isometric frame ( )* * *, ,AiA AjA AkA , which are not ra-
tional polynomials. At the same time, according to the above marks, it can also 
be recorded as ( )2 2 2, , ⊗A A A  , and a similar relation can be obtained as  

 ( )2 2
2

d 1 d ,
d d2

g t
t t
θ

σ
⊗ = ⋅ 

 
A A                    (6) 

A brief proof process is followed, according to equations (4), we can obtain  

 ( )
( )

2

2

cos2 sin2
,

sin2 cos2
t
t

θ θ
θ θ ⊗

  −   
=    
    

u
v

A
A



                  (7) 

thus we have  

( ) ( ) ( ) ( )2 2 2 2d2 sin2 cos2 cos2 sin2
d

t A A
t
θθ θ θ θ⊗ ⊗ ′ ′′ = − + + −  

u A A   

and  

( ) 2 2sin2 cos2 ,t θ θ ⊗= +v A A  
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let’s take the scaler product of them  

 
( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2

2 2 2 2 2 2

d2 sin2 cos2
d

cos 2 sin 2 .

t t A A
t

A A

θσ θ θ

θ θ

⊗ ⊗

⊗ ⊗

 ′ ′′ ⋅ = + ⋅ − ⋅  
′ ′+ ⋅ − ⋅

u v A A

A A

 

 

    (8) 

Here exist 2 2 2 2 2σ⊗ ⊗⋅ = ⋅ =A A A A  . This thereby,  

( ) ( )2 2 2 2 σ σ⊗ ⊗′ ′ ′⋅ = ⋅ =A A A A  , and 2 2 0⊗⋅ =A A , then  

( ) ( )2 2 2 2 0⊗ ⊗′ ′⋅ + ⋅ =A A A A  . These submit to the Equation (8) make it to ze-
ro, so the Equation (6) is hold.  

Theoretically, setting the initial value of 0θ  (set 0 0θ =  in subsequent ex-
amples), we can calculate θ  by integrating equation (6) as follows,  

( )0 0
d .

t
g t tθ θ= + ∫  

But in general, the expression of θ  is difficult to obtain. It is an ordinary diffe-
rential problem with initial values, and we can obtain the value through discrete 
numerical calculation. Using the Trapezoidal integral formula, we can get the 
solution of discrete point sequence 0 1, , , mt t t  with ( )0 0tθ θ= , 

( ) ( ) ( ) ( ) ( )3
1 1

1

,
2

, 1, 2, , .

k k k k

k k

tt t g t g t O t

t t t k m

θ θ − −

−

∆
 = + + + ∆ 

∆ = − = 

          (9) 

Although this method can achieve approximate minimum rotation, there is a 
challenge for each θ  to calculate the integral of a rational expression in prac-
tical application. Because of the delay in the calculation, it is very detrimental to 
a predictable adaptive method for the entire curve. 

To build an adapted rotation-minimizing frame, the numerical calculation 
method cannot meet practical requirements, so we select a continuous angular 
function  

( )arctan tθ φ=  

to approximate the exact solution. The corresponding rotation matrix is  

 
( )
( ) ( )

( ) ( )
( ) ( )

2 2

2 2 2

1 21 ,
1 2 1

t tt
t t t t

φ φ

φ φ φ ⊗

 − −   
 =    + ± ± −       

u
v

A
A



       (10) 

The angle function is often chosen as  

( ) ( )
( )

,
a t

t
b t

φ =  

where ( )a t  and ( )b t  are the reduced polynomials, i.e. ( ) ( )( ), 1gcd a t b t = . 
The orthogonal transformation  

 
( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 2

2 2 2

2 2 2

2

2

b t a t a t b t

a t b t b t a tt
t a t b t ⊗

 − −
 

 ± ± −      =   +   

u
v

A
A



        (11) 

Equations (11) are minor changes of the transformation matrix that compares 
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with the literature [11], which is just for the convenience of expression. The final  

comprised frame ( )1, ,u ve e e  is a RM frames, here ( )
( )
t
t

=u

u
e

u
, ( )

( )
t
t

=v

v
e

v
.  

Polynomials ( ) ( ),a t b t  need to meet the relation (we only consider the rota-
tion transformation here)  

 2 2
2 2 2

1 d ,
d2

ab a b
t a bσ

⊗ ′ ′− ⋅ =  + 
A A                   (12) 

In fact, for one general spatial curve, the polynomials ( )a t  and ( )b t  does not 
always exist, so we adopt the optimization calculation method to find the ap-
proximate RM frames.  

3.2. Optimization Method of ER Frames  

The optimization method is as follows,  

1) Find that the polynomial ( )a t  and ( )b t  satisfies 2 2d
d

ab a b
t

⊗ ′ ′⋅ = −A A ,  

the sufficient condition for the equation to hold is that the degree of ( )a t  and 
( )b t  must be same. The degree of ( ) ( ),a t b t  selected is the same as that of the 

polynomial ( )2 tA  , so there are still 2 degrees of freedom left. Otherwise, the 
degree of freedom will be reduced and not even.  

2) Use the above 2 freedoms to approximate and optimize the above Equation 
(12) as  

2 2
2

2 2

d
2d1 ,t

ab a b a b
σ

⊗⋅
= ≈

′ ′− +

A A

 

and construct the following objective function  

 ( ) ( ) ( )
21 2 2 2

0,
arg min 2 d .

a b
t a t b t tρ σ + − ∫              (13) 

where ( )tρ  is the weight function. Generally, we can select ( ) 1tρ =  or 
( ) ( )t tρ σ=  and so on, which can realize the optimization effect of arc length.  
Although it is not an exact RM frames, it can realize the minimum rotation 

problem on the whole curve at one time.  

4. RM Frames of Quintic PH Curve  

Let ( ) ( ) ( )2 2
0 1 21 2 1t t t t t= − + − +A A A A , where ( )0,1,2i i =A  are three real 

quaternion polynomials, then  

 ( ) ( )
3

* 2 * *
3,

0

d d 4 ,
d d i i

i
B t

t t =

′ ′= = + = ∑AjA A AjA A jA P         (14) 

where  

( )

( ) ( )

0 0 1 0

1 0 2 1 1 1 0

,
1 2 ,
3 3

= −

 = − + −    

p

p

A A A

A A A A A A
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( ) ( )

( )
2 2 1 0 1 2 1

3 2 2 1

1 2 ,
3 3

.

 = − + −   

= −

p

p

A A A A A A

A A A

 



          (15) 

All of these ( )0,1,2,3i i =p  are the pure quaternions, and ( ) ( ), 1 n ii i
n i nB t C t t−= −  

is the Bernstein basis function, then the Equation (14) also can be presented by  

 ( ) ( )
3

*
4,

0

d ,
d i i

i
B t

t =

′= ∑AjA r                     (16) 

where  

 

( )
( )
( )

0 0 1 2 3

1 1 2 3

2 2 3

3 3

,

,

,
.

= − + + +

= − + +

= − +

= −

r

r

r
r

p p p p

p p p

p p
p

                   (17) 

The following expression is parallelled deduced as above,  

 ( )
4

* 2
4,

0
,i i

i
B t⊗

=

= = ∑AkA A q                   (18) 

where  

 [ ]

2
0 0

1 0 1

2
2 0 2 1

3 1 2
2

4 2

,
,

1 2 ,
3 3

,

.

⊗

⊗

⊗

=

= ⊗

 = ⊗ +  

= ⊗

=

q
q

q

q

q

A
A A

A A A

A A

A

                 (19) 

After calculating the scaler product of (16) and (18), we obtain follow equation  

 ( ) ( )( )
3 4

2 2
4, 4,

0 0
.i j i j

i j
B t B t⊗

= =

′ ′⋅ = ⋅∑∑ r qA A             (20) 

Set two polynomials to be ( ) ( )4
4,0 i iia t a B t

=
= ∑  and ( ) ( )4

4,0 i iib t b B t
=

= ∑ . we 
can deduce follow equations,  

( ) ( ) ( ) ( )( )
3 4

4, 4, 4
0 0

,i j i j
i j

a t b t B t B t b b a
= =

′ ′= −∑∑  

and  

( ) ( ) ( ) ( )( )
3 4

4, 4, 4
0 0

,i j i j
i j

a t b t B t B t a a b
= =

′ ′= −∑∑  

then  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 4

4, 4, 4 4
0 0

.i j i j i j
i j

a t b t a t b t B t B t b b a a a b
= =

′ ′ ′  − = − − − ∑∑  (21) 

The result of (21) is equal to the above Equations (20), there is an equation on 
two septic polynomials being the same, it is  

 ( ) ( )
3 4

4, 4,
0 0

0.i j ij
i j

B t B t M
= =

′ =∑∑                   (22) 
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where ( ) ( ) 4
4 4

4
det i j

ij i j i j i j i j
i j

a a a
M b b a a a b

b b b
− 

 = − − − − ⋅ = − ⋅   − 
r q r q . Here 

we define that ( ), 1 0nB t− =  and 1 0nC− = , use the formula  

( ) ( ) ( )4, 3, 3, 14i i iB t B t B t−′  = − −  , the equations can be rewritten as  

 ( ) ( ) ( )
3 4

3, 3, 1 4,
0 0

0.i i j ij
i j

B t B t B t M−
= =

 − = ∑∑                 (23) 

Due to the coefficient of the septic polynomial being zero, we can obtain a sys-
tem with 8 equations and 10 variables ( ), 0, 2,3, 4i ia b i = , there are  

 

00 10

10 01 20 11

20 11 02 30 21 12

30 21 12 03 31 22 13

31 22 13 04 32 23 14

32 23 14 33 24

33 24 34

34

0,
3 4 3 4 0,

4 2 4 2 0,
12 18 4 12 18 4 0,

4 18 12 18 12 0,
2 4 4 0,
4 3 3 0,

0.

M M
M M M M

M M M M M M
M M M M M M M

M M M M M M M
M M M M M
M M M

M

− =
 + − − =
 + + − − − =


+ + + − − − =
 + + + − − − =
 + + − − =


+ − =
=




     (24) 

The constraint Equations (24) is a system of quadratic equations with polynomi-
al coefficients ( ), 0,1, 2,3, 4i ia b i = , which are solved by optimization method, so 
obtain two polynomials ( ) ( ),a t b t . The ER frames are further rotated and 
transformed by the formula (10), and the next step normalizes these two com-
ponents, then obtain the global rotation-minimizing (GRM) frames. Of course, 
this is an approximately GRM frames by optimization method, because the exact 
polynomials are always non-existent.  

5. Examples  

We use the three quaternions ( )T
0 0,1,0,2=A , ( )T

1 0,2,1, 1= −A ,  
( )T

2 0,3, 2, 1= − −A  in follow examples. Figure 1(a) is the original ER frame, 
Figure 1(b) is the GRM frames through optimization with 1ρ = . After calcu-
lating, the two polynomials are  
 

 
Figure 1. Comparison of two different frames. 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

4,0 4,1 4,2

4,3 4,4

4,0 4,1 4,2

4,3 4,4

6.5789 3.1495 2.1811

15.3863 17.1115 ,

0.8943 1.0685 0.6119

1.1118 3.9292 .

a t B t B t B t

B t B t

b t B t B t B t

B t B t

= + −

+ +

= − + −

+ +

 

Figure 2 describes the swept surface with ER frames and RM frames with 
1ρ = , Figure 2(a) is corresponding to the ER frames, and Figure 2(b) is to the 

GRM frames.  
Figure 3 shows the GRM frame through optimization with ( ) ( )t tρ τ κ= , in 

this ( )tτ  is the torsion of the curve, and ( )tκ  is the curvature. Using this op-
timizing method, the polynomials are  

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

4,0 4,1 4,2

4,3 4,4

4,0 4,1 4,2

4,3 4,4

9.8125 1.1353 1.1893

15.1672 9.1231 ,

1.4645 0.8832 0.4792

0.0104 2.7759 .

a t B t B t B t

B t B t

b t B t B t B t

B t B t

= + −

+ +

= − + −

− +

 

Figure 4 describes the exact RM frames through the ordinary differential eq-
uation numerical calculation method, Figure 4(a) is the frames, and Figure 4(b) 
is its swept surface. 

 

 
Figure 2. Comparison of two swept surfaces with different frames. 

 

 

Figure 3. GRM frames with ( ) ( )t tρ τ κ= . 
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Figure 4. The RM frames raised by the ordinary differential equation method. 

 

 
Figure 5. Angle of rotation ( )tθ  change curve, solid curve is to 1ρ = , dash curve is to 

( ) ( )t tρ τ κ= , and the dotted curve is the exact value of the RM frames which is 

calculated by calculating integral, the arc length of the curve is 17
3

. 

 
Figure 5 describes the rotation angle changing along parameter t with differ-

ent weight function. The exact value is the lower limit for each method of rota-
tion minimizing. The rotation amount of the optimization method is greater  

than the exact method, but the curve arc length is 17
3

, as an approximation  

method, the effect can be acceptable. The choice of weight function may reduce 
the rotation amount, we usually define it as 1ρ = .  

6. Conclusions 

To a spatial PH curve built by the quaternion, ER frames are natural orthogonal 
frames. An ordinary differential equation of the rotation angle function is de-
duced by differentiation. The RM frames of those ER frames can be obtained by 
calculating its integral. The optimization method to construct an approximate 
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rotation-minimizing frames is proposed on it ER frames, that avoid the existence 
to the ER frames with the transformation of rational form, and the weight func-
tion of the optimization objective function can optimize its effect. Moreover, we 
try to avoid the derivation and integration of rational polynomials in the process 
of its implementation, to reduce the amount of calculation. In terms of experi-
mental results, it has a good practical effect.  

The effect is good when the arc length of the curve is not large, but when the 
arc length is large, the effect of the objective function close to zero is not very 
ideal. When the torsion transformation of the curve itself is very large, its effect 
also has a certain impact.  
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