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Abstract 
In this work, we prove the existence and uniqueness of the solution of the 
generalized Schrödinger equation in the periodic distributional space ′P . 
Furthermore, we prove that the solution depends continuously respect to the 
initial data in ′P . Introducing a family of weakly continuous operators, we 
prove that this family is a semigroup of operators in ′P . Then, with this 
family of operators, we get a fine version of the existence and dependency 
continuous theorem obtained. Finally, we provide some consequences of this 
study. 
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1. Introduction 

We know from [1], that the generalized Schrödinger equation  

0µ ′− ∂ = ∈m
t xu i u P                        (1) 

with initial data in the periodic distributional space: ′P , has a solution in  
( ), ′C IR P . This also happens for a generalized Schrödinger type homogeneous 

model given in [2]. 
Now, if we add a dissipative term to the problem (1), it is natural to set up the 

model:  
m q

t x xu i u u Pµ β ′− ∂ = ∂ ∈                      (2) 

with initial data in ′P , which we will solve following the ideas of [1] and [3]. 
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That is, we will prove that (2) has a solution and that it is unique. Further-
more, we will demonstrate that the solution depends continuously with respect 
to the initial data in ′P , considering the weak convergence in ′P . And we will 
prove that the introduced family of operators forms a semigroup of weakly con-
tinuous operators. Thus, with this family we will rewrite our result in an elegant 
version. 

In [2], the conservative nature of the problem allowed to obtain a group of 
weakly continuous operators, and here from ( ,m qP ) we will generate a semigroup 
of weakly continuous operators. 

We also want to highlight the wealth of information from Terence [4], Kato 
[5], Liu-Zheng [6], Muñoz [7] and references [8] and [9]. 

Our article is organized as follows. In Section 2, we indicate the methodology 
used and cite the references used. In Section 3, we put the results obtained from 
our study. This section is divided into three subsections. Thus, in 3.1 we prove 
that the problem ( ,m qP ) has a unique solution and also demonstrate that the so-
lution depends continuously with respect to the initial data. In Subsection 3.2, 
we introduce families of weakly continuous linear operators in ′P  that manage 
to form a semigroup. In Subsection 3.3 we improve Theorem 3.1. 

Finally, in Section 4 we give the conclusions of this study. 

2. Methodology 

As theoretical framework in this article we use the references [1] [3] [10] [11] 
and [12] for Fourier Theory in periodic distributional space, periodic Sobolev 
spaces, topological vector spaces, weakly continuous operators, semigroup of 
operators and existence of solution of a distributional differential equation. 

Thus, for a quick review of some definitions necessary for the development of 
this work, we cite [2]. 

We will use this theory in the analysis of the existence and continuous depen-
dence of the solution of ( ,m qP ), carrying out a series of calculations and ap-
proximations in the process.  

3. Main Results 

The presentation of the results obtained has been organized in subsections and is 
as follows. 

3.1. Solution of the Generalized Schrödinger Equation ( m qP , ) 

In this subsection we will study the existence of a solution to the problem ( ,m qP ) and 
the continuous dependence of the solution with respect to the initial data in P′ .  

Theorem 3.1 Let 0µ > , 0β > , m and q are even number not a multiple of 
four, and the distributional problem  

( )
[ )( )

( )
,

0, ,

0 .

m q
m q t x x

u C P

P u i u u P
u f P

µ β

′∈ +∞

′∂ − ∂ = ∂ ∈
′= ∈
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then ( ,m qP ) has a unique solution ( )( )1 0, ,u C P′∈ +∞ . Furthermore, the solu-
tion depends continuously on the initial data. That is, given ,nf f P′∈  such 
that P

nf f′→  implies ( ) ( )P
nu t u t′→ , [ )0,t∀ ∈ +∞ , where nu  is solu-

tion of ( ,m qP ) with initial data nf  and u is solution of ( ,m qP ) with initial data f.  
Proof.- We have organized the proof as follows. 
1) Suppose there exists [ )( )0, ,u C P′∈ +∞  satisfying ( ,m qP ); this will allow us 

to obtain the explicit form of u. Then taking the Fourier transform to the equa-
tion  

,m q
t x xu i u uµ β∂ − ∂ = ∂  

we get  

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ= ,q mq m
t tk u ik u u i ik u u i k uβ β µ µ− = ∂ − = ∂ +  

which for each k ∈  is an ODE with initial data ( ) ( )ˆˆ ,0u k f k= . 
Thus, we propose an uncoupled system of homogeneous first-order ordinary 

differential equations  

( )
( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )

ˆ 0, ,

ˆ ˆ ˆ, , ,
ˆ ˆˆ ,0 with ,

m q
k t

u C S

u k t i k u k t k u k t

u k f k f S

µ β

′∈ +∞

Ω ∂ + = −

′= ∈





 

k∀ ∈  and we get  

( ) ( )ˆˆ , e e ,
m qi k t k tu k t f kµ β− −=  

from where we obtain the explicit expression of u, candidate for solution:  

( ) ( ) ( )ˆˆ , e e
m qi k t k t

k k
k k

u t u k t f kµ βφ φ
+∞ +∞

− −

=−∞ =−∞

= =∑ ∑             (1) 

( )( )ˆ e e .
m qi k t k t

k Z
f k µ β

∨
− −

∈

 =   
                   (2) 

Since f P′∈  then ( )f̂ S Z′∈ . Thus, we affirm that  

( )( ) ( )ˆ e e , 0.
m qi k t k t

k Z
f k S Z tµ β− −

∈
′∈ ∀ ≥                (3) 

Indeed, let 0t ≥ , since ( )f̂ S Z′∈  then satisfies: 0C∃ > , N IN∃ ∈  such 
that ( )ˆ Nf k C k≤ , { }0k Z∀ ∈ − , using this we get  

( ) ( )


( ) ( )
1

1

ˆ ˆ ˆ ˆe e e e e .
m q m q m Ni k t k t i k t k t i k tf k f k f k f k C kµ β µ β µ− − − − −

≤
=

= ≤ = ≤


 

Then,  

( )( ) ( )ˆ e e .
m qi k t k t

k Z
f k S Zµ β− −

∈
′∈  

If we define  

( ) ( )( )ˆ: e e , for all 0,
m qi k t k t

k Z
u t f k tµ β

∨
− −

∈

 = ≥  
           (4) 

we have that ( )u t P′∈ , 0t∀ ≥ , since we apply the inverse Fourier transform to 
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( )( ) ( )ˆ e e
m qi k t k t

k Z
f k S Zµ β− −

∈
′∈ .  

2) We will prove that u defined in (4) is solution of ( ,m qP ) and  
( )( )1 0, ,u C P′∈ ∞ . 

Evaluating (2) at 0t = , we obtain  

( ) ( )( )ˆ ˆ0 .
k Z

u f k f f
∨ ∨

∈
   = = =  

 

Also, the following statements are verified.  
a) ( ) ( ) ( )m q

t x xu t i u t u tµ β∂ = ∂ + ∂  in P′ , 0t∀ > . That is, we will prove that it 
is satisfied:  

( ) ( )

( )

( ) ( )
0

, :

lim , , , ,

t

m q
x xh

u t

u t h u t
i u t u t P

h
ϕ

ϕ µ ϕ β ϕ ϕ
→

∂ =

+ −
= ∂ + ∂ ∀ ∈



 

and for all 0t > .  
Indeed, let 0t > , Pϕ ∈  and 0 h t< < , we denote  

( ) ( )
, : , .h t

u t h u t
I

h
ϕ

+ −
=  

Thus, we get  

( ) ( ){ }

( ) ( ) ( )

( )

( ) ( )

,
1 , ,

1 ˆlim e e ,

ˆlim e e ,

1 ˆlim e e e e 1 ,

m q

m q

m q m q

h t

n
i k t h k t h

kn k n

n
i k t k t

kn k n

n
i k t k t i k h k h

kn k n

I u t h u t
h

f k
h

f k

f k
h

µ β

µ β

µ β µ β

ϕ ϕ

φ ϕ

φ ϕ

φ ϕ

− + − +

→+∞ =−

− −

→+∞ =−

− − − −

→+∞ =−

= + −


= 




− 


 
= − 

 

∑

∑

∑

 

( )

( )
( )

( ) ( )

ˆ2

e e 1ˆlim e e ,

e e 1ˆlim e e ,

e e 1ˆ ˆlim 2 e e

m q
m q

m q
m q

m q
m q

i k h k hn
i k t k t

kn k n

i k h k hn
i k t k t

kn k n
k

i k h k hn
i k t k t

n k n

f k
h

f k
h

f k k
h

µ β
µ β

µ β
µ β

ϕ

µ β
µ β

φ ϕ

φ ϕ

ϕ

− −
− −

→+∞ =−

− −
− −

→+∞ =−
= π −

− −
− −

→+∞ =−

 −
=   

 

  − =       
  −= π −   

 

∑

∑

∑



( ) ( )e e 1ˆ ˆ2 e e .
m q

m q
i k h k h

i k t k t

k
f k k

h

µ β
µ β ϕ

− −+∞
− −

=−∞




 
 −

= π −  
 

∑

     (5) 

Let 0h > , we have  

( )
0

0

e e 1 e e d

e e d .

m q m q

m q

hi k h k h i k s k s

h m q i k s k s

s

i k k s

µ β µ β

µ βµ β

− − − −

− −

′ − =  

= − −

∫

∫
           (6) 

Taking norm to equality (6) we obtain  
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{ } 

{ }


{ }

0
1

1

0

e e 1 e e d

d

.

m q m qh m qi k h k h i k s k s

hm q

h

m q

k k s

k k s

k k h

µ β µ βµ β

µ β

µ β

− − − −

≤
=

=

− ≤ +

= +

= +

∫

∫



          (7) 

That is, from (7) we get  

e e 1 .
m qi k h k h

m qk k
h

µ β

µ β
− − −

≤ +                   (8) 

Using the inequality (8) and that ( )f̂ S Z′∈  we obtain  

( )


( )

( ) ( ) { }
( ) ( ) ( ) ( )

 

( ) ( )

1
1

e e 1ˆ ˆe e

ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ( ) ( )

ˆ ˆ

m q
m q

i k h k h
i k t k t

k

m q

k

m q

k k

N m N q

k kJ J

N m N q

J J

f k k
h

f k k k k

f k k k f k k k

C k k k k

C J J J J

µ β
µ β ϕ

ϕ µ β

µ ϕ β ϕ

µ ϕ β ϕ

µ ϕ β ϕ

− −+∞
− −

=−∞ ≤
=

+∞

=−∞

+∞ +∞

=−∞ =−∞

+∞ +∞
+ +

=−∞ =−∞= =

+∞ +∞
+ +

=−∞ =−∞

−
−

≤ − +

= − + −

 
≤ − + − 

 
 = + < ∞ 
 

∑

∑

∑ ∑

∑ ∑

∑ ∑



 

since ( )ˆ S Zϕ ∈ . 
If 0h <  we have  

{ }e e 1 e .
m q

q
i k h k h

m q k hk k
h

µ β
βµ β

− −
−−

≤ +               (9) 

Using the inequality (9), 0 h t< <  and that ( )f̂ S Z′∈  we obtain  

( ) ( )

( ) ( ) ( ) { }
( ) ( ) ( ) ( )

 

( )

1

1

e e 1ˆ ˆe e

ˆ ˆ e

ˆ ˆˆ ˆ

ˆ ˆ( ) ( )

ˆ

m q
m q

q

i k h k h
i k t k t

k

m qk t h

k

m q

k k

N m N q

k kJ J

N m N q

J J

f k k
h

f k k k k

f k k k f k k k

C k k k k

C J J J

µ β
µ β

β

ϕ

ϕ µ β

µ ϕ β ϕ

µ ϕ β ϕ

µ ϕ β

− −+∞
− −

=−∞
=

+∞
− +

=−∞ ≤

+∞ +∞

=−∞ =−∞

+∞ +∞
+ +

=−∞ =−∞= =

+∞ +∞
+ +

=−∞ =−∞

−
−

≤ − +

= − + −

 
≤ − + − 

 

= +

∑

∑

∑ ∑

∑ ∑

∑ ∑





( )ˆ Jϕ  < ∞ 
 

 

since ( )ˆ S Zϕ ∈ . 
Using the Weierstrass M-Test, the series ,h tI  is absolute and uniformly con-

vergent. Then we can take limit and get  
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( ) ( )

( ) ( ) ( )

( ) ( )

,0 0

e e 1ˆ ˆlim 2 e e lim

ˆ ˆ2 e e

ˆ ˆ2 e e .

m q
m q

m q

m q

m q

i k h k h
i k t k t

h th hk

i k k

i k t k t m

k

i k t k t q

k

I f k k
h

i f k k k

f k k k

µ β
µ β

µ β

µ β

µ β

ϕ

µ ϕ

β ϕ

− −+∞
− −

→ →=−∞

=− −

+∞
− −

=−∞

+∞
− −

=−∞

 − = −  
  

=

π

− −

− −

π

π

∑

∑

∑



    (10) 

Using (10) and that ( ) ( ) ( ) ( ), 1 , ,rr r rT T Tϕ ϕ ϕ= − =  for Pϕ ∈ , T P′∈  
with r a even number, we have  

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )


( )

,0
1 1, ,

2 2

ˆ ˆˆ ˆlim 2 e e 2 e e

ˆ ˆe e , e e ,

ˆ e

m q m q

k k

m q m q

qm
kk

m

i k t k t m i k t k t q
h th k k

i k t k t m i k t k t q
k k

k k
ikik

i k t

k

I i f k k k f k k k

i f k k f k k

i f k

µ β µ β

ϕ φ ϕ φ

µ β µ β

φφ

µ

µ ϕ β ϕ

µ ϕ φ β ϕ φ

µ

+∞ +∞
− − − −

→ =−∞ =−∞
= =

+∞ +∞
− − − −

=−∞ =−∞
==

π

−

=−∞

π

+∞

= − − − −

= −

=

π

+

π

−

∑ ∑

∑ ∑

∑

 



( )

( )

( ) ( )

( )

( ) ( ) ( ) ( )

, ,

ˆe , e e ,

ˆ ˆe e , e e ,

q m q

m q
k k

m q m q

m qk t i k t k t
k k

k

m qi k t k t i k t k t
k k

k k

f k

i f k f k

β µ β

ϕ φ ϕ φ

µ β µ β

ϕ φ β ϕ φ

µ φ ϕ β φ ϕ

+∞
− − −

=−∞

= =

+∞ +∞
− − − −

=−∞ =−∞

+

= +

∑

∑ ∑

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

ˆ ˆlim e e , lim e e ,

ˆ ˆlim e e , lim e e ,

, ,

, , .

m q m q

m q m q

n n
m qi k t k t i k t k t

k kn nk n k n

n n
m qi k t k t i k t k t

k kn nk n k n

m q

m q
x x

i f k f k

i f k f k

i u t u t

i u t u t

µ β µ β

µ β µ β

µ φ ϕ β φ ϕ

µ φ ϕ β φ ϕ

µ ϕ β ϕ

µ ϕ β ϕ

− − − −

→+∞ →+∞=− =−

− − − −

→+∞ →+∞=− =−

= +

= +

= +

= ∂ + ∂

∑ ∑

∑ ∑ (11) 

Therefore,  

( ) ( ) ( ), , , , , 0.m q
t x xu t i u t u t P tϕ µ ϕ β ϕ ϕ∂ = ∂ + ∂ ∀ ∈ ∀ >  

That is,  

( ) ( ) ( ) in , 0.m q
t x xu t i u t u t P tµ β ′∂ = ∂ + ∂ ∀ >  

b) [ )( )0, ,u C P′∈ +∞ . That is, we will prove that  

( ) ( ) when 0, 0.Pu t h u t h t′+ → → ∀ ≥  

In effect, let 0t > , Pϕ ∈ , we will prove that  

( ) ( ), : , 0, when 0.t hH u t h u t hϕ= + − → →  

We know that if Pϕ ∈  then ( )ˆ S Zϕ ∈ . Using (5) we have  

( ) ( ) ( ),
ˆ ˆ2 e e e e 1 .

m q m qi k t k t i k h k h
t h

k
H f k kµ β µ β ϕ

+∞
− − − −

=−∞

= − −π ∑  

Let 0 1h< < , from (8) we get  

e e 1 .
m q m m qi k h k h qk h k h k kµ β µ β µ β− − − ≤ + < +          (12) 
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Using (12) and that ( )f̂ S Z′∈  we obtain  

( )


( )

 

( ) ( )

1
1

ˆ ˆe e e e 1

ˆ ˆ( ) ( )

ˆ ˆ

m q m qi k t k t i k h k h

k

N m N q

k kJ J

N m N q

J J

f k k

C k k C k k

C J J C J J

µ β µ β ϕ

µ ϕ β ϕ

µ ϕ β ϕ

+∞
− − − −

=−∞ ≤
=

+∞ +∞
+ +

=−∞ =−∞= =

+∞ +∞
+ +

=−∞ =−∞

− −

≤ − + −

= + < ∞

∑

∑ ∑

∑ ∑



 

since ( )ˆ S Zϕ ∈ . 
Let 0h < , 1h <  from (9) we get  

{ }e e 1 e .
m q q m qi k h k h k h k kµ β β µ β− − −− ≤ +               (13) 

Using (13), 0 h t< <  and that ( )f̂ S Z′∈  we obtain  

( ) ( )

 

( ) ( )

1

ˆ ˆe e e e 1

ˆ ˆ( ) ( )

ˆ ˆ

m q m qi k t k t i k h k h

k

N m N q

k kJ J

N m N q

J J

f k k

C k k C k k

C J J C J J

µ β µ β ϕ

µ ϕ β ϕ

µ ϕ β ϕ

+∞
− − − −

=−∞
=

+∞ +∞
+ +

=−∞ =−∞= =

+∞ +∞
+ +

=−∞ =−∞

− −

≤ − + −

= + < ∞

∑

∑ ∑

∑ ∑



 

since ( )ˆ S Zϕ ∈ . 
Using the Weierstrass M-Test we conclude that the series ,t hH  converges 

absolute and uniformly. Then it is possible to take limit and obtain  

( ) ( ) { },0 0

0

ˆ ˆlim 2 e e lim e e 1 0.
m q m qi k t k t i k h k h

t hh hk
H f k kµ β µ βϕ

+∞
− − − −

→ →=−∞
=

= −π − =∑


   (14) 

Doing 0t =  in ,t hH  with 0h > , we have  

( ) ( ){ }0,
ˆ ˆ2 e e 1 .

m qi k h k h
h

k
H f k k µ βϕ

+∞
− −

=−∞

= − −π ∑  

Using (12) and that ( )f̂ S Z′∈  we obtain  

( ) ( )

( ) ( )

ˆ ˆ e e 1

ˆ ˆ

m qi k h k h

k

N m N q

k k

f k k

C J J C J J

µ βϕ

µ ϕ β ϕ

+∞
− −

=−∞

+∞ +∞
+ +

=−∞ =−∞

− −

≤ + < ∞

∑

∑ ∑
 

since ( )ˆ S Zϕ ∈ . 
Using the Weierstrass M-Test we conclude that the series 0,hH  converges 

absolute and uniformly. Then is possible to take limit and obtain  

( ) ( ) { }0,
0 0

0

ˆ ˆlim 2 lim e e 1 0.
m qi k h k h

h
h hk

H f k k µ βϕ
+ +

+∞
− −

→ →=−∞
=

− − =π= ∑


       (15) 

From (14) and (15) we can conclude that  

[ )( )0, , .u C P′∈ ∞  
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c) ( ),tu C IR P+ ′∂ ∈ . That is, we will prove that  

( ) ( ) when 0, .P
t tu t h u t h t IR′ +∂ + →∂ → ∀ ∈  

In effect, let t IR+∈  and Pϕ ∈ , using item a) we have  

( ) ( )
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
0 0

, ,

, , , ,

, , , , 0

t t

m m q q
x x x x

m m q q

u t h u t

i u t h u t u t h u t

i u t h u t u t h u t

ϕ ϕ

µ ϕ ϕ β ϕ ϕ

µ ϕ ϕ β ϕ ϕ

→ →

∂ + − ∂

= ∂ + − ∂ + ∂ + − ∂

= + − + + − →
 

 (16) 

when 0h → , since item b) is valid with ( )r Pϕ ∈  for { },r m q∈ .  
From b) and c) we have that ( )1 ,u C IR P+ ′∈ .  
3) Now, we will prove that the solution depends continuously respect to initial 

data. That is, if P
nf f′→  we will prove that:  

( ) ( ) , .P
nu t u t t IR′ +→ ∀ ∈  

We know that if P
nf f′→  then ( )ˆ ˆS Z

nf f′→ , that is  

( )ˆ ˆ , 0 when , .nf f n S Zξ ξ− → → +∞ ∀ ∈           (17) 

For t IR+∈  fixed and arbitrary, we want to prove that  

( ) ( ), , when , .nu t u t n Pψ ψ ψ→ → +∞ ∀ ∈  

Thus, let t IR+∈  be fixed and Pψ ∈ , using the generalized Parseval identity, 
we obtain the following equalities:  

( ) ( )( )ˆ ˆ, 2 e e ,
m qi k t k t

n n
k Z

u t f k µ βψ ψ− −

∈
= π              (18) 

( ) ( )( )ˆ ˆ, 2 e e , .
m qi k t k t

k Z
u t f k µ βψ ψ− −

∈
π=              (19) 

From (18) and (19) we obtain:  

( ) ( ) ( ) ( ){ } ( )
:

ˆ ˆ ˆ, , 2 e e 0
m q

k

i k t k t
n n

k
u t u t f k f k kµ β

ξ

ψ ψ ψ
+∞

− −

=−∞
=

− →π= −∑ 



 

when n → +∞ , since ( ) ( ): k k Z S Zξ ξ
∈

= ∈  and (17) holds.  

□ 
Corollary 3.1 Let 0µ > , 0β > , m and q are even number not a multiple of 

four, then the unique solution of ( ,m qP ) is  

( ) ( ) ( )( )ˆ ˆe e e e ,
m q m qi k t k t i k t k t

k
k Zk

u t f k f kµ β µ βφ
∨+∞

− − − −

∈=−∞

 = =   ∑  

where ( ) eikx
k xφ = , x IR∈ .  

3.2. Semigroup of Operators in P’ 

Let’s remember that P′  is the topological dual of P, where P is a complete me-
tric space. 

In this subsection, we will introduce families of operators ( ){ }, 0t
T tµ β ≥

 in P′ , 
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with 0µ >  and 0β > ; and we will prove that these operators are continuous 
in the weak sense. That is, ( ),T tµ β  is continuous from P′  to P′  with the 
weak topology of P′ , which we will call the weakly continuous operator. 

Furthermore, we will prove that ( ),T tµ β  satisfies the semigroup properties. 
For simplicity, we will denote this family of operators by ( ){ } 0t

T t
≥

.  
Theorem 3.2 Let 0t ≥ , 0µ >  and 0β > , we define:  

( )

( ) ( )( )
:

ˆ: e e ,
m qi k t k t

k Z

T t P P

f T t f f k Pµ β
∨

− −

∈

′ ′→

  ′→ = ∈  

 

then the following statements are satisfied:  
1) ( )0T I= .  
2) ( )T t  is CI  - linear and weakly continuous 0t∀ ≥ . That is, for every 0t ≥ , 

if P
nf f′→  then ( ) ( )P

nT t f T t f′→ .  
3) ( ) ( ) ( )T t r T t T r+ =  , , 0t r∀ ≥ .  
4) ( ) PT t f f′→  when 0t +→ , f P′∀ ∈ .  
That is, for each f P′∈  fixed, the following is satisfied  

( ) , , , when 0 , .T t f f t Pψ ψ ψ+→ → ∀ ∈  

Proof. - Let f P′∈  then ( )f̂ S Z′∈ . Then, from (3) we have  

( )( ) ( )ˆ e e ;
m qi k t k t

k Z
f k S Zµ β− −

∈
′∈  

taking the inverse Fourier transform, we obtain  

( )( )
( )

ˆ e e , 0.
m qi k t k t

k Z

T t f

f k P tµ β
∨

− −

∈

=

  ′∈ ∀ ≥  


 

That is, ( )T t  is well defined for all 0t ≥ . 
1) We easily obtain:  

( ) ( )( ) ( )( )0 0ˆ ˆ ˆ0 e e , .
m qi k k

k Zk Z
T f f k f k f f f Pµ β

∨ ∨ ∨− −

∈∈

      ′= = = = ∀ ∈     
 

2) Let t IR+∈ , we will prove that ( ) :T t P P′ ′→  is CI -linear. In effect, let 
a CI∈  and ( ), P Pφ ψ ′ ′∈ × , we have  

( ) ( ) [ ] ( )( )
( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

( ) ( )

e e

ˆ ˆe e

ˆ ˆe e e e

ˆ ˆe e e e

.

m q

m q

m q m q

m q m q

i k t k t

k Z

i k t k t

k Z

i k t k t i k t k t

k Z k Z

i k t k t i k t k t

k Z k Z

T t a a k

a k k

a k k

a k k

aT t T t

µ β

µ β

µ β µ β

µ β µ β

φ ψ φ ψ

φ ψ

φ ψ

φ ψ

φ ψ

∨
∧− −

∈

∨
− −

∈

∨
− − − −

∈ ∈

∨ ∨
− − − −

∈ ∈

 + = +  

  = +   

 = +  

   = +      
= +

 

Now, for t IR+∈  we will prove that ( ) :T t P P′ ′→  is weakly continuous. 
That is, if P

nf f′→  we will prove that ( ) ( )P
nT t f T t f′→ . 
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We know that if P
nf f′→  then ˆ ˆS

nf f′→ , that is,  

( )ˆ ˆ, , , when , .nf f n S Zξ ξ ξ→ → +∞ ∀ ∈  

That is,  

( )ˆ ˆ , 0, when , .nf f n S Zξ ξ− → → +∞ ∀ ∈           (20) 

We want to prove that:  

( ) ( ), , when , .nT t f T t f n Pψ ψ ψ→ → +∞ ∀ ∈  

Thus, let t IR+∈  fixed and Pψ ∈ , using the generalized Parseval identity, 
we obtain the following equalities  

( ) ( )( )
( )( )

ˆ, e e ,

ˆ ˆ2 e e , ,

m q

m q

i k t k t
n n

k Z

i k t k t
n

k Z

T t f f k

f k

µ β

µ β

ψ ψ

ψ

∨
− −

∈

− −

∈

 =  

π

 

= 

           (21) 

( ) ( )( )
( )( )

ˆ, e e ,

ˆ ˆ2 e e , .

m q

m q

i k t k t

k Z

i k t k t

k Z

T t f f k

f k

µ β

µ β

ψ ψ

ψ

∨
− −

∈

− −

∈

 =  

π

 

= 

           (22) 

From (21) and (22) we get  

( ) ( )

( )( ) ( )( ){ }
( ) ( ) ( ) ( )

( ) ( ){ } ( )
:

, ,

ˆ ˆˆ ˆ2 e e , e e ,

ˆ ˆˆ ˆ2 e e e e

ˆ ˆ ˆ2 e e 0

m q m q

m q m q

m q

k

n

i k t k t i k t k t
n

k Z k Z

i k t k t i k t k t
n

k k

i k t k t
n

k

T t f T t f

f k f k

f k k f k k

f k f k k

µ β µ β

µ β µ β

µ β

ξ

ψ ψ

ψ ψ

ψ ψ

ψ

− − − −

∈ ∈

+∞ +∞
− − − −

=−∞ =−∞

+∞
− −

=−∞
=

−

= −

 = − 
 

=

π

π

π − →

∑ ∑

∑

 

 





 

when n → +∞ , since ( ) ( ): k k Z S Zξ ξ
∈

= ∈  and (20) holds, that is  
ˆ ˆ , 0nf f ξ− →  when n → +∞ . 
3) Let ,t r IR+∈ , we will prove that ( ) ( ) ( )T t T r T t r= + . In effect, let  

Pφ ′∈ ,  

( )  ( ) ( ) ( )( )
 ( )

e e

e e e e .

m q

m q m q

i k t r k t r

k Z

i k r k r i k t k t

k Z

T t r k

k

µ β

µ β µ β

φ φ

φ

∨
− + − +

∈

∨

− − − −

∈

 + =   

  
  = ⋅
    


         (23) 

Since Pφ ′∈ , using (3) we have that  

( )( ) ( ) [ )ˆ e e , 0, .
m qi k r k r

k Z
k S Z rµ βφ − −

∈
′∈ ∀ ∈ +∞            (24) 

Then, taking the inverse Fourier transform, we get:  

( )( ) [ )ˆ e e , 0, .
m qi k r k r

k Z
k P rµ βφ

∨
− −

∈

  ′∈ ∀ ∈ +∞  
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Thus, we define:  

( )( )ˆ: e e .
m qi k r k r

r
k Z

g k Pµ βφ
∨

− −

∈

  ′= ∈  
 

That is,  

( ): .rg T r φ=                          (25) 

Taking the Fourier transform to rg  we get:  

( )( )ˆˆ e e ,
m qi k r k r

r
k Z

g k µ βφ − −

∈
=  

that is,  

( ) ( )ˆˆ e e , .
m qi k r k r

rg k k k Zµ βφ − −= ∀ ∈                (26) 

Using (26) in (23) and from (25) we have:  

( ) ( )( )
( )
( ) ( )( )
( ) ( ) ( )

ˆ e e

, , .

m qi k t k t
r

k Z

r

T t r g k P

T t g

T t T r

T t T r t r IR

µ βφ

φ

φ

∨
− −

∈

+

  ′+ = ∈  
=

=

= ∀ ∈  

 

So we have proven,  

( ) ( ) ( )= , , .T t r T t T r t r IR++ ∀ ∈                 (27) 

If 0t =  or 0r =  then equality (27) is also true, with this we conclude the 
proof of  

( ) ( ) ( ) [ ), , 0, .T t r T t T r t r+ = ∀ ∈ +∞               (28) 

4) Let f P′∈ , we will prove that:  

( ) when 0 .PT t f f t′ +→ →  

That is, we will prove that  

( ) , , when 0 , .T t f f t Pϕ ϕ ϕ+→ → ∀ ∈  

In effect, for 0t >  and Pϕ ∈ , we have  

( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( )

: , ,

ˆ ˆlim e e , ,

ˆlim e e 1 ,

ˆlim e e 1 ,

ˆ ˆlim 2 e e 1

ˆ2 e e

m q

m q

m q

m q

m

t

n n
i k t k t

k kn k n k n

n
i k t k t

kn k n

n
i k t k t

kn k n
n

i k t k t

n k n

i k t

k

H T t f f

f k f k

f k

f k

f k k

f k

µ β

µ β

µ β

µ β

µ β

ϕ ϕ

φ ϕ φ ϕ

φ ϕ

φ ϕ

ϕ

− −

→+∞ =− =−

− −

→+∞ =−

− −

→+∞ =−

− −

→+∞ =−

+∞
− −

=−∞

= −

 
= − 

 

=

π

π

−

= −

= − −

=

∑ ∑

∑

∑

∑

∑ ( ) ( )ˆ1 .
qk t kϕ− −

      (29) 
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Since 0t > , from (7) we get  

{ }e e 1 .
m q m qi k t k t k k tµ β µ β− − − ≤ +                  (30) 

From (30) we obtain  

{ } [ )e e 1 , 0, .
m q m qi k t k t k k t tµ β µ β− − − ≤ + ∀ ∈ +∞           (31) 

From (31) with 0 1t< < , we have  

e e 1 .
m q m qi k t k t k kµ β µ β− − − ≤ +                  (32) 

Then using (32) and that f P′∈ , we obtain  

( ) ( )

 

( ) ( )

ˆ ˆe e 1

ˆ ˆ( ) ( )

ˆ ˆ

m qi k t k t

k

N m N q

k kJ J

N m N q

J J

f k k

C k k k k

C J J J J

µ β ϕ

µ ϕ β ϕ

µ ϕ β ϕ

+∞
− −

=−∞

+∞ +∞
+ +

=−∞ =−∞= =

+∞ +∞
+ +

=−∞ =−∞

− −

 
≤ − + − 

 
 = + < ∞ 
 

∑

∑ ∑

∑ ∑

 

since ( )ˆ S Zϕ ∈ . 
Using the Weierstrass M-Test we conclude that the t  series converges ab-

solute and uniformly. So,  

( ) ( ) { }
0 0

0

ˆ ˆlim 2 lim e e 1 0.
m qi k t k t

t
t tk

f k k µ βϕ
+ +

+∞
− −

→ →=−∞
=

= − − =π ∑


  

Thus, we have proved  

( )
0

lim , , .
t

T t f fϕ ϕ
+→

=  

□ 
Theorem 3.3 For each f P′∈  fixed and the family of operators ( ){ } 0t

T t
≥

 
from Theorem 3.2, then the application  

[ )
( )

: 0, P

t T t f

ζ ′+∞ →

→
 

is continuous in [ )0,+∞ . That is,  

( ) ( ) [ )when 0, 0, .PT t h f T t f h t′+ → → ∀ ∈ +∞           (33) 

(is the continuity at t). 
That is, (33) tell us that for each ( )0,t∈ +∞  fixed, the following is satisfied  

( ) ( ), , , when 0, ,T t h f T t f h Pψ ψ ψ+ → → ∀ ∈  

and if 0t = , we have the continuity of ζ  at 0 on the right, which is item 4) of 
Theorem 3.2.  

Proof.- Let 0t > , arbitrary fixed and f P′∈ , then ( ):g T t f P′= ∈ , using 
item 4) of Theorem 3.2 we have that ( ) PT h g g′→  when 0h +→ . That is,  

( ) ( )( )
( ) ( )
( )

( ) when 0 ,P

T h T t f

T h t f

T h T t f T t f h′ +

=  

= +

→ →
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where we use item 3) of Theorem 3.2. With this we have proved that  

( ) ( ) ( )when 0 , 0, .PT t h f T t f h t′ ++ → → ∀ ∈ +∞         (34) 

Now, we will prove that ( ) ( ) when 0PT t f T t fν ν′ −+ → → . That is, we 
will demonstrate  

( ) ( ), , when 0 , .T t h f T t f h Pϕ ϕ ϕ+− → → ∀ ∈         (35) 

In effect, for 0t h> >  and Pϕ ∈ , we have  

( ) ( )

( ) ( ) ( )

( )

( ) ( )

, : , ,

ˆlim e e ,

ˆ e e ,

ˆlim e e e e 1 ,

m q

m q

m q m q

t h

n
i k t h k t h

kn k n

n
i k t k t

k
k n

n
i k t k t i k h k h

kn k n

T t h f T t f

f k

f k

f k

µ β

µ β

µ β µ β

ϕ ϕ

φ ϕ

φ ϕ

φ ϕ

− − − −

→+∞ =−

− −

=−

− −

→+∞ =−

= − −


= 




− 


= −

∑

∑

∑



 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

ˆlim e e e e 1 ,

ˆ ˆlim 2 e e e e 1

ˆ ˆ2 e e e e 1 .

m q m q

m q m q

m q m q

n
i k t k t i k h k h

kn k n
n

i k t k t i k h k h

n k n

i k t k t i k h k h

k

f k

f k k

f k k

µ β µ β

µ β µ β

µ β µ β

φ ϕ

ϕ

ϕ

− −

→+∞ =−

− −

→+∞ =−

+∞
− −

=−∞

= −

= − −

= −

π

π −

∑

∑

∑

      (36) 

In the series (36), we need to delimit the expression e e 1
m qi k h k hµ β− − − . So, we 

have  

( )

( ) ( )
0

0

e e 1 e d

e d .

m qm q

m q

h i k k si k h k h

h i k k sm q

s

i k k s

µ βµ β

µ β
µ β

+

+

′ − =   

= +

∫

∫

            (37) 

Taking norm to equality (37) and using: ( ) ( )
0

e d e
q qh k s k h

s h
β β

≤∫  for 0h > , we 
obtain  

( )

{ } ( )

{ } ( )

0
e e 1 e d

e

e

qm q

q

q

h k si k h k h m q

k hm q

k hm q

i k k s

k k h

k k

βµ β

β

β

µ β

µ β

µ β

− ≤ +

≤ + ⋅

≤ +

∫

              (38) 

whenever 0 1h< < . 
Using inequality (38) and ( )e 1

qk t hβ− − ≤  for 0 h t< <  with 1h , we have  

( ) ( )

( ) ( ) { } ( )

( ) ( ) { }

ˆ ˆe e e e 1

ˆ ˆe

ˆ ˆ

m q m q

q

i k t k t i k h k h

k

m qk t h

k

m q

k

f k k

f k k k k

f k k k k

µ β µ β

β

ϕ

µ β ϕ

ϕ µ β

+∞
− −

=−∞

+∞
− −

=−∞

+∞

=−∞

− −

≤ + −

≤ − +

∑

∑

∑
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

ˆ ˆˆ ˆ

ˆ ˆ

ˆ ˆ

m q

k k

N m N q

k k

N m N q

J J

f k k k f k k k

C k k k k

C J J J J

µ ϕ β ϕ

µ ϕ β ϕ

µ ϕ β ϕ

+∞ +∞

=−∞ =−∞

+∞ +∞
+ +

=−∞ =−∞

+∞ +∞
+ +

=−∞ =−∞

≤ − + −

 ≤ − + − 
 
 ≤ + < ∞ 
 

∑ ∑

∑ ∑

∑ ∑

       (39) 

since ( )ˆ S Zϕ ∈ . 
Using the Weierstrass M-Test we obtain that the series ,h tL  is absolute and 

uniformly convergent.  
Then, we can take limit and get:  

( ) { } ( ),
0 0

0

ˆ ˆlim 2 e e lim e e 1 0,
m q m qi k t k t i k h k h

h t
h hk

f k kµ β µ β ϕ
+ +

+∞
− −

→ →=−∞
=

π= − − =∑


  

with this (35) is proved. 
From (34) and (35) we conclude that  

( ) ( ) ( )when 0, 0, .PT t h f T t f h t′+ → → ∀ ∈ +∞          (40) 

□ 
Remark 3.1 The results obtain in Theorems 3.2 and 3.3 are also valid for the 

family of operators ( ){ } 0t
S t

≥
, defined as  

( )

( ) ( )( )
:

ˆ: e e ,
m qi k t k t

k Z

S t P P

f S t f f kµ β
∨

−

∈

′ ′→

 → =   

 

for [ )0,t∈ +∞ . Its proof is similar.  

3.3. Version of Theorem 3.1 Using the Family ( ){ }t
T t

0≥
 

We improve the statement of theorem 3.1, using a family of weakly continuous 
Operators ( ){ } 0t

T t
≥

.  
Theorem 3.4 Let f P′∈  and the family of operators ( ){ } 0t

T t
≥

 from Theo-
rem 3.2, defining ( ) ( ):u t T t f P′= ∈ , [ )0,t∀ ∈ +∞ , then [ )( )0, ,u C P′∈ +∞  is 
the unique solution of ( ,m qP ). Furthermore, u continuously depends on f. That 
is, given ,nf f P′∈  with P

nf f′→  implies ( ) ( )P
nu t u t′→ , [ )0,t∀ ∈ +∞ , 

where ( ) ( ):n nu t T t f= , [ )0,t∀ ∈ +∞  (that is, nu  is a solution of ( ,m qP ) with 
initial data nf ).  

Proof.- It is analogous to the proof of Theorem 3.1. 

□ 
Corollary 3.2 Let f P′∈  be fixed and the family of operators ( ){ } 0t

T t
≥

 from 
Theorem 3.4, then ( )tT t f∃∂ , ( )0,t∀ ∈ +∞  and the mapping  

( )
( ) ( ) ( )

: 0,
m q

t x x

P

t T t f i T t f T t f

η

µ β

′+∞ →

→∂ = ∂ + ∂
 

is continuous at ( )0,+∞ . That is,  
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( ) ( ) ( )when 0, 0, .P
t tT t h f T t f h t′∂ + →∂ → ∀ ∈ +∞        (41) 

(41) tells us that for each ( )0,t∈ +∞  fixed, it holds:  

( ) ( ), , when 0, .t tT t h f T t f h Pϕ ϕ ϕ∂ + → ∂ → ∀ ∈  

Proof.- Indeed,  

( ) ( )
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
0 0

, ,

, , , ,

, , , ,

0

t t

m m q q
x x x x

m m q q

T t h f T t f

i T t h f T t f T t h f T t f

i T t h f T t f T t h f T t f

ϕ ϕ

µ ϕ ϕ β ϕ ϕ

µ ϕ ϕ β ϕ ϕ
→ →

∂ + − ∂

= ∂ + − ∂ + ∂ + − ∂

= + − + + −

→

 

 

when 0h → , due to Theorem 3.3 with ( ): r Pψ ϕ= ∈  for { },r m q∈ .  

□ 
Corollary 3.3 Let f P′∈  be fixed and the family of operators ( ){ } 0t

T t
≥

 from 
Theorem 3.4, then the solution of ( ,m qP ): ( ) ( ):u t T t f= , [ )0,t∀ ∈ +∞ , satisfies 

( )( )1 0, ,u C P′∈ +∞ .  
Proof.- It comes out as a consequence of Corollary 3.2. 

□ 

4. Conclusions 

In our study of the generalized Schrödinger equation in the periodic distribu-
tional space P′ , that is, the problem ( ,m qP ) with m and q even numbers not 
multiple of four, we have obtained the following results:  

1) We prove the existence, uniqueness of the solution of the problem ( ,m qP ) in 
P′ . Thus we also prove the continuous dependence of the solution respect to the 
initial data in P′ . Remember that P′  is not a Banach Space.  

2) We introduce families of operators in P′ : ( ){ } 0t
T t

≥
 and we prove that 

they are linear and weakly continuous in P′ . Furthermore, we proved that they 
form a semigroup of weakly continuous operators in P′ .  

3) With the family of operators ( ){ } 0t
T t

≥
 we improve Theorem 3.1.  

4) Also, note that this is mathematically enriched with the families of the gen-
erated operators and their properties.  

5) In contrast to what was obtain in [2]: a group of weakly continuous opera-
tors, here we obtain a semigroup of weakly continuous operators.  

6) Remark that the results obtained will allow us to apply computational me-
thods to determine the solution with a degree of approximation that is required 
and with a lower error rate.  

7) Finally, we must indicate that this technique can be applied to other evolu-
tion equations in P′ .  
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