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Abstract

In this paper, a general family of derivative-free 1 + 1-point iterative methods
using n + 1 evaluations of the function and a general family of n-point itera-
tive methods using 1 evaluations of the function and only one evaluation of
its derivative are constructed by the inverse interpolation with the memory
on the previous step for solving the simple root of a nonlinear equation. The

order (2”+1 —1+4+/222 +1)/2 and order (3~2”’l —1+4/9.2202_pn +1)/2

of convergence of them are proved respectively. Finally, the proposed me-
thods and the basins of attraction are demonstrated by the numerical exam-
ples.
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1. Introduction

Newton’s method is a well-known iterative method to solve nonlinear problems
in scientific computation. For a nonlinear equation f(x)=0, Newton’s me-
thod is as the following (see [1]):

_ﬁ k=071

f(%)

Furthermore, Steffensen’s method is a derivative-free iterative method, and a

X = X

self-accelerating Steffensen’s method is introduced in Traub’s book ([2]) as the

following:
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f(%)
= — ,k :0,1’...' 1
Ko = % f[ %% + B (%)] =
f(u)-f
where f[u,V] ::M and g, = 1 by using
u-v f[xk—l'xk—l+ﬂk—lf (Xk—l)]

recursively the memory on the previous step without any new functional evalua-
tion.

The efficiency index of an iterative method (IM) is defined as E = pl/d
where pis the order of IM and dis the number of function evaluations of IM per
step. Kung and Traub conjectured in 1974 that a multipoint iteration based on n
+ 1 evaluations without memory has optimal order 2” of convergence [3]. Thus,
Newton’s method and Steffensen’s method are methods of optimal second-order,
and their efficiency indices are both V2 =14142. Self-accelerating Steffensen’s
method achieves super convergence of order 1+ «/E =2.4142 with memory,
and its efficiency index is 1++/2 =1.5538. A one-parameter multipoint itera-
tion of optimal order 16 in [4] [5] consists of successively a Newton substep, a
modified Newton substep and two substeps of inverse interpolation, requires
four evaluations of fand only one evaluation of f’ per step, and reaches the
efficiency index 16%° =1.7411. General multipoint iterations of optimal order

have been constructed by using inverse interpolation in [3] [6] [7] and direct
n

interpolation in [5] [7]-[12], and reach the efficiency index 20+ by n + 1
evaluations without memory. Furthermore, self-accelerations of general multi-
point iterations with memory from the current and previous iterations can achieve
better convergence and efficiency [5] [7] [10] [11] [12].

Recently, the family of n + 1-point iterative methods of optimal order 2” with
n+ 1 self-accelerating parameters was proposed by using Newton’s interpolation

in [12] as follows:

X1 =X o+ Bt (Xk,O)’ Xeo = X

(%)

s AT (5]
f(Xk.j) :
X jor = X j — |
o1 K f [Xk,jnxk,j—1]+'”+ f[xk,j"”’Xk,O](Xk:j _Xk,jfl)'-.<xk,j _Xk,1)+ﬂj (Xk,j _Xk,j—l)'.-(xk,j _Xk,O)
j=2,---n,

Xk+1 = Xk,n+1’ k= 0’1"”’

f[u,v]-f[v,w] '

where f[u,v,w]:= ,-++. This family generalized the two-point

u—w
two-parameter Steffensen’s method in [13] and the general parametric families

in [7] [9] [10] [11] by using 1 + 1 parameters, and achieved the convergence of

order (2"+1 —14+/22 +1) / 2 Dby using the parameters with the memory on

all points in the previous step as the following:
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B =_1/Nr:+1(xk,0)7
B :_Nr:’+2(Xk,l)/(ZNr:JrZ(Xk,l))’ (3)
B =NI (%) /(+DL j=2m,

where N, ., (t) is a Newton’s interpolating polynomial of order n+ j+1 for
j=0,n,suchthat N, ;. (x)="f(x,)(0<i<]j) and

NMJH(XHi ) =f (XH'i )(0 <i<n). When n=4, the efficiency index of (2)
without memory is also 16%° =l.7é111 and the efficiency index of (2) and (3)
with memory is {(31+ V1025 ) / 2}]/ =1.9938. The topic on basins of attraction
was addressed in [14]-[20] for derivative-free methods and various other me-
thods.

In this paper, a general family of n + 1-point iterative methods derivative-free
and another general family of n-point iterative methods using a first derivative
are constructed by the inverse interpolation with the memory on points in the
previous step in Sections 2 and 3 respectively, the proposed families are tested by
numerical examples for solving nonlinear equations and the basins of attraction

of the methods are illustrated in Section 4, and finally conclusions are made.

2. General n + 1-Point Iteration Derivative-Free with
Memory

Let X, =X, bean approximation of the simple root of f(x) and

Xe1 =X o+ 70 f (Xk,O) be a further approximation. Let us recognize the map-
ping £ previously from the independent variable to the dependent variable in-
versely as a mapping ™ now from the dependent variable to the independent
variable in the obtained discrete information. We can have an inverse Newton’s

interpolating polynomial of degree one (see, e.g., [2] [3]):

Q (t) =%+ f’l[f (xk,l), f (XKVO)J('{— f (Xk,l))'
such that Ql( f (Xk,l)) =X, and Ql(f (Xk’o )) = X, o, Where

£t [f (u), f (V)} = ﬁ\;(v) The next approximation of the root could be

obtained by Q,(0) as the following:

X =Q (0) =Yoot (Xk'O)_%

f (%)

f |:Xk,0’ Xeo+ 7 f (kao )]

which can give Steffensen’s method and self-accelerating Steffensen’s method

= X0~

obviously.

However, by using the most information up to the previous step, ie., using the
known discrete information of f™' in Table 1 when n=1.

We have the inverse Newton’s interpolating polynomial of degree three as the

following:
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Table 1. The known discrete information of f* for j=1---,n and k>0.

f(x,) f(%0) f(X1n) F (X10)

Xkyj X

k.0 kal,n e kal‘O

such that Qs(f(xkyl)):xk‘l Q(F(%0))=Xo> Q(F(%11))=Xc1s and

_ u-v

Q3 ( f (Xk—l,D)) = Xk—l,O , where f l[ f (U), f (V):| =W and

fE o (u), £ (v)]= ] F(u), F(w)]
f f(u), f(v),f =

[ (U) (V) (W):| f (V)— f (W)

Q,(0) could be better than Q,(0) to approximate the root of f(x). We
suggest that X, =Q,(0) and propose a derivative-free iteration as the follow-
ing:

and so forth.

Xeo =% X1 = %o+ 7o T (Xeo)s

Xepr =Xz =X + 7 [ (Xk1> f(xko)]( ( ))
1L () T 00 ) T (s J(=F (50 ) (= (%c0))
L (%) F (%eo). ( )f(xk—loﬂ( f (%))
$(=1 (o)) (=1 (%))

Furthermore, by the inverse Newton’s interpolating polynomial of degree

n+ j+1 satisfying Table 1, we construct an optimal family of n + 1-point itera-
tions with memory as the following:

Xeo =X X=Xt f (Xk o)

<xk1.n>]<—f<xk.,->)'---<—f<xk,o>> "

Xk+l Xk,n+l’ k 0’1’

where y, isa constant.
Theorem 1. Let f:D >R be a sufficiently differentiable function with a
simple root a€D, Dc R be an open set, X, be close enough to a, then the

family (4) satisfies the error equation
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(2n+2) 1\ (n+i+1) 2
€ = (™o (0)( ()" [ () O (-f(a)""
+1 H
(2n+2)! i (n+i+1)! 5)
, 2”71 2 2n71 2 2n71
><(:|-+7’of (a)) (ekek—l,n”'ek—l,o) +0 (ekek—l,n'”ek—l,o) :
where €, =X, —a and € =Xj— k=0,1,---, and achieves the convergence

of order at least (3~2"71 —1+4/9.222 4 0 +1)/2 .

Proof. Supposed that e, ; =C e/’ +o(ek”i) and e, =Ce] +0(e[ ). Then,
%jchmdﬂ+0@ﬁ0e“1=CMQ1+o@iJ,
€er = X2 =8 o+ 70 f [ Xeo@ 8o =(1+70f [%o.2])e
=(1+7,'(a))Cef, +0(el ).
Noticing the definition of divided difference, for j=1,---,n, we have
qd+l:-—f’1[f(a),f(xkj) o B (%0 )s T (% )e f(xklo)]
x(=1)" 7 f[xkJ ] [xko ] [xkln a] f[xklo ]ekyl.---ekvoeHn-~~eH0
= F (@) F (%) F(%eo)s F (Xean)oos f (Xeso)]
x@&f””f[&wa]~f[ﬁﬂﬁ}f[ﬁiwa]~f[&iwa}
K= (@) f (Xega) F (%o)s F (Kan)sross T (%a0) ])
xﬂiyﬂﬂf[&J4ﬁ]~f[&pﬁ]f[&ima]nf[MAWa]
e (12 (@), F (40 (%00 T () (50)])
x(-1)"* ( f[%pa]f[ X a|f[% 2] f [xk_w,a])zji2 (€18 08 10" € 10)
=—f11f (@) F (%) T (%) F (nn)os F (Keso) ]
x@&f””f[&malnf[&ﬂﬁ}f[&ima]~f[&&ma]
x~-x<—f’l[f(a),f(xkl),f(xko),f(XKJM),~-,f(xk40)J)
x«—nmef[&pa}f[&ma]f[&%ma]~f[ﬁimaﬁy4

j-1 . j—
X(l"‘ 7o f [Xk,o'a])ZJ esz (ek—l,n €10 )2J 1

\(n+i+2) J ) | o
R >>““”HH —(f(nlnlﬁo)}(f’(a))"*'*l}

(n+j+2)! 2
: i1
+0(efl (ek—l,n €10 )2 )

\(1++2) J (i) | 21
R e LIS ))”*‘”HH —(f(nlm)(!o)](f’(a))“““}

21

212

24

X(1+ 7o f '(a))ZH elfj (ek—l,n ”'ek—l,o)

(n+j+2)! iz2

2t i i 21 iyl
><(1+;/0f’(a)) Czlelfilr (Cn"'Clekaf +p1+1) +0(e|f lr+2 (Pn+-- +p1+1))

DOI: 10.4236/jamp.2023.113050 750 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.113050

Z. L. Liu, Q. Zheng

So,
p,=r,
M, =2r+27(p +-+p +1), j=1--,n,
r=p,..

Thus, 1’ =(3-2""~1)r+2",and r =(:-;-2”*1—1+\/9.22"*2 +2" +1)/2. O
The parameter in the multipoint iteration (4) should be expressed by using

memory as good as possible. According to the asymptotic convergence constant
in (5), besides others such as

7o == F (%o ) T (1),
we choose the expression of the parameter here to be the following:
7o = =1L (%0)s T (s J= F L (%00): () F (Xean) J(=F (%)=
= L (o) T (X )oroo  (cao) J(=F Ocan)) (= F (Xeca )+ (= F (%ecsn))

Theorem 2. Let f:D >R be a sufficiently differentiable function with a
simple root a€D, Dc R be an open set, X, be close enough to a, then the

family (4) with the self-acceleration (6) satisties the error equation:

0 el (@) ]
S v T LA 81| R v (U

x(88 s, --'eH‘O)2n +o((ekeklvn ~--ek71,0)zn )
where € =X —a and ¢ ;=X ;—-ak=0,1---, and achieves convergence of
order at least (2" ~1+\2" ¥ 41} [2.
Proof. By the proof of Theorem 1, for j =0, we have
€ =<1+7’of [Xk,o,a])ek :(f’l[f (Xeo): f (a)]+7/0) f[x.0.2]e,
= F 1 (Xeo)s F (Kan)oss T (Xeao ) ()]
(= f [ %amaleern) (= F [ X10a 810 F [ Xeora]e

_1\(n+2)
_ [M(f ’(a))MJCCn ...Clel:tlpn+u'+p1+1 i o(el:+lpn+ +p1+l).

(n+2)!

(6)

For j>0, wehave

ekYM:—f’l[f( ) f (%) T (%o ) F (K)o f(x“o)]
x(-1)"!*2 FIxpalf[%0a]f[ X malf[% 2]
)

oo (=121 (@), F (), f (o) T (X )o f(xk,l,o)])
o2yt [xm,a] f[x0a]f [xkflyn,a]--- [hana])
x((f’l[f (Xkyo), f (a)]+70) f [kao,a])zr efj (ekfl,n '"ek—l,O)

2]

211
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i=1

_1\(n+j+2) ' j (i) » i
‘%Tf!o)(f’<a>>”*’”HH“(n)HT)ﬂ°)J<f'<a>> ]

i

Tt 0((ekek1,n €10 )2J j

_\(n+iv2) - R ) i
:‘(f)—(0)(—‘”(3))””+2 HH( f(n)+i+1)(!0)'J(f'(a))n“+ ]

(n+j+2)! i

X elfj (ek—l,n ”'ek—l,O)

i i 2! i
xC*e'1 (C,--Cigfr ) +o(e|f7§”p"+ ”’1“)).

So,
{rpj+1 =20 (r+p,++p+1),j=0,,n,

r= pn+1'
Thus, *=(2"-1)r+2",and r= (2“*1 ~1++/2272 +1)/2. O
3. General n-Point Iteration with Memory and a First
Derivative

Let X, be an approximation of the simple root of f(x)=0. By an inverse

interpolation on this one point of degree one, we have
PO~ Q (6 F (%), F(%0))
= X o + f’l[f (%o) f (xk,o)}(t— f (xk,o)),

where [ f (Xkyo), f (Xky0 )] = ( f ’l)' ( f (Xk’o )) = ﬁ) as usual and so forth.
k0

Therefore, by using Q, (0; f (kao ), f (kao )) to approximate the root, we have

X =X o+ f’l[f (Xo) f (xk’O)J(—f (kao)),

which is Newton’s method. However, by using the most information up to the

previous step, we have the inverse interpolation of degree two:
Qo (6 F (%e0): T (o) F (Xc20))
=Xeo + [ F (%o ) T (00) J (= F (%o )
L (%00) s F (%e0) s F (%eno)](E F (%c0)) -

We suggest a one-point method with memory by
Q (0: F (%) f (Xeo)s T (¥ 10)) as follows:

Xesp = X0 f_l[f (Xk,o)' f (Xk,O )J(_f (kao ))
1T (o) F (%o ) F (%eso) (= (%0)) -

Furthermore, we construct a family of n-point iterations with the memory on

(8)

the whole previous step by using the inverse interpolation as follows:

DOI: 10.4236/jamp.2023.113050

752 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.113050

Z. L. Liu, Q. Zheng

)

—

—_—
x
=

N

v ~—

—
—
x
=

=]

S~—"
—
—~
x
=

=]

~—
L1
pr—
—
p—
x
=

S—
S—
—
—
—_
x
=

N

~—
S—
—_—
—
—~
x
=

=]

~—
S—

(%) f (%
i Xko) (%), f(ka) ‘ (Xuo)]
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Theorem 3. Let f:D >R be a sufficiently differentiable function with a
simple root a€D, Dc R be an open set, X, be close enough to a, then the

family of n-point iterations (9) satisfies the error equation:

e —_w _f'(a 2n+3 0 _(fﬁl)(mm)(o) _f'(a n+i+2 "
=gy PN gy (@

2 2" 2 2"
X(ekek—l,n “'ek—l,o) +0 (ekek—l,n '“ek—l,o) ,
where €, =X, —a and i =X -a,k=0,1---, and achieves convergence of

order at least (3~2"71 —1+4/9.2%2_pn +1)/2.

Proof. Denote e =X, —a and =X~ & j=0,---,n. Supposed that
e.;=C;e’ +o(ekp‘) and e, =Ce +o(e,[) Then,

Ch :Cij‘e;p’ﬁo(e;le) and e, =C"e/_ 1+o(ek 1)
When n=1, we have
R AL )
+f-1[f(xk’o) f (%o ) F (X0 ]( f( )
2
:_fil[f(xkvo) F (%o ) T (Xero) F(a )J( S ]ek,o) (_f[xk—l,O’a:Iek—l,O)
(f—l)(?’)(o)

- I (-f ,(a))3 €8 10 +0<esek—1,0)

3
( f—l)(3) (0)
Y

f'(a )) C%l ™+ o(elf'l”).
So, we have

{rpl =2r+1,
r=p.

Thus, r2=2r+1 and r=1++2.
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When n>1,for j=0,-,n—1, we have
ekymz—f’l[f(a) F (%) F (%) F(Xeo) (%o ), f(xklnl),-~-,f(xk_1'0)J
x(<1)" 7 [xkJ ] 1‘[xk1 a]f[xkO a:| [xklnl J f[xkflyo,a]
Sk (a).1 (ij) ' (Xkl) (%) T (o) f (feana) o f (%eso) ]
x(= 1)"”+2f[xkJ } f[xkl a]f[xk0 a] f[xklnl }--f[xkfl‘o,a]
><< ijl) o f(xkl) f(xko)f(xko) f (% l‘n—l)"”’f(xk—l,o):|)
x(- 1)"+J+1 [ijl ] f[xkla]f[xkoa] f[xklnl }---f[xkflvo,a]
X (8 j 17" €180 0B 101 eklo)
==L (@) F (%) F (%) T (o) £ O%0)s f (Rns) oo F (%)
x(—l)n+j+2 f [xk‘j,a}-- f [xkvl,a] f [xkvo,a]2 f [Xk—l,n—l’a:|'” f |:Xk—l,0’a:|

><,,,X(_f-l[f (a), f (xkvo), f (kao), f (XH‘H),..., f (kal,o)])zjil

21t

X((_l)mz f |:Xk,0’a:|2 f I:Xk—l,n—l'a:|'” f [Xk—l,oia]) (elfek—l,n—l"'ek—l,o )ZJ
f71 (n+j+2) - ; f’l (n+i+1) . 2
:_( (n1j+2)(!0)(_f,(a)) HM( (n1i+1)(!0)](f'(a)) }
X(elfek—l,n—l‘”ek—l,o )Zj + O((elfekl,nl €10 )Zj j

\(n+i+2) o (i) ) NE
- ‘(f)-—(O)(— f'(a))" HM'( f(n)+i +1)(!0)'](f (2))"" }

(n+j+2)! i

2l 2i(2 1
X<C2Cn,1"'clef[l+p"*“ +pl+l) +0(ek7§ TPt +pl+))_

So,
{rpj+l =2)(2r+p,,+-+p +1),j=0,,n-1
r=p,.

Thus, r2:<3-2"’1—1)r+2"’1,and r:(3~2”’1—1+\/9-22“’2—2”+1)/2. O

4. Numerical Examples

The proposed families (4), (4) with (6), (9), as well as the existing family (2) with
and without memory are demonstrated to solve the nonlinear equations in the
examples. For general families of biparametric multipoint iterations with and
without memory as well as other related discussions, please refer to, e.g., [10] [11].
The computational order of convergence is defined by:

coc— Iog(|Xn—a|/|Xn71‘a|) _
log (|x,_, —al/|x,_, —a])
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Example 1. The numerical results on f(x)=e*?-1 in Table 2 agree with
the convergence rates in Theorems 1 - 3.

Example 2. The numerical results in Table 3 are for nonlinear functions:
f,(x)=x*-e*-3x+La=0,x,=0.2,
f,(x)= e +sinx—1,a=0,x, =0.25,

fy(x)=e™ —arctanx-1,a=0,x, =0.2.

Example 3. The basins of attraction of the existing family (2) with (3) by us-
ing direct Newton interpolation, the family (4) with (6) and family (9) by using
inverse interpolation to solve f(z)=2°~-1=0 with the criterion
min {|en|, f (Zrl )} <10® in C are shown in Figure 1. The colors “r”, “g”, “b”,
“c”, “W7, v, “m”, “k” are assigned for the number of iteration {0, 1, 2}, 3, 4, {5,
6}, {7, 8}, {9, 10, 11}, {12, 13, 14, 15} and default. The basin of attraction of the

method based on inverse interpolation may be a little smaller, but not too much

worse than that based on direct interpolation, since the first substep is a Steffen-

sen’s method for (4) with (6) and a Newton’s method for (9) respectively in the

first step when k=0.

4432101234

4

3

2

1

0N

_1‘

2

3 W
-4 4 R -4 i
432101234 432101234 43210123 4

Figure 1. (2) with (3), (4) with (6), (9) in 1st, 2nd, 3rd rows (left n = 1, middle n = 2 and right n = 3).
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Table 2. The numerical results of f(x)= e’ -la=2x,=18.

Method n 1 2 3 4 5
2 evaluations:
@, B =1 le.| 0.17729 0.73857e-1 0.14661e-1 0.63024e-3 0.11904e-5
bl ] =
coc 0.074895 7.26446 1.84655 1.9462 1.99303
le.| 0.42075e-1 0.16877e~7 0.25502e-27 0.13172e-99 0.41287e-356
(2) and (3)
coc 0.96857 9.44863 3.09857 3.64704 3.54841
@ ) le| 0.42075e~1 0.77998e—4 0.10477e~10 0.6678e—30 0.48955e—82
> Vo=
coc 0.96857 4.0354 2.5154 2.7934 2.7160
le.| 0.42075e-1 0.11515e-5 0.28557e-21 3.4382e-77 0.36827e-276
(4) and (6)
coc 0.96857 6.7397 3.4202 3.5833 3.5582
o) le.| 0.21403e-1 0.31733e—4 0.71458e—11 5.4013e—27 0.6949¢—66
9
coc 1.3886 2.9148 2.3498 2.4252 2.4123
3 evaluations:
le,| 0.35838e-1 0.13272e—4 0.29477e-18 0.71723e-73 0.2514e-291
(2)» ,Bj :1
coc 1.06827 4.59549 3.97898 4.0 4.0
le.| 0.26631e-3  0.45628¢-30  0.88977e-232 0.52002e—1750 0.17484e—13184
(2) and (3)
coc 411412 9.30787 7.53601 7.52681 7.53143
le.| 0.12228e-2  0.44394e—17 2430198 0.2107e-562 0.92699e-3208
(4)> Yo = 1
cocC 3.1671 6.5231 5.6275 5.7107 5.7004
le,| 0.12228e-2  0.98529¢-24  0.10489%e—181 0.74052e-1372 0.83137e-10335
(4) and (6)
coc 3.1671 9.5288 7.4891 7.5339 7.5309
le.| 0.3137¢-3 0.99202¢-20  0.58718e—108 0.42933e—582 0.31434e-3129
)
cocC 4.0124 5.8834 5.3471 5.3740 5.3722
4 evaluations:
@ f -1 le.| 0.17453e-3  0.81942¢-29  0.19310e-231 0.18364e—1852 0.12287e—14820
> i =
cocC 4.37665 8.27955 8.00003 8.0 8.0
le,| 0.17453e-3  0.65829¢—66  0.14269e-1037  0.37634e—16110  0.38186e—249972
(2)and(3)
coc 4.37665 20.4055 15.5657 15.5121 15.5157
@ . le| 0.11515e-5 0.12872¢-70 0.12264e—827 0.18343e-9674 0.10442e—113045
4), 7o =
coc 7.4964 12.396 11.655 11.686 11.685
le.| 0.11515e-5  0.62305¢-96  0.22838e-1495  0.57552¢-23209  0.19685¢—360108
(4) and (6)
cocC 7.4964 17.227 15.503 15.516 15.516
le,| 0.7520e~7 0.40585e—83 0.33630e-948  0.36766e—10769  0.46220e—122260
)
coc 9.1918 11.871 11.343 11.353 11.352

DOI: 10.4236/jamp.2023.113050

Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.113050

Z. L. Liu, Q. Zheng

Table 3. Numerical results for f,(x),i=12,3.

f.(x) f.(x) fs(x)
Method
|x, -4 coc |x, -4 coc |x, -4 cocC
2 evaluations:
(2), 18] =1 0.60393e-14 2.00008 0.78672e-3 1.90986 0.59130e-14 2.00008
(2) and (3) 0.10081e-120 3.56363 0.26298e-63 3.59844 0.11450e-124 3.60778
4), y,=1 0.35144e-48 2.7631 0.69234e-16 2.8113 0.25817e—-47 2.7602
(4) and (6) 0.3559e-110 3.5726 0.72971e-46 3.5971 0.37112e-109 3.570
9) 0.296%-31 2.4190 0.87258e—18 2.4258 0.3511e-31 2.4182
3 evaluations:
), B=1 0.43659e-224 4.0 0.20878e—80 4.0 0.59394e-224 4.0
(2) and (3) 0.47499e-2253 7.53197 0.30298e-1047 7.52119 0.46843e-2079 7.53541
4), y,=1 0.16921e-823 5.7068 0.36651e—-306 5.7064 0.54017e-841 5.7103
(4) and (6) 0.70252e-1930 7.5323 0.14318e-780 7.5306 0.23668e—1942 7.5355
) 0.30506e—-647 5.3732 0.23495e-360 5.3721 0.12358e—-647 5.3746
4 evaluations:
), B=1 0.17157e-3480 8.0 0.25750e—1636 8.0 0.23985e—3496 8.0
(2) and (3) 0.92232e-27930 15.5143 0.16190e—-14127 15.5151 0.55520e—-27255 15.5192
4), y,=1 0.22274e—-13824 11.685 0.23709e—-5329 11.684 0.10333e—-13968 11.687
(4) and (6) 0.10116e—-32543 15.515 0.11449e-13022 15.514 0.28412e-32929 15.517
9) 0.49612e-11831 11.352 0.5289e-6530 11.352 0.17565e—-11940 11.353
5 evaluations:
), B=1 0.18825e-55261 16.0 0.88727e-26366 16.0 0.82392e-55118 16.0
(2) and (3) 0.11450e—443164 31.5076 0.38286e-215574 31.5063 0.16232e—-437023 31.5092
4), y,=1 0.28256e—226738 23.676 0.42849e-88916 23.676 0.45549e-229614 23.676
(4) and (6) 0.24173e—-535738 31.508 0.20924e-213680 31.507 0.67598e—-543101 31.508
) 0.50946e-202406 23.343 0.10801e—-111444 23.343 0.42064e-205790 23.343

5. Conclusion

In this paper, we construct a family (4) of n + 1-point iterations derivative-free
and another family (9) of n-point iterations using a first derivative by the inverse
interpolatory polynomial with memory to solve the simple root of a nonlinear
equation. The general families (4) and (9) use 2 + 1 functional evaluations with

the memory in the previous step to achieve the super convergence of order

(3.2"*1—1+\/9-22"*2+2"+1)/2 and (3-2”*1-1+\/9.22”*2—2"+1)/2 re-
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spectively. The general family (4) with (6) achieves the super convergence of or-
der (2’”1 —1+4/22M2 +1)/2 , which is the same as that of the existing family (2)
with (3). When n =4, as special case, both of them achieve the super conver-
gence of order (31+ V1025 ) / 2=31.5078 and have the efficiency index

ys
{(31+ \/1025)/2} =1.9938. The application of the memory is more handy in

the proposed families than that of (3) in (2). The basins of attraction of the re-
lated multipoint iterations with memory are also demonstrated. The advantage
of effectiveness and convenience in practice of the proposed families is con-

firmed by numerical examples.
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