Matrix Boundary Value Problem on Hyperbola

Shaohua Fan
School of Science, Tianjin University of Technology and Education, Tianjin, China
Email: 1002269067@qq.com

How to cite this paper: Fan, S.H. (2023) Matrix Boundary Value Problem on Hyperbola. Journal of Applied Mathematics and Physics, 11, 884-890.
https://doi.org/10.4236/jamp.2023.114059

Received: March 6, 2023
Accepted: April 15, 2023
Published: April 18, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

We study a special class of lower trigonometric matrix value boundary value problems on hyperbolas. Firstly, the pseudo-orthogonal polynomial on hyperbola is given in bilinear form and it is shown that it is the only one. Secondly, a special boundary value problem of lower triangular matrix is presented and transformed into four related boundary value problems. Finally, Liouville theorem and Painlevé theorem and pseudo-orthogonal polynomials are used to give solutions.

Keywords

Hyperbola, Matrix Boundary Value Problem, Orthogonal Polynomial

1. Introduction

In some references [1] [2] [3], the boundary value problem (Riemann-Hilbert problem) of analytic functions on finite curves is discussed, but the research on infinite curves is not deep enough. In [4], the author discusses the Riemann boundary value problem on the positive real axis and generalizes the concept of the generalized principal part.

The Riemann-Hilbert method is a brand-new method for studying orthogonal polynomials formed in recent 20 years. In 1992, FoKas A S, Its A R and Kitaev A V constructed a matrix-valued Riemann-Hilbert boundary value problem in [5], the only solution of which is the orthogonal polynomial on the real axis. In 1993, Deift P and Zhou X introduced the Riemann-Hilbert boundary value problem of oscillatory type in [6], and applied it to the study of orthogonal polynomials. Therefore, the Riemann-Hilbert method was formed [6].

2. Preliminary

In this paper, the right branch of the Hyperbola $x^{2}-y^{2}=1$ is denoted by default to L, which is regarded as the image of the function $x=\varphi(y)=\sqrt{y^{2}+1}$,
and L is oriented from top to bottom.
Denote by l_{a} the point $\varphi(a)+i a$ and $\infty^{ \pm}$respectively its upper and lower infinite ends. Then \mathbb{C} consists of two connected components, the right part S^{+}and the left part S^{-}.

We use bilinear form to replace inner product on hyperbola, which is a common way. For example, [Lu J K, 1993] gives the solvable condition of singular integral equation by this way; for example, Delft P. defined a polynomial group similar to orthogonal polynomials in bilinear form in [7], and we studied similar polynomial groups on hyperbola:

Let $w(t)$ be a nonzero weight function. We introduce bilinear form in polynomial space Π_{n} with degree no more than n :

$$
\begin{equation*}
(f, g)=\int_{L} w(t) f(t) g(t) \mathrm{d} t, \quad f, g \in \Pi_{n} \tag{1}
\end{equation*}
$$

Take a group of bases $1, t, t^{2}, \cdots, t^{n}$ in Π_{n} and make Schmidt orthogonalization on this group of bases, then we have

$$
\begin{gathered}
p_{0}(z)=\frac{1}{\left(\int_{L} w \mathrm{~d} t\right)^{\frac{1}{2}}} \\
p_{1}(z)=\frac{t-\frac{\left(t, p_{0}\right)}{\left(p_{0}, p_{0}\right)} p_{0}}{\left(t-\frac{\left(t, p_{0}\right)}{\left(p_{0}, p_{0}\right)} p_{0}, t-\frac{\left(t, p_{0}\right)}{\left(p_{0}, p_{0}\right)} p_{0}\right)^{\frac{1}{2}}}
\end{gathered}
$$

$$
p_{n}(z)=\frac{t^{n}-\frac{\left(t^{n}, p_{n-1}\right)}{\left(p_{n-1}, p_{n-1}\right)} p_{n-1}-\cdots-\frac{\left(t^{n}, p_{1}\right)}{\left(p_{1}, p_{1}\right)} p_{1}-\frac{\left(t^{n}, p_{0}\right)}{\left(p_{0}, p_{0}\right)} p_{0}}{\left(A_{n}, A_{n}\right)}
$$

where $A_{n}=t^{n}-\frac{\left(t^{n}, p_{n-1}\right)}{\left(p_{n-1}, p_{n-1}\right)} p_{n-1}-\cdots-\frac{\left(t^{n}, p_{1}\right)}{\left(p_{1}, p_{1}\right)} p_{1}-\frac{\left(t^{n}, p_{0}\right)}{\left(p_{0}, p_{0}\right)} p_{0}$, If $\left(p_{n}, p_{n}\right)$ is always not zero, then this process can always be carried out. Finally, we get a pseudo-orthogonal polynomial group with a weight function of $p_{0}, p_{1}(z), \cdots, p_{n}(z)$ on L :

$$
\begin{equation*}
P_{k}(z)=\frac{1}{\alpha_{k}} p_{k}(z), k=0,1, \cdots, n, \tag{2}
\end{equation*}
$$

where α_{k} is the first coefficient of $p_{k}(z)$, then $P_{k}(z)$ is a pseudo-orthogonal polynomial of degree k with the first coefficient of 1 . Obviously, the pseudoorthogonal polynomial group $P_{0}, P_{1}(z), \cdots, P_{n}(z)$ is unique.

Definition 1. Let f is defined on L, if there is some positive real number a, such that

$$
\begin{equation*}
\left|f\left(t^{\prime}\right)-f\left(t^{\prime \prime}\right)\right| \leq M\left|\frac{1}{t^{\prime}}-\frac{1}{t^{\prime \prime}}\right|^{\mu}, \quad t^{\prime}, t^{\prime \prime} \in \widetilde{l_{\infty^{+}} l_{a}} \cup \widetilde{l_{a} l_{\infty^{-}}} \tag{3}
\end{equation*}
$$

where M and $0<\mu \leq 1$ are definite constants, then denoted by $f \in \hat{H}^{\mu}(\infty)$,
and if $f \in H^{\mu}(L)$, then denoted by $f \in \hat{H}^{\mu}(L)$. If $f \in \hat{H}^{\mu}(\infty)$ and $f(\infty)=0$, then denoted by $f \in \hat{H}_{0}^{\mu}(\infty)$, or $f \in \hat{H}_{0}(\infty)$. Moreover, if $t^{\lambda} f \in \hat{H}_{0}(\infty)$, then denoted by $f \in \hat{H}_{\lambda, 0}(\infty)$.

Definition 2 Let f is a function defined on L. There exists $t \rightarrow \infty$ such that

$$
f(t)=\frac{f^{*}(t)}{t^{\nu}}
$$

where v is a real number and f^{*} is a bounded function, then denoted by $f \in O^{v}(\infty)$.
Definition 3 If F is holomorphic in the complex plane cut by the Hyperbola, then denoted by $F \in A(\mathbb{C} \backslash L)$.

Definition 4 Let f be a locally integrable function on L. If

$$
\begin{equation*}
(C[f])(z)=\frac{1}{2 \pi \mathrm{i}} \int_{L} \frac{f(\tau)}{\tau-z} \mathrm{~d} \tau, \quad z \in \mathbb{C} \backslash L \tag{4}
\end{equation*}
$$

is integrable, it is called the Cauchy-type integral with kernel density f on L, and the Cauchy principal value integral with kernel density f is defined by

$$
(C[f])(t)=\frac{1}{2 \pi i} \int_{L} \frac{f(\tau)}{\tau-t} \mathrm{~d} \tau=\lim _{r \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{\mid y-a>0} \frac{f((\varphi(y)+i y))\left(\varphi^{\prime}(y)+i y\right)}{\varphi(y)+i y-t} \mathrm{~d} y(5)
$$

where $t=\varphi(a)+i a \in L$, if the integral exists.
Ref [Wang Ying, 2017], below we introduce the concept of a generalized main part.

Definition 5 Let $F \in A(\mathbb{C} \backslash L)$. If there exists an entire function $E(z)$ such that

$$
\begin{equation*}
\lim _{z \rightarrow \infty}[F(z)-E(z)]=0 \tag{6}
\end{equation*}
$$

and then $E(z)$ is called the generalized principal part of $F(z)$ at ∞, denoted by G.P $[F, \infty]$.

Reference [8] proves the generalized principal part of Cauchy integral at infinity and Plemelj formula.

Theorem 1 [8] If $f \in H(L) \cap O^{v}(\infty)(v>0)$ is locally integrable on L. Then

$$
\begin{equation*}
\text { G.P }[C[f], \infty]=0 . \tag{7}
\end{equation*}
$$

Theorem 2 [8] If $f \in \hat{H}^{\mu}(L)$, then the boundary values of the Cauchy-type integral $C[f]$ exist and have the following Plemelj formula:

$$
\begin{equation*}
(C[f])^{ \pm}(t)= \pm \frac{1}{2} f(t)+\frac{1}{2 \pi i} \int_{L} \frac{f(\tau)}{\tau-t} \mathrm{~d} \tau \tag{8}
\end{equation*}
$$

3. Matrix Value Riemann Boundary Value Problem

In this paper, we consider the Riemann boundary value problem of lower trigonometric matrix on hyperbola.

Let

$$
\Phi(z)=\left(\begin{array}{ll}
\Phi_{1,1}(z) & \Phi_{1,2}(z) \tag{9}\\
\Phi_{2,1}(z) & \Phi_{2,2}(z)
\end{array}\right)
$$

be a matrix-valued function defined on subset Ω of the complex plane \mathbb{C}, and each element $\Phi_{j, k}$ be a function defined on Ω. If every element $\Phi_{j, k}$ of Φ satisfies the same property, then Φ is said to have its corresponding property, such as $\Phi \in A(\mathbb{C} \backslash L)$, G.P $[\Phi, \infty](z), \Phi \in H(L)$.

Problem (boundary value problem of lower trigonometric matrix value function) Find the matrix-valued partitioned holomorphic function Φ with L as the jump curve, such that

$$
\left\{\begin{array}{l}
\Phi^{+}(t)=\left(\begin{array}{cc}
1 & 0 \\
w(t) & 1
\end{array}\right) \Phi^{-}(t), t \in L, \tag{10}\\
\mathrm{G} \cdot \mathrm{P}[\Xi \Phi, \infty](z)=I
\end{array}\right.
$$

where

$$
\Xi(z)=\left(\begin{array}{cc}
z^{-n} & 0 \tag{11}\\
0 & z^{n}
\end{array}\right)
$$

I is the identity matrix of $2 \times 2, \quad w \in H^{\mu}(L) \cap \hat{H}_{2 n, 0}(\infty)$.
We can convert (10) into four related Riemann boundary value problems:

$$
\begin{gather*}
\left\{\begin{array}{l}
\Phi_{1,1}^{+}(t)=\Phi_{1,1}^{-}(t), \quad t \in L, \\
G \cdot P\left[z^{-n} \Phi_{1,1}, \infty\right]=1,
\end{array}\right. \tag{12}\\
\left\{\begin{array}{l}
\Phi_{1,2}^{+}(t)=\Phi_{1,2}^{-}(t), \quad t \in L, \\
G \cdot P\left[z^{-n} \Phi_{1,2}, \infty\right]=0,
\end{array}\right. \tag{13}\\
\left\{\begin{array}{l}
\Phi_{2,1}^{+}(t)=\Phi_{2,1}^{-}(t)+w(t) \Phi_{1,1}^{-}(t), \quad t \in L, \\
G \cdot P\left[z^{n} \Phi_{2,1}, \infty\right]=0,
\end{array}\right. \tag{14}\\
\left\{\begin{array}{l}
\Phi_{2,2}^{+}(t)=\Phi_{2,2}^{-}(t)+w(t) \Phi_{1,2}^{-}(t), \quad t \in L, \\
G \cdot P\left[z^{n} \Phi_{2,2}, \infty\right]=1 .
\end{array}\right. \tag{15}
\end{gather*}
$$

Obviously, (12) is a Liouville problem. It is known from Painlevé theorem that $\Phi_{1,1}(z)$ is analytic over the entire complex plane. Because G.P $\left[z^{-n} \Phi_{1,1}, \infty\right]=1$, it is known from the generalized Liouville theorem that

$$
\begin{equation*}
\Phi_{1,1}(z)=P_{n}(z) \tag{16}
\end{equation*}
$$

where $P_{n}(z)$ is a polynomial with a leading coefficient of 1 and a degree of n. By (16), we have

$$
\left\{\begin{array}{l}
\Phi_{2,1}^{+}(t)=\Phi_{2,1}^{-}(t)+w(t) P_{n}(t), \quad t \in L \tag{17}\\
G \cdot P\left[z^{n} \Phi_{2,1}, \infty\right]=0
\end{array}\right.
$$

Obviously (17) is a jump problem with L as the jump curve. Let

$$
\begin{equation*}
\psi(z)=C\left[w P_{n}\right](z)=\frac{1}{2 \pi i} \int_{L} \frac{w(\tau) P_{n}(\tau)}{\tau-z} \mathrm{~d} \tau, \quad z \in L \tag{18}
\end{equation*}
$$

by $w \in H^{\mu}(L) \cap \hat{H}_{2 n, 0}(\infty)$,

$$
\begin{equation*}
w P_{n} \in H^{\mu}(L) \cap \hat{H}_{n, 0}(\infty) \tag{19}
\end{equation*}
$$

Therefore, by Plemelj formula (8) and Theorem 1, we can know that $\psi(z)$ is a partitioned holomorphic function with L as the jump curve, and satisfies:

$$
\left\{\begin{array}{l}
\psi^{+}(t)=\psi^{-}(t)+\omega(t) P_{n}(t), t \in L, \tag{20}\\
G . P[\psi, \infty](z)=0
\end{array}\right.
$$

let $F(z)=\Phi(z)-\psi(z)$, then F is a partitioned holomorphic function with L as the jump curve and satisfies:

$$
\left\{\begin{array}{l}
F^{+}(t)=F^{-}(t), t \in L, \tag{21}\\
\mathrm{G} . \mathrm{P}[F, \infty]=0,
\end{array}\right.
$$

Obviously problem (21) is a zero-order Liouville problem, its solution is $F(z)=0$, so

$$
\begin{equation*}
\Phi_{2,1}(z)=C\left[w P_{n}\right](z)=\frac{1}{2 \pi i} \int_{L} \frac{w(\tau) P_{n}(\tau)}{\tau-z} \mathrm{~d} \tau, z \in \mathbb{C} \backslash L \tag{22}
\end{equation*}
$$

if and only if condition G.P $\left[z^{n} \Phi_{2,1}, \infty\right]=0$ is satisfied. By

$$
\begin{align*}
z^{n} \Phi_{2,1}(z) & =\frac{1}{2 \pi i} \int_{L} \frac{w(\tau) P_{n}(\tau)\left(z^{n}-\tau^{n}\right)}{\tau-z} \mathrm{~d} \tau+\frac{1}{2 \pi i} \int_{L} \frac{w(\tau) P_{n}(\tau) \tau^{n}}{\tau-z} \mathrm{~d} \tau \tag{23}\\
& =-\sum_{k=0}^{n-1} \frac{z^{k}}{2 \pi i} \int_{L} w(\tau) P_{n}(\tau) \tau^{n-1-k} \mathrm{~d} \tau+\frac{1}{2 \pi i} \int_{L} \frac{w(\tau) P_{n}(\tau) \tau^{n}}{\tau-z} \mathrm{~d} \tau
\end{align*}
$$

and Theorem 1 and (19), it can be seen that G.P $\left[z^{n} \Phi_{2,1}, \infty\right]=0$ is equivalent to

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{L} w(\tau) P_{n}(\tau) \tau^{k} \mathrm{~d} \tau=0, k=0,1, \cdots, n-1 \tag{24}
\end{equation*}
$$

Obviously (13) is the Liouville problem, similar to (12) we have

$$
\begin{equation*}
\Phi_{1,2}(z)=q_{n-1}(z) \tag{25}
\end{equation*}
$$

where $q_{n-1}(z)$ is a polynomial of order not exceeding $n-1$.
By (16), we have

$$
\left\{\begin{array}{l}
\Phi_{2,2}^{+}(t)=\Phi_{2,2}^{-}(t)+w(t) q_{n-1}(t), \quad t \in L \tag{26}\\
G \cdot P\left[z^{n} \Phi_{2,2}, \infty\right]=1
\end{array}\right.
$$

Obviously, (26) is a fixed-order jump problem, similar to (15). It can be seen that its solution is

$$
\begin{equation*}
\Phi_{2,2}(z)=C\left[w q_{n-1}\right](z)=\frac{1}{2 \pi i} \int_{L} \frac{w(\tau) q_{n-1}(\tau)}{\tau-z} \mathrm{~d} \tau, z \in \mathbb{C} \backslash L \tag{27}
\end{equation*}
$$

if and only if condition

$$
\left\{\begin{array}{l}
\frac{1}{2 \pi i} \int_{L} w(\tau) q_{n-1}(\tau) \tau^{k} \mathrm{~d} \tau=0, k=0,1, \cdots, n-2 \tag{28}\\
\frac{1}{2 \pi i} \int_{L} w(\tau) q_{n-1}(\tau) \tau^{n-1} \mathrm{~d} \tau=-1
\end{array}\right.
$$

is satisfied.
Let $q_{n-1}=\lambda P_{n-1}$, then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{L} \omega(\tau) \lambda P_{n-1} P_{n-1}=-1 \tag{29}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\lambda=\frac{-2 \pi i}{\int_{L} \omega(\tau) P_{n-1}^{2}(\tau) \mathrm{d} \tau} \tag{30}
\end{equation*}
$$

then q_{n-1} is a pseudo-orthogonal polynomial of degree $n-1$ on L with respect to the weight function w.

Definition 6

$$
\begin{equation*}
f^{*}(z)=\frac{1}{2 \pi i} \int_{L} \frac{\omega(\tau) f(\tau)}{\tau-z} \mathrm{~d} \tau, \quad z \notin L, \tag{31}
\end{equation*}
$$

we call it the companion function of f with respect to the weight function w.
Theorem 3 If $w \in H^{\mu}(L) \cap \hat{H}_{2 n, 0}(\infty)$, then the lower triangular matrix-valued Riemann boundary value problem (10) has a solution, and its solution has the following form:

$$
\Phi(z)=\left(\begin{array}{ll}
P_{n}(z) & \lambda P_{n-1}(z) \tag{32}\\
P_{n}^{*}(z) & \lambda P_{n-1}^{*}(z)
\end{array}\right)
$$

where $P_{n}(z)$ is a polynomial with a leading coefficient of 1 and a degree of n, and P_{n}^{*} is the companion function of P_{n} with respect to the middle weight function w.

Proof: If (10) has a solution, it can be seen from the previous discussion that its solution is of the form (32).

Conversely, the polynomial with pseudo-orthogonal and leading coefficient 1 is unique, and by reversing each previous step, we get that Φ is the solution of (10), that is, (10) has and only one set of solutions (32).

The matrix-valued boundary value problem (10) is characterized by the pseu-do-orthogonal polynomial P_{n} on L with respect to the weight function w and the leading coefficient is 1 . Therefore, we call this problem the Riemann-Hilbert characteristic characterization of the orthogonal polynomial of the weight function w on hyperbola, or P_{n} is the characteristic orthogonal polynomial of the matrix-valued boundary value problem (10), please refer to [Deift P, 2011] for details.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Gakhov, F.D. (1977) Boundary Value Problems. Nauka, Moscow.
[2] Lu, J.K. (1993) Boundary Value Problems for Analytic Functions. World Scientific, Singapore. https://doi.org/10.1142/1701
[3] Muskhelishvili, N.I. (1953) Singular Integral Equations. 2nd Edition, P. Noordhoff N. V., Groningen.
[4] Wang, Y., Duan, P. and Du, J.Y. (2017) Riemann Boundary Value Problems on Positive Real Axis. Science in China: Mathematics, 47, 887-918.
https://doi.org/10.1360/N012016-00146
[5] Fokas, A.S., Its, A. andKitaev, A.V. (1992) The Isomonodromy Approach to Matric Models in 2D Quantum Gravity. Communications in Mathematical Physics, 147, 395-430. https://doi.org/10.1007/BF02096594
[6] Deift, P. and Zhou, X. (1993) A Steepest Descent Method for Oscillatory RiemannHilbert Problems. Asymptotics for the MKdV Equation. Annals of Mathematics, 137, 295-368. https://doi.org/10.2307/2946540
[7] Deift, P., Its, A. and Krasovsky, I. (2011) Asymptotics of Toeplitz, Hankel, and Toeplitz + Hankel Determinants with Fisher-Hartwig Singularities. Annals of Mathematics, 174, 1243-1299. https://doi.org/10.4007/annals.2011.174.2.12
[8] Wei, Y.Q. and Liu, H. (2023) Properties of Cauchy Integral on the Hyperbola. Journal of Ningxia Normal University, 44, 6-12.

