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Abstract 
We study a special class of lower trigonometric matrix value boundary value 
problems on hyperbolas. Firstly, the pseudo-orthogonal polynomial on hyper-
bola is given in bilinear form and it is shown that it is the only one. Secondly, 
a special boundary value problem of lower triangular matrix is presented and 
transformed into four related boundary value problems. Finally, Liouville 
theorem and Painlevé theorem and pseudo-orthogonal polynomials are used 
to give solutions. 
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1. Introduction 

In some references [1] [2] [3], the boundary value problem (Riemann-Hilbert 
problem) of analytic functions on finite curves is discussed, but the research on 
infinite curves is not deep enough. In [4], the author discusses the Riemann 
boundary value problem on the positive real axis and generalizes the concept of 
the generalized principal part.  

The Riemann-Hilbert method is a brand-new method for studying orthogonal 
polynomials formed in recent 20 years. In 1992, FoKas A S, Its A R and Kitaev A 
V constructed a matrix-valued Riemann-Hilbert boundary value problem in [5], 
the only solution of which is the orthogonal polynomial on the real axis. In 1993, 
Deift P and Zhou X introduced the Riemann-Hilbert boundary value problem of 
oscillatory type in [6], and applied it to the study of orthogonal polynomials. 
Therefore, the Riemann-Hilbert method was formed [6]. 

2. Preliminary 

In this paper, the right branch of the Hyperbola 2 2 1x y− =  is denoted by de-
fault to L, which is regarded as the image of the function ( ) 2 1x y yϕ= = + , 
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and L is oriented from top to bottom. 
Denote by al  the point ( )a iaϕ +  and ±∞  respectively its upper and lower 

infinite ends. Then   consists of two connected components, the right part 
S +  and the left part S − . 

We use bilinear form to replace inner product on hyperbola, which is a com-
mon way. For example, [Lu J K, 1993] gives the solvable condition of singular 
integral equation by this way; for example, Delft P. defined a polynomial group 
similar to orthogonal polynomials in bilinear form in [7], and we studied similar 
polynomial groups on hyperbola: 

Let ( )w t  be a nonzero weight function. We introduce bilinear form in po-
lynomial space nΠ  with degree no more than n: 

( ) ( ) ( ) ( ), d ,      , nL
f g w t f t g t t f g= ∈Π∫               (1) 

Take a group of bases 21, , , , nt t t  in nΠ  and make Schmidt orthogonaliza-
tion on this group of bases, then we have 
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( )
( )

( )
( )

( )
( )

1 1 0
1 1 0

1 1 1 1 0 0

, , ,

, , ,

n n n
nn

n n
n n

t p t p t p
A t p p p

p p p p p p
−

−
− −

= − − − − , If ( ),n np p  is  

always not zero, then this process can always be carried out. Finally, we get a 
pseudo-orthogonal polynomial group with a weight function of  

( ) ( )0 1, , , np p z p z  on L:  

( ) ( )1 , 0,1, , ,k k
k

P z p z k n
α

= =                    (2) 

where kα  is the first coefficient of ( )kp z , then ( )kP z  is a pseudo-orthogonal 
polynomial of degree k with the first coefficient of 1. Obviously, the pseudo- 
orthogonal polynomial group ( ) ( )0 1, , , nP P z P z  is unique. 

Definition 1. Let f is defined on L, if there is some positive real number a, 
such that 

( ) ( )  

1 1 , , a af t f t M t t l l l l
t t

µ

+ −∞ ∞
′ ′′ ′ ′′− ≤ − ∈ ∪

′ ′′
           (3) 

where M and 0 1µ< ≤  are definite constants, then denoted by ( )ˆf H µ∈ ∞ , 
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and if ( )f LH µ∈ , then denoted by ( )ˆf H Lµ∈ . If ( )ˆf H µ∈ ∞  and  
( ) 0f ∞ = , then denoted by ( )0

ˆf H µ∈ ∞ , or ( )0
ˆf H∈ ∞ . Moreover, if  

( )0
ˆt f Hλ ∈ ∞ , then denoted by ( ),0

ˆf Hλ∈ ∞ . 
Definition 2 Let f is a function defined on L. There exists t →∞  such that  

( ) ( )*f t
f t

tν
= , 

where v is a real number and *f  is a bounded function, then denoted by 
( )vf O∈ ∞ . 

Definition 3 If F is holomorphic in the complex plane cut by the Hyperbola, 
then denoted by ( )\F A L∈  . 

Definition 4 Let f be a locally integrable function on L. If  

[ ]( )( ) ( )1 d
2

, \
L

f
C f z

i
L

z
z

τ
τ

τ
=

π −
∈∫                (4) 

is integrable, it is called the Cauchy-type integral with kernel density f on L, and 
the Cauchy principal value integral with kernel density f is defined by  

[ ]( )( ) ( ) ( )( )( ) ( )( )
( )00

1 1d lim d
2 2L y ar

f y iy y iyf
C f t y

i t i y iy t

ϕ ϕτ
τ

τ ϕ+ − >→

′+ +
= =

π − π + −∫ ∫ (5) 

where ( )t a ia Lϕ= + ∈ , if the integral exists. 

Ref [Wang Ying, 2017], below we introduce the concept of a generalized main 
part. 

Definition 5 Let ( )\F A L∈  . If there exists an entire function ( )E z  such 
that 

( ) ( )lim 0
z

F z E z
→∞

− =   .                    (6) 

and then ( )E z  is called the generalized principal part of ( )F z  at ∞ , de-
noted by [ ]G.P ,F ∞ . 

Reference [8] proves the generalized principal part of Cauchy integral at in-
finity and Plemelj formula. 

Theorem 1 [8] If ( ) ( )( )0vf H L O v∈ ∞ >  is locally integrable on L. Then  

[ ]G.P , 0C f ∞ =  .                      (7) 

Theorem 2 [8] If ( )ˆf H Lµ∈ , then the boundary values of the Cauchy-type 
integral [ ]C f  exist and have the following Plemelj formula: 

[ ]( ) ( ) ( ) ( )1 1 d
2 2 L

f
C f t f t

i t
τ

τ
τ

±
= ± +

−π ∫ .              (8) 

3. Matrix Value Riemann Boundary Value Problem 

In this paper, we consider the Riemann boundary value problem of lower trigo-
nometric matrix on hyperbola. 

Let 

( ) ( ) ( )
( ) ( )

1,1 1,2

2,1 2,2

z z
z

z z
 Φ Φ 

Φ =   Φ Φ 
                   (9) 
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be a matrix-valued function defined on subset Ω  of the complex plane  , and 
each element ,j kΦ  be a function defined on Ω . If every element ,j kΦ  of Φ  
satisfies the same property, then Φ  is said to have its corresponding property, 
such as ( ) [ ]( ) ( )\ ,G.P , ,A L z H LΦ∈ Φ ∞ Φ∈ . 

Problem (boundary value problem of lower trigonometric matrix value func-
tion) Find the matrix-valued partitioned holomorphic function Φ  with L as 
the jump curve, such that 

( ) ( ) ( )

[ ]( )

1 0
, ,

1

G.P , ,

t t t L
w t

z I

+ −  
Φ = Φ ∈  
  
 ΞΦ ∞ =

                 (10) 

where 

( ) 0
,

0

n

n

z
z

z

− 
Ξ =  

 
                       (11) 

I is the identity matrix of 2 × 2, ( ) ( )2 ,0
ˆ

nw H L Hµ∈ ∞ . 
We can convert (10) into four related Riemann boundary value problems: 

( ) ( )1,1 1,1

1,1

,    ,

G.P , 1,n

t t t L

z

+ −

−
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−
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( ) ( ) ( ) ( )2,1 2,1 1,1

2,1

,    ,

G.P , 0,n

t t w t t t L

z

+ − −Φ = Φ + Φ ∈


 Φ ∞ =  
              (14) 

( ) ( ) ( ) ( )2,2 2,2 1,2

2,2

,    ,

G.P , 1.n

t t w t t t L

z

+ − −Φ = Φ + Φ ∈


 Φ ∞ =  
              (15) 

Obviously, (12) is a Liouville problem. It is known from Painlevé theorem that 
( )1,1 zΦ  is analytic over the entire complex plane. Because 1,1G.P , 1nz− Φ ∞ =  , 

it is known from the generalized Liouville theorem that 

( ) ( )1,1 ,nz P zΦ =                        (16) 

where ( )nP z  is a polynomial with a leading coefficient of 1 and a degree of n. 
By (16), we have 

( ) ( ) ( ) ( )2,1 2,1

2,1

,    ,

G.P , 0,
n

n

t t w t P t t L

z

+ −Φ = Φ + ∈


 Φ ∞ =  
               (17) 

Obviously (17) is a jump problem with L as the jump curve. Let 

( ) [ ]( ) ( ) ( )1 d ,
2

n
n L

w P
z C wP z z L

i z
τ τ

ψ τ
τ

=
−π

= ∈∫ ,          (18) 

by ( ) ( )2 ,0
ˆ

nw H L Hµ∈ ∞ , 

( ) ( ),0
ˆ

n nwP H L Hµ∈ ∞ .                    (19) 

https://doi.org/10.4236/jamp.2023.114059


S. H. Fan 
 

 

DOI: 10.4236/jamp.2023.114059 888 Journal of Applied Mathematics and Physics 
 

Therefore, by Plemelj formula (8) and Theorem 1, we can know that ( )zψ  is 
a partitioned holomorphic function with L as the jump curve, and satisfies: 

( ) ( ) ( ) ( )
[ ]( )

, ,

G.P , 0,
nt t t P t t L

z

ψ ψ ω

ψ

+ − = + ∈


∞ =
                (20) 

let ( ) ( ) ( )F z z zψ= Φ − , then F is a partitioned holomorphic function with L as 
the jump curve and satisfies: 

( ) ( )
[ ]

, ,

G.P , 0,

F t F t t L

F

+ − = ∈


∞ =
                   (21) 

Obviously problem (21) is a zero-order Liouville problem, its solution is 
( ) 0F z = , so 

( ) [ ]( ) ( ) ( )
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w P
z C wP z z L

i z
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τ
τ

Φ =
−π

= ∈∫         (22) 

if and only if condition 2,1G.P , 0nz Φ ∞ =   is satisfied. By 
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−
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π π

π π
+

−

∫ ∫

∑ ∫ ∫
  (23) 

and Theorem 1 and (19), it can be seen that 2,1G.P , 0nz Φ ∞ =   is equivalent to  

( ) ( )1 d 0, 0,1, , 1
2

k
nL

w P k n
i

τ τ τ τ = −
π

=∫  .           (24) 

Obviously (13) is the Liouville problem, similar to (12) we have 

( ) ( )1,2 1nz q z−Φ =                    (25) 

where ( )1nq z−  is a polynomial of order not exceeding 1n − . 
By (16), we have 

( ) ( ) ( ) ( )2,2 2,2 1

2,2

,    ,
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n

n
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+ −
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
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            (26) 

Obviously, (26) is a fixed-order jump problem, similar to (15). It can be seen 
that its solution is  

( ) [ ]( ) ( ) ( )1
2,2 1
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2

n
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z C wq z z L
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if and only if condition  
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           (28) 

is satisfied. 
Let 1 1n nq Pλ− −= , then 

( ) 1 1
1 1,

2 n nL
P P

i
ω τ λ − −π

= −∫                    (29) 
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that is, 

( ) ( )2
1

2
dnL

i
P

λ
ω τ τ τ−

π−
=
∫

                    (30) 

then 1nq −  is a pseudo-orthogonal polynomial of degree 1n −  on L with re-
spect to the weight function w. 

Definition 6  

( ) ( ) ( )* 1 d , ,
2 L

f
f z z L

i z
ω τ τ

τ
τ

= ∉
−π ∫               (31) 

we call it the companion function of f with respect to the weight function w. 
Theorem 3 If ( ) ( )2 ,0

ˆ
nw H L Hµ∈ ∞ , then the lower triangular matrix-valued 

Riemann boundary value problem (10) has a solution, and its solution has the 
following form: 

( ) ( ) ( )
( ) ( )

1
* *

1

,n n

n n

P z P z
z

P z P z
λ
λ

−

−

 
Φ =  

 
                 (32) 

where ( )nP z  is a polynomial with a leading coefficient of 1 and a degree of n, 
and *

nP  is the companion function of nP  with respect to the middle weight 
function w. 

Proof: If (10) has a solution, it can be seen from the previous discussion that 
its solution is of the form (32). 

Conversely, the polynomial with pseudo-orthogonal and leading coefficient 1 
is unique, and by reversing each previous step, we get that Φ  is the solution of 
(10), that is, (10) has and only one set of solutions (32). 

The matrix-valued boundary value problem (10) is characterized by the pseu-
do-orthogonal polynomial nP  on L with respect to the weight function w and 
the leading coefficient is 1. Therefore, we call this problem the Riemann-Hilbert 
characteristic characterization of the orthogonal polynomial of the weight func-
tion w on hyperbola, or nP  is the characteristic orthogonal polynomial of the 
matrix-valued boundary value problem (10), please refer to [Deift P, 2011] for 
details. 
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