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Abstract 
Breast cancer in women is a complicated and multifaceted disease. Studies 
have demonstrated that hyperglycemia is one of the most significant risk fac-
tors for breast cancer. Hyperglycemia is when the sugar level in human blood 
is too high, which means excess glucose. Glucose excess can encourage the 
growth, invasion, and migration of breast cancer cells at the cellular level. 
Though, the effects of glucose on the dynamics of breast cancer cells have 
been examined mathematically by a system of ordinary differential equations. 
However, the non-instantaneous biological occurrences leading to the secre-
tion of immuno-suppressive cytokines by tumors to evade immune surveil-
lance and the immune cells’ derivation of cytokines to attack the tumor cells 
are not yet discussed. Therefore, investigating the biological process involved 
in the dynamics of tumors, immune and normal cells with excessive glucose 
concentration is inviolable to determining the best procedure for controlling 
tumors’ uncontrollable growth. Time delay, denoted by τ , is used to de-
scribe the time tumor cells take to secrete immunosuppressive cytokines to 
evade immune surveillance and the time immune cells take to recognize and 
attack the tumor cells. We have studied the local stability analysis of the bio-
logical steady states in both delayed and non-delayed system. The Routh- 
Hurwitz stability criterion is used to analyze the dynamical equilibrium of the 
cells’ population. Hopf bifurcation was analyzed by using time delay s as a 
bifurcation parameter. The analytical results suggest an unstable scenario for 
a tumor-free equilibrium point as normal cells are bound to grow to their 
carrying capacity. The result predicts a stable system for coexisting equili-
brium when the interaction is instantaneous ( 0τ = ). However, when 0τ > , 
the coexisting equilibrium point switches from stable to unstable. The nu-
merical results not only validate all the analytical results but also show the 
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case of possible situations when glucose concentration is varied, indicating 
that both tumor growth and immune system efficiency are highly affected by 
the level of glucose in the blood. This concluded that the delay in the secre-
tion of cytokines by immune cells and derivation cytokines by the tumors 
helps to identify the possible chaotic situation under different glucose con-
centration and the extent to which such delay can have on restoration of the 
normal cells when glucose concentration is low. 
 

Keywords 
Breast Cancer, Stability, Bifurcation, Time Delay, Nonlinear Dynamical  
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1. Introduction 

A considerable number of studies stated that breast cancer (BC) is the second 
type of cancer which is common in women and is considered the second most 
common factor in cancer deaths among females of all ages [1]. Most cancers oc-
cur due to the DNA structure changes inside the cell, called the mutations in 
DNA [2]. Breast cancer is one of the most common types of malignant tumours 
that affect breast tissues, and lead to abnormal growth in its cells [3]. It begins to 
spread from the inner lining, and then move from it to the milk ducts and the 
lobules [4]. Breast cancer is distinguished by its ability to spread to other areas of 
the body. Some factors can cause breast cancer, such as estrogen excess, genetic 
factors, and some environmental factors or life style such as poor diet, excessive 
alcohol consumption and smoking [4] [5]. On the other hand, there is some 
factors enhance cancer cells to grow and spread, such as increase of glucose in 
the blood which can be called hyperglycemia. 

Hyperglycemia is one of the risk factors which increase the population of 
cancer cells rapidly including breast cancer cells as stated in many recent bio-
logical studies [6]-[14]. Hyperglycemia means the high glucose level in the 
blood. At the cellular level, hyperglycemia (glucose excess) can encourage the 
growth, invasion, and migration of breast cancer cells. It can also promote an-
ti-apoptotic reactions to boost tumors’ chemo-resistance by causing abnormal 
glucose metabolism [15] [16]. The immune system is also affected by hypergly-
cemia. High glucose means low immune system efficiency [17] [18]. The evi-
dence is that people with diabetes are more prone to infections and delayed 
wound healing, as high blood sugar levels weaken the immune system. High 
glucose decreases the immune system response against the aggression and dis-
eases by reducing the efficiency of some complement factors and polynuclear 
cells chemotactism and phagocytosis and by increasing the inflammatory re-
sponse [19] [20]. 

The dynamic of breast cancer cells has been described mathematically in 
many researches. Mathematical models assist to comprehending the dynamics of 
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tumour growth over time [21]. Two of these models are ordinary differential 
equations (ODEs) and delay differential equations (DDEs). ODEs are considered 
a very appropriate tool for modeling cancer problem. ODEs can be used to rec-
ognize the effect of chemotherapy treatment on breast cancer cells, then suggest 
optimal medicine [22]. ODEs can be improved to the delay differential equations 
(DDEs) if there is a delay in completing any process. For example, Intra and in-
tercellular reaction in human body undergo biological process to manifest, and 
this suggest non instantaneous reaction which made using DDEs more suitable 
than ODEs [23]. Besides, the DDEs differ from ODESs in that DDEs have deriv-
atives depend on solving the problems in previous time while ODEs contain de-
rivatives depend on the solution at present time [24].  

Many mathematical models have been developed to understand the beha-
vior of breast cancer cells (BCCs) under the effect of time delay. For instance, 
in 2020 Khajanchi [25] improved De Pillis and Radunskaya model [26] by in-
troducing the time delay to the interaction between tumour and immune cells 
in order to get a better compatibility with reality. There are clinical evidences 
that most anti-tumor’s therapeutics also undergo process of healing which va-
ries from 2 - 10 weeks after initiation of treatment [27]. In another research, 
Udomchalermpat et al. [28] extended the tumor-obesity model which was stu-
died in [29] by including the time delay effect into immune cells equation. 
They incorporated into their model time delay to model the non-instantaneous 
interaction between tumors and immune cells occasioned by the process in-
volves in developing suitable response by immune system and modulation of 
immune cells’ attack by the tumor. Likewise, Rihan et al. [21] reduced Kuz-
netsov et al. [30] model from five equations to be only two equations which are 
tumor and immune cells equations. The simplified model explains the interac-
tions between tumor cells and immune cells such as cytotoxic T-cells or natu-
ral killer cells. In order to improve the results, time delay was added to im-
mune cells equation especially into the tumor-immune interaction term as well 
as the nonlinear growth term for the immune cells. In 2022, Awang et al. [31] 
illustrated the tumor-immune interaction using a mathematical model by con-
sidering the cell cycle. The delay was included to tumor cell reside inter-phase. 
Ibrahim et al. [32] used a discrete time delay to model treatments’ control 
against inhibitory agents and suppression in addition to modification of im-
mune cells by the tumor. Their findings suggested that control is not enough 
to eliminate malignant tumors. All the above previous studies contributed to 
give more accurate results compared with the studies that used ODEs since they 
simulate the real situation of cells interactions which produce delay in the time. 
The reason behind including the time delay in the previous researches was that 
the mathematical models describes population dynamics which are cells dy-
namics, and this kind of study contains a certain hidden process that required 
time to be completed, such as cell cycle stages, the immune period, the time of 
healthy cells and cancer cells interactions [23] [33] [34]. Besides, the malignant 
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transformation is not an instantaneous process, it is logical to consider how a 
time lag can affect the dynamics brought on by the interactions between these 
three-cell populations. [35]. As a result, cells interactions can be modeled by us-
ing DDEs. 

Alblowy et al. [36] studied the dynamics of tumor, immune and normal cells 
with incorporation of hyperglycemia (excessive glucose). The interesting thing 
in their study is that the glucose risk factor has not been studied in mathematical 
cancer models before. Therefore, they were the first authors who investigated the 
effect of glucose excess on the cells dynamics mathematically. Their results 
showed that glucose excess caused instability and chaos in immune and tumor 
cells. High level of glucose caused an increase in the growth of cancer cells and a 
decrease in immune system efficiency, causing chaos in the cells dynamics. 
However, the secretion of cytokines by the effector cells and derivation of sup-
pressive cytokines are instantaneous against the biological hypothesis that it un-
dergoes biological process to manifest [35]. It is significant to consider how a 
delay may affect the dynamics resulting from the interaction between tumour 
and immune cells as the interaction of various types of cells is not an instanta-
neous process. Hence, the model with time delay will give better representation 
and closer to the real situation. Also, when the time delay is introduced to any 
system of ODEs, the ultimate motive behind that is to determine whether Hopf 
bifurcation occurs as time delay increases such that the stability switches from 
stable to unstable or from unstable to stable. This indicates that the system’s ei-
genvalues change from having negative real parts to having positive real parts 
which happens only when they cross the imaginary axis [37]. In this work, time 
delay is incorporated into the system proposed in [36] to investigate the biologi-
cal process leading to suppression of immune cells and the derivation of cyto-
kines by the tumor cells. In Section 2, the modified system of the system pro-
posed in [36] with time delay is presented. Qualitative analysis of the model in-
cluding positivity theorem, existence of the equilibrium points, stability analysis 
and occurrence of Hopf bifurcation are provided in Section 3. Section 4 contains 
the numerical simulations of the model to validate the analytical results. Section 
5 briefly discusses the main findings of this study. 

2. The Breast Cancer Model 

Cancer cells live in an environmental system that forces them to interact with 
immune cells. The interaction between these cells is like the prey-predator rela-
tionship [38]. Immune cells, like natural killer, macrophages, and CD8+T cells, 
are the important elements in the immune system that destroy the tumor cells 
through a kinetic process by which the tumor cells come in contact with im-
mune cells and making them functionally inactive. Cancer cells secrete immu-
nosuppressive cytokines to evade immune surveillance [25] [33]. Thus, instan-
taneously, the immune cells are unable to destroy the tumor cells so there is a 
time delay between the deactivation of tumor cells by immune cells. This time 
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delay can be regarded as an interaction delay. As a result, we propose to modify 
the model in [36] which studied the effect of glucose risk factor on a breast can-
cer model since they considered the interplay between cancer and immune cells 
as instantaneous but contrarily, it undergoes some biological process before such 
interaction can manifest. Therefore, in this study, a time delay is incorporated 
into the model in [36] to depict the biological process leading to delay occa-
sioned by the interaction in the suppression of immune cells and the derivation 
of cytokines by the tumor cells as well as to investigate how the resulting dy-
namics are affected by the time delay. The proposed model which includes three 
equations: normal cells, ( )N t , tumor cells, ( )T t , and immune cells, ( )M t , is 
presented by delay differential system as given below; 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1

2 2 1 2

2 3

d
d
d
d
d
d

N N t N t N t T t
t
T T t T t gT t M t T t N t T t
t

M t T tM s M t T t M t gM t
t T t

α µ φ

α µ γ τ τ φ

ρ
γ τ τ µ

ω

= − −

= − + − − − +

= + − − − − −
+

   (1) 

with the initial conditions  

( ) ( ) ( ) [ ]0 1 0 2 0 3, , , for ,0 .N T Mφ ξ φ ξ φ ξ ξ τ= = = ∈ −  

such that 
τ  is used to describe the time tumor cells take to secrete immunosuppressive 

cytokines to evade immune surveillance and the time immune cells take to rec-
ognize and attack the tumor cells. ( ) ( )1M t T tγ τ τ− −  represents the delay in 
the clearance of cancer cells by immune cells, and ( ) ( )2M t T tγ τ τ− −  describes 
the delay in the clearance of immune cells by tumour cells. Other parameters in 
the model (1) are positive and defined as follows:  

• 1α  is the growth rate of the normal breast cells.  
• 1µ  is the death rate of the normal cells.  
• 2α  is the growth rate of the tumor cells.  
• 2µ  is the inhibition rate of the breast tumor cells.  
• 1φ  is the rate at which tumor cells impair the normal cells.  
• 2φ  denotes the rate at which tumor cells infect the normal cells to expand.  
• g  represents the rate of glucose excess.  
• s  is the source rate of immune cells.  
• 3µ  is the natural death rate of the immune cells.  
• ρ  is the immune response rate.  
• ω  is the immune threshold rate.  
• 1γ  is the rate at which the tumor cells are reduced by the immune cells.  
• 2γ  is the rate at which the immune cells are reduced by the tumor cells.  
Figure 1 shows a schematic diagram for the cells’ population interaction in 

the proposed model. τ  describes the interaction delay between tumor and im-
mune cells. 
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Figure 1. Schematic diagram for the cells’ population compe-
tition in the proposed model, τ  describes the interaction 
delay between tumor and immune cells. 

3. Qualitative Analysis 
3.1. Existence of Non-Negative Solutions 

For the need to demonstrate the biological compliance of System (1), it is sacro-
sanct to show that the solution of the system are bounded and non-negative. Hence, 
the existence of non-negative solution System (1) is given in Theorem 1 below: 

Theorem 1 Suppose ( )N t , ( )T t  and ( )M t  are bounded and positive un-
der the initial conditions in System (1), then, there exist non-negative solutions 

( )N t , ( )T t  and ( )M t  of System (1) [ ],t t tτ∀ ∈ − .  
Proof. Solving for ( ) ( ),N t T t  and ( )M t  in System (1), we have. 
Firstly, for ( )N t  

( )( ) ( ) ( )2
1 1 1

d .
d
N T t N t N t
t

φ α µ+ − = −               (2) 

Equation (2) is obviously Bernouli equation, solving this equation we obtain 
the solution of ( )N t  as follows 

( ) ( ) ( )( )

( )( ) ( ) ( )( )

1 1

1 1 1 1

d

d d
10

0 e
.

e 0 e d

T t t

tT t t T t t

N
N t

N t

φ α

φ α φ αµ

− −

− − − −

∫

∫ ∫
=

+ ∫
          (3) 

Applying the same method to find ( )T t  and ( )M t  in System (1) yields the 
following solutions 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2 2 2 2 2

d

0 2d d d
2 10

0 e

e 0 e d e d

N t g t

tN t g t N t g t N t g t

T
T t

T t M t T t T t t

α φ

α φ α φ α φ

τ
µ γ τ τ

+ +  

−+ + + + + +          
−

∫

∫ ∫ ∫
=

 + + − −     ∫ ∫
(4) 

( )
( )

( )
( ) ( ) ( )

( )
( )

3

3

d 0
20

d

0 e d d
.

e

T t
g t tT t

T t
g t

T t

M s t M t T t t
M t

ρ
µ

ω

τ
ρ

µ
ω

γ τ τ
 

− − − 
+  

−
 

− − − 
+  

∫

∫

+ − − −
= ∫ ∫     (5) 

Obviously, if ( )0 0N > , ( )0 0T >  and ( )0 0M > , System (1) has a non- 
negative solution.   
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3.2. The Existence of Equilibrium Points 

Theorem 2 Assume there exist positively invariant points in system (1), then 
there exist two biologically relevant equilibrium points, namely tumor-free equi-
librium and coexistence equilibrium.  

Proof. To find the equilibrium points of system (1) set L.H.S of the system 
equal to zero as follows:  

( )
( )

1 1 1

2 2 1 2

2 3

0

0

0

N N NT

T T gT MT NT
MTs MT M gM

T

α µ φ

α µ γ φ
ρ γ µ
ω

− − =

− + − + =

+ − − − =
+

               (6) 

solving System (6) yields the following two biologically feasible equilibrium 
points: 

1) Tumor-Free Equilibrium: 

( ) 1
0

1 3

, , ,0, .sE N T M
g

α
µ µ

∗ ∗ ∗  
= =  + 

               (7) 

This state represents the health equilibrium. Only normal cells and immune 
cells are alive. 

It is clear that ,N T∗ ∗  and M ∗  are positive since the parameters 1 1, , ,s gα µ  
and 3µ  are positive real values then 0E  lies in the feasible region. 

2) Coexisting Equilibrium:  

( ) ( ) ( )1 1 1 2 2 1
1 1 2 1

1 1, , , ,E N T M T T l k Tα φ γ
µ γ γ µ

∗ ∗ ∗ ∗ ∗ ∗ 
= = − − 

 
     (8) 

T ∗  can be found by solving the equation:  

( ) ( )3 2

1 2 3 4 0,k T k T k T k∗ ∗ ∗+ + + =                  (9) 

( )1 2 1 2 1 2 0,k γ µ µ φ φ= + >  

1
2 1 2 2

2

,
kk l lγ
γ

= −  

( )3 1 3 1 2 1 1
2

,k k g l l sω µ γ µ
γ

= + − +  

( )4 3 2 1 1 ,k g l sω µ γ µ = − + −                    (10) 

and  

1 2 3 ,l gωγ µ ρ= + + −  

( )2 1 2 1 2 .l gµ α α φ= + +  

From Equation (8), we conclude that 1E  can exist under the condition:  

1 2 2

1 1

0 min , .
lT

k
α γ
φ

∗  
< <  

 
                    (11) 

This completes the proof.  
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3.3. Local Stability of Equilibrium Points 

Here, we seek to determine the long-time behaviors of the interacting cells 
around the equilibrium points. This is done by linearizing System (1) at the equi-
librium points. The Jacobian matrix of System (1) at the equilibrium point  

( ), ,E N T M∗ ∗ ∗ ∗=  becomes 

( )

( )
( )

1 1 1 1

2 1 2 2 2 1

2 2 32

2 0
e 2 e

.
0 e e

N T N
T M N T g T

J E
M T g

TT

λτ λτ

λτ λτ

α µ φ φ
φ γ φ µ α γ

ρω ργ γ µ
ωω

∗ ∗ ∗

∗ ∗ − ∗ ∗ ∗ −

∗

∗ − ∗ −
∗∗

 − − −
 

− + − + + − 
 =     − − − +    +  +   

(12) 

For the time delay τ , the characteristic polynomial around ( ), ,E N T M∗ ∗ ∗ ∗=  
will be on the form: 

( ) ( ) ( ), eP A B λτλ τ λ λ −= +  

Hence, the stability conditions for both the tumor-free and co-existence equi-
librium points are given by Theorem (3 & 4) below:  

Theorem 3 System (1) is locally stable at 0E , 0τ∀ ≥ , if  

1 2 1
2

3 1

s g
g

γ ϕ α
α

µ µ
> + +

+
, otherwise it is unstable.  

Proof. Substituting ( ) 1

1 3

, , ,0, sN T M
g

α
µ µ

∗ ∗ ∗  
=  + 

, Equation (12) becomes  

( )

( )

1 1
1

1

1 2 1
0 2

3 1

2 3
3

0

0 e 0

0 e

sJ E g
g
s g

g

λτ

λτ

α φ
α

µ
γ φ α

α
µ µ

ρ γ µ
µ ω

−

−

 −
− 
 
 

= − + + + 
+ 

   − − + +   

      (13) 

then the characteristic equation of 0E  becomes  

( ) ( )( )1 1 2
1 2 3

3 1

e 0.
s g g

g
λτγ α ϕ

α λ α λ µ λ
µ µ

− −
− − + + + − − + − = + 

    (14) 

• When 0τ = , obviously  

1 1λ α= −  

( )2 3 gλ µ= − +  

and the third root of Equation (14) is  

1 1 2
3 2

3 1

s g
g
γ α ϕ

λ α
µ µ

−
= + + +

+
 

we conclude that 3λ  is negative if and only if the following condition is satis-
fied  

1 2 1
2

3 1

,
s g

g
γ ϕ α

α
µ µ

> + +
+

                    (15) 
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Biologically, 1 2
2

1

gα ϕ
α

µ
+ +  depicts the rate at which normal cell growth to 

capacity in the present of tumor’s proliferation and glucose concentration, while 

1

3

s
g
γ
µ+

 describes the rate at which immune cells annex their source to reach  

carrying capacity in the midst of glucose concentration. It is biologically mea-
ningful to assume that in the absence of the tumor cells normal cells will attain 
their carry capacity and there will be relatively no response to tumors’ antigen.  

Thus, we assume 1 2 1
2

3 1

s g
g
γ ϕ α

α
µ µ

< + +
+

 and opine that 0E  is locally unstable 

for 0τ = . 
• When 0τ > : the stability of 0E  is determined by the negativity of the root; 

1 1 2
2

3 1

e 0
s g

g
λτγ α ϕ

α λ
µ µ

−−
+ + + − =

+
                (16) 

of Equation (14). 
Hence, Equation (16) takes the form  

1 2 1
2

1 3

e 0
sg

g
λτα ϕ γ

λ α
µ µ

− 
− + + + =  + 

               (17) 

for the simplicity, Equation (17) can be written as 

e 0.D E λτλ −+ + =                        (18) 

where 

1 2
2

1

.D gα ϕ
α

µ
 

= − + + 
 

 

1

3

.
sE

g
γ
µ

=
+

 

Defining a iλ θ= +  where 0θ >  and 0a = . Substituting by the value of in 
a iλ θ= +  in Equation (18). We obtain 

( )e 0ii D E θ τθ −+ + =                       (19) 

Rewriting the exponential function in terms of trigonometric functions, we 
obtain  

( ) ( )( )cos sin 0i D E iθ θτ θτ+ + − =                (20) 

Separating real and imaginary parts of Equation (20) yields 

( )cos .D E θτ= −                       (21) 

( )sin .Eθ θτ=                        (22) 

Squaring both sides of Equations (21) and (22) then adding them together 

( ) ( )2 2 2 2 2cos sin .D Eθ θτ θτ + = +                (23) 

Hence,  
2 2 2 .E Dθ = −                         (24) 
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Obviously from (24), 2 0θ < , if 2 2E D< . Since 2 2E D<  replicates the in-
stability condition when 0τ = , Equation (14) has no positive root when 0τ > . 
In other words, there is no stability switch, and there exists no occurrence of 
Hopf bifurcation. Hence, System (1) is unstable at 0 , 0E τ∀ ≥ , if, and only if,  

1 2 1
2

3 1

s g
g

γ ϕ α
α

µ µ
< + +

+
 

□ 
Biologically, the delay does not affect the system at tumor free equilibrium 

point because when tumor is free i.e. 0T = , the interaction between the im-
mune cells and tumor cells disappear, so the system will undergo the same beha-
vior whether there is a delay or there is not. 

Theorem 4 System (1) is locally stable at 1E  for 0τ =  if and only if  

2 1µ φ>  and 3 1 2 1 2µ α φ α α+ > − , and undergoes bifurcation at τ τ ∗=  where 
stability switches from stable to unstable.  

Proof. Substituting ( ) ( ) ( )1 1 2 2 1
1 1 2 1

1 1, , , ,N T M T T l k Tα φ γ
µ γ γ µ

∗ ∗ ∗ ∗ ∗ ∗ 
= − − 
 

, 

Equation (12) takes the form of  

( )

( )
( )

1 1 1 1

2 2 1 2 1 2 2 1

1
2

2 2 2 32

0
e 2 e

,
0 e e

T a
T a a T g T

J E a Ta T g
TT

λτ λτ

λτ λτ

α φ φ
φ γ φ µ α γ

ρ ω ργ γ µ
ωω

∗

∗ − ∗ ∗ −

∗
− ∗ −

∗∗

 − + −
 

− + − + + − 
=  
 − − − +

+ + 

(25) 

where 

1 1
1

1

.
Ta α φ

µ

∗−
=  

2 2 1
2

1 2 1

.
l k Ta γ
γ γ µ

∗−
=  

( )1 2 1 2 1 2 .k γ µ µ φ φ= +  

( )2 1 2 1 2l gµ α α φ= + + . 

Then, the simplified characteristic Equation of (25) becomes  

( )3 2 2
1 2 3 1 2 3 e 0.A A A B B B λτλ λ λ λ λ −+ + + + + + =            (26) 

where, 

( ) ( )( )(
( ))

2
1 2 1 2 1 2 1 2 3 1

2 1 1 2 3

1 2 2A T a T
T

a

µ φ µ φ ω φ α ρ µ α
ω
ω φ α α µ

= − + − − − − + +
+

− − + −
 

( )((
( ) ) ( )((
( )) ( )

( ) ( ) ( ))
( ) ( ) ( )( ))

3
2 2 1 1 2 2 1 3 2 1 2 2 1

2
2 1 1 2 2 1 3 2 1 2

2
1 2 1 2 2 1 1 2 3

2 1 2 2 1 2 1 2 1 2

2
2 1 1 2 3 2 1 2 1 2 1 2

1 2 2 2 2 2

2 2 2 2 2

2

A T g
T

a T g

a a g g

a g a a T

a g g a g a

µ φ φ ωµ µ φ µ µ α µ α φ
ω

φ ρ φ ρµ µ φ µ µ α µ

φ φ α ω φ α α µ

φ ρ α φ α α ρ φ α

ω φ α α µ φ α α φ α

= − + − + − + + +
+

+ + − + − + +

+ + + − − + − −

+ − + − + − − + +

− + − + + + + + +
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( )

( ) ( ) ( )( )

1 1 2 22
3 1 2 1 2

1 1 2 2
3 3

21 2
2

2

a g
A T T

T

a g
g T g

φ φ α
φ µ α µ

ω

α φ α
ρ µ ω µ

  + + 
= − + − −   +  

+ + 
+ − + + +   

 

1 2 1 2B T aγ γ∗= +  

( )
(

) ((

) ) ( ) (((

) ) ( )) ( )

41 1
2 2 2 2 2 2 1 12

3 21
2 2 1 1 2 2 2 2 1 1

2
2 2 1 1 2 1 2 1 3 2 1 1

2
2 2 1 1 2 1 2 1 3 1 2 1 3

1 2 4
2 2

2 2 2 2
2

2 2

2

B T a g
T

a T a g

a a g T a g

a a g T a g

φ φ
γ µ γ µ ω φ α

ω

φ
α γ φ γ γ µ ω φ α

α γ φ γ ω γ α ρ µ ω φ α

α γ φ γ ω γ α µ γ ω α µ

    = − + + − + + − − +    
   +  

  − − + − + + − − +  
  

− − + + − + − + −


+ + − + + + + + 



   (27) 

( )

( )

( )

( )

5 42
3 2 2 1 2 1 1 2 1 1 2 22

2 2
1 2 2 1 2 1 1 2 2 2 1 2 2 1

3 22
1 1 2 3 1 2 1 1 2 2

2 1 2 2

1 2 2 2
2 2

2 4
2 2

2
2 2

2

gB T a T
T

ga a g

ga g T a

a g

α
γ µ φ µ φ ω α µ φ φ γ

ω

α
φ γ ω µ α µ φ φ γ ω γ φ α α

α
φ γ ρ µ α µ φ φ γ ω

γ φ α α

   = − + − + + + +   
 +  

   + − + + + + − + +   
  

    − − + + + + +   
   

+ − + + ( )( ) ( )

( ) ( )( ) ( )( )
( )

2
1 1 1 2 3 1 1 2 3

2 1 2 2 1 1 1 2 3 1 1 2 3

2
1 1 2 3

2

2

a g a g T

a g a g a g T

a g

φ γ µ ω α γ ρ µ

ω γ φ α α φ γ µ ω α γ µ

α γ ω µ


− + + − + 



− + + + + − +


+ + 



 

When 0τ = , the characteristic Equation (26) becomes  

( ) ( ) ( )3 2
1 1 2 2 3 3 0.A B A B A Bλ λ λ+ + + + + + =             (28) 

According to Routh Hurwitz criteria, sufficient and necessary conditions for 
system (1) to be asymptotically stable at 1E  are:  

1) 1 1 0A B+ > .  
2) 3 3 0A B+ > .  
3) ( )( ) ( )1 1 2 2 3 3 0A B A B A B+ + − + > .  
Inspecting (27), 1 1 0A B+ >  if 2 1µ φ>  and 3 1 2 1 2µ α φ α α+ > − , 3 3 0A B+ >  

since 3 3B A>  and ( )( ) ( )1 1 2 2 3 3 0A B A B A B+ + − + >  since ( )( )1 1 2 2A B A B+ +  
is of higher polynomial. Hence, the conditions (1-3) are hold, then all eigenva-
lues in Equation (28) are negative which verifies the stability of the system for 
coexistence equilibrium. 

When 0τ > , here we analyze how the stability is affected by the time delay 
τ  by considering τ  as the bifurcation parameter. To study the delay induced 
instability, we assume a purely imaginary root of Equation (26) and we substi-
tute iλ σ= , ( 0σ > ) into Equation (26) 
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( ) ( ) ( ) ( ) ( )( )3 2 2
1 2 3 1 2 3 e 0ii A i A i A B i B i B στσ σ σ σ σ −+ + + + + + =     (29) 

Rewriting the exponential in terms of trigonometric functions we get 

( ) ( ) ( )( )3 2 2
1 2 3 1 2 3 cos sin 0i A A i A B B i B iσ σ σ σ σ στ στ− − + + + − + + − =   (30) 

Separating real and imaginary parts of Equation (30) gives 

( ) ( ) ( )2 2
1 3 1 3 2cos sinA A B B Bσ σ στ σ στ− + = − −          (31) 

( ) ( ) ( )3 2
2 3 1 2sin cosA B B Bσ σ σ στ σ στ− + = − −          (32) 

By squaring both sides of Equations (31) and (32) then adding these equations 
together, we get 

( ) ( ) ( )6 2 2 4 2 2 2 2 2
1 2 1 2 1 3 2 1 3 3 32 2 2 0A A B A A A B B B A Bσ σ σ+ − − + − − + + − =    (33) 

let 2ν σ=  in Equation (33), then we have 

( ) ( ) ( )3 2 2 2 2 2 2 2
1 2 1 2 1 3 2 1 3 3 32 2 2 0A A B A A A B B B A Bν ν ν+ − − + − − + + − =    (34) 

Since the leading coefficient of Equation (34) is positive, and inspecting the 
constant term 2 2

3 3A B−  from the definition in (27) suggests that 2 2
3 3 0A B− < . 

Hence Equation (34) has one positive root. Therefore, Hopf bifurcation occurs 
at *τ τ=  near co-existence equilibrium.  

For simplicity, we define  
2 2

1 2 12p A A B= − −  
2 2
2 1 3 2 1 32 2q A A A B B B= − − +  

2 2
3 3r A B= −  

then Equation (34) has the new form 
3 2 0.p q rν ν ν+ + + =                      (35) 

The conditions for Equation (35) to have positive roots are stated in the fol-
lowing lemma [39]. 

Lemma 1  
1) If 0r < , then Equation (35) has at least one positive root.  
2) If 0r ≥ , and 0∆ ≤ , then Equation (35) has no positive roots.  
3) If 0r ≥  and 0∆ > , then (35) has positive roots if and only if  

( )1
1 0
3

pν = − + ∆ >  and ( )1 0h ν ≤ .  

Obviously, 0r <  since 2 2
3 3 0A B− < , and there exist at least one positive root 

for Equation (35). Since condition (1) of Lemma 1 is satisfied, we conclude that 
Equation (35) has at least one positive root and there exists occurrence of Hopf 
bifurcation. 

To determine the corresponding value of τ  at which Hopf bifurcation oc-
curs and the transversality condition therein. Doing this, we eliminate ( )sin στ  
from both Equations (31) and (32) as follows: 

Multiply Equation (31) by ( )2
3 1B Bσ−  and Equation (32) by 2B σ  then we 

add both equations as follows 
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( )( ) ( ) ( ) ( ) ( )2 2 2 2
3 1 1 3 3 1 1 3 2cos sinB B A A B B B B Bσ σ σ σ στ σ στ − − + = − − −  (36) 

( )( ) ( ) ( ) ( ) ( )3 2
2 2 2 3 1 2sin cosB A B B B Bσ σ σ σ σ στ σ στ − + = − −       (37) 

then, adding the equations in Equations (36) and (37), we obtain 

( ) ( )

( ) ( )

4 2
1 1 2 2 2 1 3 3 1 3 3

22 2 2
1 3 2 cos

A B B A B A B A B A B

B B B

σ σ

σ σ στ

− + − − +

 = − − −  

      (38) 

making ( )cos στ  the subject in Equation (38), yields  

( ) ( ) ( )
( )

4 2
1 1 2 2 2 1 3 3 1 3 3

22 2 2
1 3 2

cos
A B B A B A B A B A B

B B B

σ σ
στ

σ σ

− + − − +
=

− − −
      (39) 

so the value of τ  will be on the form  

( ) ( )
( )

4 2
1 1 2 2 2 1 3 3 1 3 3

22 2 2
1 3 2

1 arccos
A B B A B A B A B A B

B B B

σ σ
τ

σ σ σ
∗

 − + − − + =
 − − −  

   (40) 

or 

( ) ( )
( )

4 2
1 1 2 0 2 2 1 3 3 1 0 3 3

22 2 20 1 0 3 2 0

0

1 arccos

2 , 0,1,2,

n

A B B A B A B A B A B

B B B

n n

σ σ
τ

σ σ σ

σ

∗
 − + − − + = −
 − − −  

+ =
π



  (41) 

□ 

Occurrence of Hopf Bifurcation 
To verify the direction of the switch when the Hopf bifurcation occur i.e. when 
the delay term τ  passes through the imaginary axis at critical value τ τ ∗= , we 
desire to show that 

( )d
0

d
Reλ
τ

≠  

which is called the transversality condition for the Hopf bifurcation at nτ , so to 
prove the transversality condition, Equation (26) is differentiated with respect to 
τ  to give 

2 2
1 2 1 1 2 3

3 2
1 2 3

d 3 2 2 e e e e
d

e e e

A A B B B B

B B B

λτ λτ λτ λτ

λτ λτ λτ

λ λ λ λ λ τ λτ τ
τ
λ λ λ

− − − −

− − −

 + + + − − − 

= + +
   (42) 

( )

2 2
1 2 1 1 2 3

2
1 2 3

d 3 2 2 e e e e
d

e

A A B B B B

B B B

λτ λτ λτ λτ

λτ

λ λ λ λ λ τ λτ τ
τ

λ λ λ

− − − −

−

 + + + − − − 

= + +
 

( )
1 2 2

1 2 1 1 2 3
2

1 2 3

3 2 2 e e e ed
d e

A A B B B B
B B B

λτ λτ λτ λτ

λτ

λ λ λ λ τ λτ τλ
τ λ λ λ

− − − − −

−

+ + + − − −  = 
+ + 
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( ) ( )

( )

1 2
1 2 1

2 2
1 2 3 1 2 3

2
1 2 3

2
1 2 3

3 2 2 ed
d e

e e e
e

A A B
B B B e B B B

B B B
B B B

λτ

λτ λτ

λτ λτ λτ

λτ

λ λ λλ
τ λ λ λ λ λ λ

λ τ λτ τ
λ λ λ

− −

− −

− − −

−

+ +  = + 
+ + + + 

+ +
−

+ +

 

( ) ( )
( )
( )

1 2
1 2 1

2 2
1 2 3 1 2 3

2
1 2 3

2
1 2 3

3 2 2 ed
d e e

e

e

A A B
B B B B B B

B B B

B B B

λτ

λτ λτ

λτ

λτ

λ λ λλ
τ λ λ λ λ λ λ

λ λ τ

λ λ λ

− −

− −

−

−

+ +  = + 
+ + + + 

+ +
−

+ +

 

( )
1 2

1 2 1
22

1 2 31 2 3

3 2 2d
d e

A A B
B B BB B B λτ

λ λλ τ
τ λλ λλ λ λ

−

−

+ +  = + −  + ++ + 
             (43) 

rewriting the characteristic Equation (26) to have e λτ−  as a subject, we have 
3 2

1 2 3
2

1 2 3

e
A A A

B B B
λτ λ λ λ

λ λ
− + + +

= −
+ +

                  (44) 

Substituting (44) into (43), we obtain 

( )
1 2

1 2 1
23 2

1 2 31 2 3

3 2 2d
d

A A B
B B BA A A

λ λλ τ
τ λλ λλ λ λ λ

− + +  = + −  + +− + + + 
      (45) 

Therefore 

( )

( )

( )

1

2
1 2 1

23 2
1 2 31 2 3

2
1 2 1

23 2
1 2 31 2 3

d d
d d

3 2 2

3 2 2

n i

i

i

Re
sign sign Re

A A Bsign Re
B B BA A A

A A Bsign Re Re
B B BA A A

τ τ λ σ

λ σ

λ σ

λ λ
τ τ

λ λ τ
λλ λλ λ λ λ

λ λ
λ λλ λ λ λ

−

= =

=

=

      =    
       

  + +  = + − 
+ + − + + +   

   + +  = +
+ + − + + +   i

i

Re

λ σ

λ σ

τ
λ

=

=


 
 

 −    

(46) 

Now, substituting by iλ σ=  into (46), we obtain 

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

1

2
1 2

3 2
1 2 3

1
2

1 2 3 =

d
d

3 2

2
( )

i

i

ii

sign Re

i A i A
sign Re

i i A i A i A

BRe Re
iB i B i B

λ σ

λ σ

λ σλ σ

λ
τ

σ σ

σ σ σ σ

τ
σσ σ

−

=

=

=

   
  

   

  + +  =   − + + +   
   + −    + +    

      (47) 

( ) ( )
( ) ( )

( )
( ) ( )

6 2 4 2 2 2
2 1 1 3 2 1 3 1

2 2 2 22 4 3 2
2 3 1 3 1 2

3 2 2 2 2A A A A A B B B
sign

A A A B B B

σ σ σ σ

σ σ σ σ σ σ

 − + + + + − = − 
− + − − +  

(48) 
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( ) ( )
( ) ( )

( )
( ) ( )

4 2 2 2 2
2 1 1 3 2 1 3 1

26 2 4 2 2 2 22
1 2 2 1 3 3 3 1 2

3 2 2 2 2

2 2

A A A A A B B B
sign

A A A A A A B B B

σ σ σ

σ σ σ σ σ

 − + + + + − = − 
+ − + − + − +  

(49) 

from Equation (33), we know that 

( ) ( )
( ) ( ) ( )

6 2 4 2 2 2
1 2 2 1 3 3

2 22 4 2 2 2 2
1 2 1 3 3 3 1 2

2 2

2

A A A A A A

B B B B B B B B

σ σ σ

σ σ σ σ

+ − + − +

= + + + = − +
 

substituting in Equation (49) 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1

4 2 2 2 2
2 1 1 3 2 1 3 1

2 22 22 2
3 1 2 3 1 2

4 2 2 2 2
2 1 1 3 2 1 3 1

2 22
3 1 2

d
d

3 2 2 2 2 ( )

3 2 2 2 2

i

sign Re

A A A A A B B B
sign

B B B B B B

A A A A A B B B
sign

B B B

λ σ

λ
τ

σ σ σ

σ σ σ σ

σ σ σ

σ σ

−

=

   
  

   

 − + + + + − = − 
− + − +  

 − + + + + − − =  
− +  

 

therefore  

( ) ( )
( ) ( )

1

4 2 2 2 2
2 1 1 1 3 2 1 3

2 22
3 1 2

d
d

3 2 2 2 2 2

i

sign Re

A A B A A A B B
sign

B B B

λ σ

λ
τ

σ σ

σ σ

−

=

   
  

   

  − + + − + −  = −  − +    

   (50) 

Since 
1d 0

d
Sign Re λ

τ

−    ≠  
   

 then the transversality condition holds. Therefore, 

Hopf-bifurcation occurs at nτ
∗  where the stability switches from stable to unstable. 

4. Numerical Simulation  
The numerical simulation is applying by using a Matlab version R2021b with 
DDE23 solver. DDE-Biftool, which is a Matlab package is used for the bifurca-
tion analysis of this work. To calculate the eigenvalues numerically with the pa-
rameters values in Table 1, we use Maple software. Referring to [36], we have 
two cases: tumour free equlibrium point and coexisting equilibrium point. Each 
case has its own parameters values. 

4.1. Case 1: Tumor-Free Equilibrium Point E0 

For tumor-free equilibrium point, we set the following parameters values as fol-
lows: 1 0.7α = , 1 0.1µ = , 1 0.1φ = , 2 0.98α = , 2 0.4µ = , 1 0.8γ = , 0.3ρ = , 

0.3ω = , 2 0.29γ = , 3 0.15µ = , 2 0.5φ = , and 0.6s = , 0.15g = . Substituting 
by these values we obtain the tumor free equilibrium point ( )0 0.875,0,1.966E = . 
If 0τ = , system (1) is unstable as shown in Figure 2 since the condition (15) is 
not satisfied and the eigenvalues which obtained are 1 0.7λ = − , 2 0.3λ = −  and 

3 0.870λ =  are obtained. 
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Figure 2. Cells population when 0τ =  at the tumour-free-equilibrium-point ( )0 0.875,0,1.966E =  with the initial conditions 

( )0.01,0,0.01  when (a) 0.01g = , (b) 0.15g = , (c) 0.5g = . 

 
Table 1. Model parameters values. 

Parameter Value Unit Reference 

1α  0.7 day−1 [4] [36] [40] 

1µ  [ ]0.1,1  day−1 Simulated, [26] [36] [40] 

1φ  [ ]0.1,0.2  day−1 [36] [41] 

2α  0.98 day−1 [36] [40] 

2µ  0.4 day−1 [36] [40] 

1γ  [ ]0.8,1  day−1 [28] [36] [40] 

ρ  [ ]0.2,0.8  day−1 [4] [36] [40] 

ω  0.3 day−1 [36] [40] 

2γ  [ ]0.29,0.5  day−1 [28] [36] 

3µ  [ ]0.15,0.2  day−1 [26] [36] 

2φ  [ ]0.1,0.5  day−1 [36] 

s [ ]0.4,0.6  day−1 [36] [40] 

g [ ]0,0.5  mmol/L [36] 

 
When time delay is introducing to the system, we observed that there is no 

change in cells behavior which means that the delay will not make any change at 
the tumor free equilibrium point. 

Also, the numerical substitution verified that there is no positive roots of θ  
since Equation (24) gives 2 2 18.8769 0E D− = − < , then τ  will not switch its 
stability, and as result Hopf bifurcation does not occur. 

It is obvious that from Figure 2 and Figure 3, the delay did not impact the 
behavior of the cells in the system. Delay and non-delay have exactly the same 
graphs. Figure 2 and Figure 3 depicts the interacting cells dynamics for tu-
mor-free equilibrium with variation of glucose concentration g at 0τ ≥ . (a) is 
when 0.01g = , the normal cells grow until it reaches carrying capacity, and the 
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immune cells only seen progressing initially before attaining a steady-state. (b) is 
when 0.15g = , the scenario is relatively as in case (a) except lower growth of 
immune cells. (c) is when 0.5g = , the normal cell exhibits the same scenario as 
in (a & b), but immune cells is relatively dormant comparing to (a & b). The 
growth of one of the interacting cells (normal cells) to their carrying capacity 
suggest an unstable scenario and this is tally with the analytical results. Also, the 
immune cells growth is affected by glucose rate change. This is because the im-
mune efficiency are highly affected by glucose rate, the higher level of glucose in 
the blood, the lower efficiency of the immune system, as stated in the biological 
researches [17] [18]. 

4.2. Case 2: Coexisting Equilibrium Point E1 

For coexisting equilibrium point, we use the following parameters values in 
the numerical simulation: 1 0.7α = , 1 0.8µ = , 1 0.1φ = , 2 0.98α = , 2 0.4µ = , 

1 0.8γ = , 0.8ρ = , 0.3ω = , 2 0.29γ = , 3 0.15µ = , 2 0.1φ = , and 0.4s = , 
0.3992g = . Substituting by these values we obtain the coexisting equilibrium 

point ( )1 0.8377,0.2983,1.6889E = . 
If 0τ = , system (1) is stable since the conditions in Theorem 4 are satisfied, 

as shown in Figure 4(b). When τ  increases and becomes greater than zero, the 
system switches its case from stability to unstability. 

 

 

Figure 3. Cells population when 0τ >  at the tumour-free-equilibrium-point ( )0 0.875,0,1.966E =  with the initial conditions 

( )0.01,0,0.01  when (a) 0.01g = , (b) 0.15g = , (c) 0.5g = . 

 

 

Figure 4. Cells population when 0τ =  at the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the initial condi-

tions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 

https://doi.org/10.4236/jamp.2023.114076


A. H. Alblowy et al. 
 

 

DOI: 10.4236/jamp.2023.114076 1177 Journal of Applied Mathematics and Physics 
 

The values of τ  are obtained by solving Equation (34) as follows:  
3 20.1010209194 0.3495525239 0.04561671822 0ν ν ν− − − =      (51) 

The solutions of this equation are: 1 0.6967132133ν = , 2 0.1454054735ν = − , 

3 0.45028682046ν = − , so there exists one positive root. Since σ ν= ± , we will 
get the following values of σ : 

0.6967132133 0.8346934846σ = ± = ± . 

Then substituting by the values of σ  in Equation (41) using the parameters 
values generates the following τ  values: 0 0.574τ = , 1 8.101τ = , 2 15.629τ = , 

3 23.156τ = , 4 30.684τ = , 5 38.211τ = , and 6 45.739τ = . 
Figure 4 depicts the interacting cells dynamics for coexistence equilibrium for 

0τ =  with variation of glucose concentrations g. (a) is when 0.01g = , tumors 
cells regress as time continuous to zero, the immune cells show progressing and 
undulate to attain stable state. Normal cells demonstrate stable and steady state 
throughout. (b) is when 0.3922g = , the interacting cells are seen stable all 
through. (c) is when 0.5g = , tumor cells is seen progressing towards its carry-
ing capacity, while immune cells regress to overlapped the regressing normal 
cells as a result of the glucose excess which is verified by the biological results 
[6]-[15]. 

Figure 5 depicts the dynamics of the interacting cells for coexistence equili-
brium when 0.574τ =  with variation of glucose concentration g. We observe 
from the figure the stability of the system starts to change and the cells behavior 
begin to be unstable. (a) is when 0.01g = , the stability switches from stable to 
unstable. Both the tumor and immune curves slide to zero but normal cell curve 
keep progressing. (b) is when 0.3922g = , the lines of stability began to ripple, 
which means that there is a change in the behavior of cells from stability to in-
stability. (c) is when 0.5g = , the interacting cells dynamics show that the tu-
mour grow up while immune cells and normal began to decline as a result of the 
glucose excess which is consistent with the biological results [6]-[15]. 

Figure 6 depicts the dynamics of the interacting cells for coexistence equili-
brium when 8.101τ =  with variation of glucose concentration g. (a) is when 

0.01g = , stability of the interacting cells characterized with a fall of immune 
cells’ curve to zero from the steadiness obtained when 0τ =  (b) is when 

0.3922g = , delay induces unregulated in immune cells resurgence, the normal 
cells curve is apparently flatten, and tumor cell curve exhibits progression to a 
dormant state before descending to zero, suggesting a delay-induced change of 
stability (c) is when 0.5g = , the interacting cells dynamics is relatively the 
same with (b) with exception of higher concentration of the interacting cells, 
that is a delay-induced change of stability also characterized this case as in (b).  

Figures 7-11 have the same behavior when 8.101τ =  because the stability of 
the system will continue to be unstable and will not switch again to be stable for 
all delay values. 

Figure 12 describes numerically, the bifurcation analysis of the coexistence 
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equilibrium point for system (1). When 0τ τ= , the stability switching from sta-
ble to unstable where Hopf bifurcation occurs as shown in Figure 12(a) and 
condition (50) is hold. However, when τ  increases, the system continues to be 
unstable as shown in Figure 12(b). Figure 12(a) provides stability details of the 
coexistence equilibrium with the green and the red lines in representing the sta-
ble and unstable parts of the branches respectively. Figure 12(b) indicates all the 
critical values of τ . Figure 12(c) depicts the stable branch emanating from 
Hopf bifurcation (in green) for co-existence equilibrium. 

 

 

Figure 5. Cells population when 0.574τ =  the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the initial con-

ditions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 

 

 

Figure 6. Cells population when 8.101τ =  at the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the initial 

conditions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 

 

 

Figure 7. Cells population when 15.629τ =  at the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the initial 

conditions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 
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Figure 8. Cells population when 23.156τ =  at the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the ini-

tial conditions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 

 

 

Figure 9. Cells population when 30.684τ =  at the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the ini-

tial conditions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 

 

 

Figure 10. Cells population when 38.211τ =  at the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the in-

itial conditions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 

 

 

Figure 11. Cells population when 45.739τ =  at the coexisting equilibrium-point ( )1 0.8377,0.2983,1.6889E =  with the in-

itial conditions ( )0.83,0.29,1.68  when (a) 0.01g = , (b) 0.3922g = , (c) 0.5g = . 
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Figure 12. (a) Stability switching at 0.57τ =  such that green line represents stable and 
red line represents unstable, respectively, at coexisting equilibrium-point  

( )1 0.8377,0.2983,1.6889E =  when 0.3922g = . (b) All critical values of τ  are shown 

in this figure. (c) Hopf bifurcation occurred at 0.57τ =  and a doubling bifurcation oc-
curred at 0.605τ = .  

5. Discussion and Conclusions 

The main objective of this work is to examine the effect of time delay occasioned 
by biological process in the derivation of cytokines for immune-suppression by 
the tumor, and the secretion of cytokines by the immune in the dynamics of 
interaction among tumor, immune and normal cells in the breast cancer mod-
el. To form basis for biological meaningfulness of System (1) outcomes, no- 
negativity and boundlessness of the solution are obtained, and so also, biological 
equilibrium points, namely; tumor-free and coexisting equilibrium point were 
found. The local stability and Hopf bifurcation analysis for these points were 
studied to obtain both stability conditions and possible occurrence of stability 
switch. The numerical simulation validated our theoretical results. 

The analytical results suggest that the tumor-free equilibrium point is always 
unstable as normal cells are bound to grow and reach their carrying capacity re-
gardless of delays. Also, it was observed that there is no change in cells behavior 
when the delay was introduced to the system and when it was not. Biologically, 
since the tumor equals to zero which means no existence of disease, the interac-
tion between immune cells and tumor cells disappears, so the delay will not af-
fect the system. 

For coexistence equilibrium point, the result suggests as follows:  
1) For 0τ = , coexistence equilibrium point is stable scenario if the tumor 

death rate is greater than tumor impairment on normal cells growth.  
2) For 0τ > , coexistence equilibrium point, there exists occurrence of Hopf 

bifurcation with switch of stability from stable to unstable at a critical value of 
*τ τ= .  

Numerical results validate all the analytical results and further provided 
graphical exhibition of the interacting cells under variation of glucose concen-
trations. For tumor-free equilibrium point, the normal cell is seen growing to 
reach their carrying capacity, regardless of increase in glucose concentrations 
(see Figure 2). The immune cells apparently less active and the concentration 
reduce as glucose increases (see Figure 2). For coexistence equilibrium point 
with 0τ = , the interacting cells are relatively stable when the glucose concen-
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tration is 0.01 and 0.3922, but unstable when the glucose concentration surges to 
0.5 as in Figure 4. When 0.574τ =  for the coexistence equilibrium point, the 
delay induces change stability from stable to unstable when the glucose concen-
tration is 0.01 and 0.3922 (see Figure 5(a), Figure 5(b)), but the delay has no 
effect when the glucose concentration is 0.5 as shown in Figure 5(c). When 

8.101τ =  and other values of τ , the cells behavior has changed and become 
completely different from when 0.574τ =  and it is obvious from Figures 6-10 
the system is unstable at some g (glucose) values. Also, the variation of τ  val-
ues does not affect the stability when the glucose concentration is 0.01, but the 
delay induces change stability from stable to unstable when the glucose concen-
tration is 0.3922 and 0.5. Biologically, the delay in secretion of cytokines by im-
mune cells and derivation of cytokines by the tumors cells depicts by 0.574τ =  
can revive the normal cells while both the tumor and immune cells remain stable 
(see Figure 5(a)). However, the continuous in delay might affect no change 
when the glucose level is small (see Figures 6(a)-11(a)), but it might brew a 
chaotic unregulated growth of immune cells (see Figures 6(b)-11(b) & Figures 
6(c)-11(c)). 

In conclusion, the delay in the secretion of cytokines by immune cells and de-
rivation cytokines by the tumors helps to identify the possible chaotic situation 
under different glucose concentration and the extent to which such delay can 
have on restoration of the normal cells when glucose concentration is low. The 
numerical results also hint at possible delay-induced chaotic situation when 
glucose concentration increases on the immune cells, that is the unregulated 
growth of immune cells. In our next work, we will look at incorporating an im-
munotherapy into our proposed model to avert such un-regulatory growth of 
the immune cells when there is increase in both delay and glucose concentration. 
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