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Abstract 
At any given time, a product stock manager is expected to carry out activities 
to check his or her holdings in general and to monitor the condition of the 
stock in particular. He should monitor the level or quantity available of a 
given product, of any item. On the basis of the observation made in relation 
to the movements of previous periods, he may decide to order or not a certain 
quantity of products. This paper discusses the applicability of discrete-time 
Markov chains in making relevant decisions for the management of a stock of 
COTRA-Honey products. A Markov chain model based on the transition 
matrix and equilibrium probabilities was developed to help managers pre-
dict the likely state of the stock in order to anticipate procurement decisions 
in the short, medium or long term. The objective of any manager is to en-
sure efficient management by limiting overstocking, minimising the risk of 
stock-outs as much as possible and maximising profits. The determined 
Markov chain model allows the manager to predict whether or not to order for 
the period following the current period, and if so, how much. 
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1. Introduction 

Decision making plays a fundamental role at individual, organizational, societal. 
It is critical at the governmental level. After considering all the circumstances, 
the decision maker (investor) must go through a mental process before making a 
decision among several alternatives [1]. The decision made by the decision mak-
er today has an impact on his future career and business, either positively or ne-
gatively. The most important decision that the decision maker faces is how to 
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allocate his funds optimally at each decision era, particularly over time in an un-
certain market environment [1]. 

On a global scale, the increase in flows and the number of goods and services 
exchanged has made it necessary to create suitable tools of optimal management 
of the entire supply chain. However, the persistent uncertainty about the real 
needs of the customers and the lack of knowledge on the effective capacities of 
the suppliers by companies managers, require tools for planning the supply 
chains. This aims to reduce the degree of uncertainty on most of the obstacles 
encountered. This often occurs in transport and delivery of the goods within the 
time limits. In many supply chains, mismatches between supply and demand are 
mitigated by the use of inventory [2]. Inventories can be kept at different levels 
of the supply chain, including raw materials, components, semi-finished prod-
ucts and/or finished items. Successful inventory management must balance the 
benefits of inventory (i.e., reduction in lost sales) with the associated cost (which 
is typically reflected in the cost of holding inventory). One way to reduce the 
cost associated with inventory is to pool the demands of several items on the 
same item (flexible): provided that the demands are not perfectly positively cor-
related, pooling several demands on the same item reduces the required amount 
of safety stock and (therefore) reduces the cost of holding inventory. This phe-
nomenon is referred to as “risk pooling” or “statistical economies of scale” [3]. 
However, this tends to come at a cost. This “cost of flexibility” can be summa-
rized as an increase in product cost (when the flexible item is inherently more 
expensive to manufacture or purchase) and/or an additional adjustment cost 
(when the item needs to undergo additional processing or transportation in or-
der to make it “ready for use” when demand arises). 

Strategic planning related to inventory or product stock management can be 
modeled, studied using formal models, such as Petri nets, Markov chains, etc. 
Most of the processes that evolve in time in a probabilistic way can be easily 
modelled using Markov chains. The latter have the particular property that the 
probabilities involving how the process will evolve in the future depend only on 
the current state of the process, and are therefore independent of past events [4]. 
In stochastic analysis, the Markov chain specifies a system of transitions of an 
entity from one state to another. Identifying the transition as a random process, 
Markov dependence theory emphasizes the “memoryless property”, i.e. the fu-
ture state (next step or position) of any process depends strictly on its current 
state but not on its past sequence of noticed experiences over time [1]. Markov 
chains allow, among other things, to model, study, analyze, design and simulate 
various stochastic processes in various and variable contexts. In probability 
theory, a stochastic process or sometimes a random process is a set of random 
variables; it is often used to represent the evolution of a random value, or a sys-
tem, over time. It is therefore the probabilistic counterpart of a deterministic 
process (or system). A stochastic process is a process whose behavior is nonde-
terministic; it can be considered as a sequence of random variables. Any system 
or process that can be analyzed using probability theory is stochastic [5]. This 
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paper aims to demonstrate the application and applicability of discrete time 
Markov chains in improving inventory management processes and procedures 
as well as relevant decision making in a local and/or regional production and/or 
marketing company. 

2. Tools and Methods 
2.1. Tools 

The objective of this study is to apply discrete time Markov chains to build a 
prediction model of the evolution of a company. In this article, we will apply the 
above model to COTRA-Honey cooperative as a case study in order to illustrate 
and highlight the proposed solution. The processes related to the ordering of 
products can be assimilated to discrete time random events (processes, pheno-
mena). These can be modelled and studied using Markov chains. A Markov 
process can be represented by a directed graph to visualize its evolution. The 
nodes of the graph are the possible states for the Markov chains, an arrow going 
from state i to state j indicates that there is a strictly positive probability that the 
next state of the chain is state j if it is currently in state i. The weight is put on 
the arrow from state i to state j and can also be expressed by a transition matrix. 
A Markov process is a valuated directed graph X, such that [ ]( ),X E V=  
where: [ ]V E E= ∗ . 

Figure 1 depicts a three-state Markov process as an example of Markov chain. 

[ ]( ),X E V= , with: 1 2 3, ,E E E E=  and 

[ ]

1 2 3

1 12 13

2 23

3 31

0
0 0

0 0

E E E
E

V E
E

λ λ
λ

λ

 
 =  
 
   

2.2. Methods 
2.2.1. Optimization of a Stock Procurement Process 
Supply management within a company is a central component of its business. 
When it is efficient, it limits overstocking and promotes the profitability of the 
company as a whole. The challenge for every procurement manager is to optim-
ize inventory management by avoiding stock-outs and overstocks. Out-of-stocks 
actually represent a loss of revenue, while overstocks result in additional costs. 

 

 
Figure 1. Markov chain [6]. 
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To carry out the work, we are interested in companies offering for sale a par-
ticular item and whose orders to the supplier are made at any period, for in-
stance monthly. The customer demands for each period are random, indepen-
dent and identically distributed. Therefore, we can find the probability that any 
number of items. If we denote ( )p i  this probability, the probability that i items 
are requested is given by the following expression: 

( ) ( ) ( )1 0 1q i p p i= − − − −                    (1) 

The cost of an order is composed of a fixed cost C and a unit cost c. The cost 
of x units is therefore equal to C cx+ . Let us represent the unit selling price and 
the unit storage cost respectively by v and k with v c k> +  and D a random va-
riable of distribution ( )( )i

p p i
∈

=


 representing the customer demand during 
a given period. If at a given time there are 0x  units in stock, the decision-maker 
may decide not to order anything. In this case, the storage cost will be 0kx , his 
income will be { }min 0,v D x , and the expected profit is given by: 

( ) ( ) ( )
0

0

1

0 0 0
0

0 .
x

x
i

B vx r x v ip i kx
−

=

= + −∑                 (2) 

He may also decide to order a quantity x of additional items to complete his 
stock and at that moment, the expected profit is given by: 

( ) ( ) ( ) ( ) ( )
0

0

1

0 0 0
0

.
x x

x
i

B x v x x r x x v ip i k x x C cx
+ −

=

= + + + − + − −∑       (3) 

For 0x > , we have: 

( ) ( ) ( ) ( )
0 0 01 1x xB x b x vr x x k c+ − = + + − +              (4) 

By noting S, the theoretical optimal stock, with: 

( )max : k cS i r i
v
+ = ∈ > 

 
                   (5) 

The manager’s decision would be either to complete his stock up to S, by or-
dering the quantity 0x̂ S x= − , if 0x S≤ . If the quantity 0x  is sufficiently high 
(while remaining lower than S), it may be that ( )

0
0xB  is higher than ( )

0
ˆxB x , 

and thus there is no interest in ordering. 
Indeed, the application 

[ ] ( ) ( )0, 0i iS i b S i b∩ − −                  (6) 

is decreasing, which allows us to pose 

( ) ( ){ }min 0 : 0i is i S b b S i= ≤ ≤ > −                 (7) 

where s is the floor stock, above which there is no point in ordering. 

2.2.2. Supply Management System Modeling 
The demands being seen as a sequence ( ) ,tD t∈  of independent and identi-
cally distributed random variables. Let ( )X t  be the quantity of items available 
in stock at a given time, after the sale of this period, and before the possible or-
der of the next period. The management policy is the same as of the previous 
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subsection (subsection 3.2.1). The sequence of random variables ( )( )t
X t

∈
 is a 

Markov chain, with values in the finite set { }0, , S . 
If we take s a=  and S b= , with 0 a b< < , we have a transition matrix of 

the following form: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 0
1 1 1 0

1 0 0 0 0
1 1 0 0 0

1 1

t t t t t t

t t t t t t

t t t

t t t t

t t t

P D b P D b P D a P D a P D P D
P D b P D b P D a P D a P D P D

P D a P D a P D
P D a P D a P D P D

P D b P D b P D b

+ + + + + +

+ + + + + +

+ + +

+ + + +

+ + +

≥ = − = + = = =
≥ = − = + = = =

≥ = − =
≥ + = = =

≥ − = − =

 

 

       

 

 

       

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1 1 1 1 1

1 2 0 0
1 1 0

t t

t t t t t t

a P D b a P D
P D b P D b P D b a P D b a P D P D

+ +

+ + + + + +

 
 
 
 
 
 
 
 
 
 − − = − − = 
 ≥ = = − = − − = = 



   
For all { }0, ,i S∈  , ( )p i  is strictly positive. The Markov chain ( )( )X t  is 

irreducible and a periodic on the finite set { }0, , S . It therefore admits a 
unique stationary measure, which we will note ( )( ) , 0, ,i i Sπ π= =  . 

2.2.3. Equilibrium Probabilities of the Markov Chain 
When there is a value m large enough that the rows of the matrix ( )mP  are 
identical, then the probability that the system is in state j no longer depends on 
the initial state of the system (at 0t = ). Equilibrium probabilities are long-term 
properties of Markov chains. 

For any ergodic and irreducible Markov chain (with only one class) ( )lim m
ijm

p
→+∞

 

exists and does not depend on state i. 
Moreover, 

lim 0,m
ij jm

p π
→+∞

= >
 

where jπ  satisfies the following stationary state equations: 

j i ij
i S

pπ π
∈

= ∑                          (8) 

and 

1j
j S
π

∈

=∑                            (9) 

The jπ  is called the stationary state probabilities or equilibrium probability 
of the Markov chain. The term stationary state probability means that the prob-
ability of finding the process in a certain state, say j is independent of the proba-
bility distribution of the initial state. 

It is important to note that stationary (or stability) probability does not imply 
that the process settles into a single state. Rather, the process continues to make 
transitions from state to state, and at any step m, the probability of transition 
from state i to state j is always ijp . 

With the case of the previous subsection, in order to determine the steady-state 
probabilities, we need to solve a system of 2b +  equations with 1b +  un-
knowns of the following form: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

0 0 1 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 1 1

1 0 1 1 1

1
1 1 1

1 0 1
0 2

t a t b t b t

t a t b t b t

a t a t b t b t

a t b t b

P D b P D a P D b P D b
P D b P D a P D b P D b

P D a P D P D b a P D b a
P D a P D b a

π π π π π
π π π π π

π π π π π
π π π π

+ + − + +

+ + − + +

+ + − + +

+ + − +

= ≥ + + ≥ + + ≥ − + ≥
= = − + + = − + + = − + =

= = + + + = + + = − − + = −
= = + + + + = − − +

 

 



 

  ( )

( ) ( ) ( )
( ) ( )

1

1 0 1 1 1 1

0 1 1

0 1 1

1

1 0 0 1
0 0 0 0

1

t

b t b t b t

b t b t

a b b

P D b a

P D P D P D
P D P D

π π π π
π π π

π π π π π

+

− + − + +

+ +

−









= − −


 = = + + + + = + =
 = = + + + + + =
 = + + + + + +



 

 

   

3. Results 
3.1. Transition Probability Matrices of COTRA-Honey 

The system to be modeled is a management system of COTRA-Honey coopera-
tive at the level of the products stocks, which is the most important point of this 
cooperative. COTRA-Honey receives honey from different suppliers. After 
processing, some of the honey is put into packages that can contain different 
quantities for sale, and the rest is kept in cans containing many litres. After a 
certain period of time, if the quantity in stock is less than a fixed value, the re-
quest is prepared and sent to the suppliers. 

This system is similar to a Markov chain. We start from the fact that the or-
ders are made at the end of each month. Let 1 2 3, , ,D D D   be the customer re-
quests in the first month, the second month, the third month, …, respectively. 

tD  is assumed to be independent and identically distributed random variables 
with the Poisson distribution of mean 1. 

Let 0X  be the starting quantity, 1X  the quantity available at the end of the 
first month, 2X  the quantity available at the end of the second month, 3X  the 
quantity available at the end of the third month, …: with 0 5X =  cans. The 
cooperative uses the following ordering policy: If there are less than 2 cans in 
stock, the cooperative orders the quantity necessary to complete the stock up to 
the maximum height. However, if there are at least two cans in stock, no order is 
placed. Thus, { }tX  for 0,1,t =   is a stochastic process. The possible states of 
the process are the integers 0,1,2,3,4,5  representing the possible number of 
cans available at the end of the month. The random variables tX  can be calcu-
lated by the following expression: 

{ }
{ }

1
1

1

max 5 ,0 if 2

max ,0 if 2
t t

t
t t t

D X
X

X D X
+

+
+

 − <= 
− ≥

              (10) 

for 0,1,2,t =   
Recall that tX  represents the quantity in stock at the end of month t, to say 

that tX  represents the state of the system at time t. Since the current state is 

tX i= , the previous expression indicates that 1tX +  depends only on 1tD +  and 

tX . Since 1tX +  is independent of the past, the stochastic process  
{ } ( ), 0,1,tX t =   has the Markov property and is therefore a Markov chain. 

Since 1tD +  has the Poisson distribution of mean 1, then we have: 
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{ }
1

1
1 , for 0,1,

!

n

t
eP D n n
n

−

+ = = = 

 
Applying this formula, we find: 

( )

( )

( )

( )

( )

( ) ( ) ( )
( ) ( ) ( ) ( )

0 1
1

1

1 1
1

1

2 1 1

1

3 1 1

1

4 1 1

1

1 1 1

1 1 1 1

10 0.3678
0!

11 0.3678
1!

12 0.1839
2! 2

13 0.0613
3! 6

14 0.0153
4! 24

2 1 0 1 0.2644
3 1 0 1 2

t

t

t

t

t

t t t

t t t t

eP D e

eP D e

e eP D

e eP D

e eP D

P D P D P D
P D P D P D P D

−
−

+

−
−

+

− −

+

− −

+

− −

+

+ + +

+ + + +

= = = =

= = = =

= = = =

= = = =

= = = =

≥ = − = − = =
≥ = − = − = − = =

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1

1 1 1 1 1 1

0.0805
4 1 0 1 2 3 0.0192
5 1 0 1 2 3 4 0.0039

t t t t t

t t t t t t

P D P D P D P D P D
P D P D P D P D P D P D

+ + + + +

+ + + + + +



















 ≥ = − = − = − = − = =
 ≥ = − = − = − = − = − = =  

The one-step transition matrix is then written as follows: 

0 0.0039 0.0153 0.0613 0.1839 0.3678 0.3678
1 0.0039 0.0153 0.0613 0.1839 0.3678 0.3678
2 0.2644 0.3678 0.3678 0 0 0
3 0.0805 0.1839 0.3678 0.3678 0 0
4 0.0192 0.0613 0.1839 0.3678 0.3678 0
5 0.0039 0.0153 0.0613 0.1839 0.367

0 1 2

8 0.

3 5

78

4

36

P =

 
 
 
 
 
 
 
 
 

 

The two-stage transition matrix is given by: 

2

0 0.0396 0.0848 0.1815 0.2741 0.2776 0.1423
1 0.0396 0.0848 0.1815 0.2741 0.2776 0.1423
2 0.0997 0.1449 0.1740 0.1163 0.2325 0.2325
3 0.1279 0.2070 0.2868 0.1839 0.0972 0.0972
4 0.0856 0.1591 0.2755 0.2854 0.1649 0.0

0 1 2 3 4

296
5 0 39

5

.0

P =

6 0.0848 0.1815 0.2741 0.2776 0.1426

 
 
 
 
 
 
 
 
 

 

The three-stage transition matrix is given by: 

3

0 0.0764 0.1383 0.2350 0.2520 0.2002 0.0981
1 0.0764 0.1383 0.2350 0.2520 0.2002 0.0981
2 0.0617 0.1069 0.1788 0.2160 0.2610 0.1755
3 0.0942 0.1519 0.2175 0.1829 0.1947 0.1589
4 0.1000 0.1681 0.2534 0.2160 0.1615 0.1

0 1 2 3 4

009
5 0 76

5

.0

P =

4 0.1383 0.2350 0.2520 0.2002 0.0981

 
 
 
 
 
 
 
  
   

After four steps, we have: 
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4

0 0.0875 0.1498 0.2351 0.2238 0.1887 0.1151
1 0.0875 0.1498 0.2351 0.2238 0.1887 0.1151
2 0.0710 0.1268 0.2143 0.2288 0.2226 0.1266
3 0.0775 0.1317 0.2079 0.2133 0.2206 0.1489
4 0.0889 0.1485 0.2250 0.2067 0.1951 0.1

0 1 2 3 4

357
5 0 87

5

.0

P =

5 0.1498 0.2351 0.2230 0.1887 0.1151

 
 
 
 
 
 
 
  
   

The eight-step Transition Matrix is given by: After sixteen steps, we have: 

8

0 0.0817 0.1401 0.2222 0.2218 0.2050 0.1293
1 0.0817 0.1401 0.2222 0.2218 0.2050 0.1293
2 0.0819 0.1403 0.2219 0.2207 0.2050 0.1302
3 0.0823 0.1409 0.2227 0.2209 0.2040 0.1292
4 0.0820 0.1406 0.2228 0.2217 0.2042 0.1

0 1 2 3 4

287
5 0 81

5

.0

P =

7 0.1401 0.2222 0.2218 0.2050 0.1293

 
 
 
 
 
 
 
  
   

After sixteen steps, we have the following transition matrix: 

16

0 0.0819 0.1404 0.2224 0.2213 0.2046 0.1293
1 0.0819 0.1404 0.2224 0.2213 0.2046 0.1293
2 0.0819 0.1404 0.2224 0.2213 0.2046 0.1293
3 0.0819 0.1404 0.2224 0.2213 0.2046 0.1293
4 0.0819 0.1404 0.2224 0.2213 0.2046 0.

0 1 2 3 4

1293

5

5 0.08

P =

19 0.1404 0.2224 0.2213 0.2046 0.1293

 
 
 
 
 
 
 
  
   

The stationary state equations can be expressed as follows: 

0 0 00 1 10 2 20 3 30 4 40 5 50

1 0 01 1 11 2 21 3 31 4 41 5 51

2 0 02 1 12 2 22 3 32 4 42 5 52

3 0 03 1 13 2 23 3 33 4 43 5 53

4 0 04 1 14 2 24 3 34 4 44 5 54

5 0 05

p p p p p p
p p p p p p
p p p p p p
p p p p p p
p p p p p p
p

π π π π π π π
π π π π π π π
π π π π π π π
π π π π π π π
π π π π π π π
π π π

= + + + + +
= + + + + +
= + + + + +
= + + + + +
= + + + + +
= + 1 15 2 25 3 35 4 45 5 55

0 1 2 3 4 51
p p p p pπ π π π

π π π π π π










+ + + +
 = + + + + +  

By replacing the transition probabilities with their values in this system we 
have: 

0 0 1 2 3 4 5

1 0 1 2 3 4 5

2 0 1 2 3 4 5

3 0 1 3

0.0039 0.0039 0.2644 0.0805 0.0192 0.0039
0.0153 0.0153 0.3678 0.1839 0.0613 0.0153
0.0613 0.0613 0.3678 0.3678 0.1839 0.0613
0.1839 0.1839 0.3678 0.

π π π π π π π
π π π π π π π
π π π π π π π
π π π π

= + + + + +
= + + + + +
= + + + + +
= + + + 4 5

4 0 1 4 5

5 0 1 5

0 1 2 3 4 5

3678 0.1839
0.3678 0.3678 0.3678 0.3678
0.3678 0.3678 0.3678

1

π π
π π π π π
π π π π

π π π π π π







+
 = + + +

= + +
 = + + + + +  

Solving this system gives us the following solutions: 
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0

1

2

3

4

5

0.0819;
0.1404;
0.2224;
0.2213;
0.2046;
0.1293

π
π
π
π
π
π

=

=
=
=

=
=  

By analyzing the sixteen step transition matrix, we notice that each of the six 
rows has identical entries. 

3.2. One-Step State Transition Diagram 

The information given by the transition matrix can also be represented graphically 
with the state transition diagram as shown on Figure 2. Here is the representation 
of the state transition diagram associated with the one-step transition matrix. 

The arrows for the state transition diagram indicate the possible transitions 
from one state to another, or sometimes from one state to another, as the stock 
moves from the end of the month to the end of the next month. The number next 
to each arrow indicates the probability of that particular transition occurring.  

4. Conclusion  

In conclusion, the best stock management for a production and/or marketing 
company is a critical concept for an investor’s success because, when done cor-
rectly, it limits products overstocking as well as stock outs. To be able to control 
the stock in all aspects, the manager requires highly efficient decision-making 
tools. The goal of this study was to find the best Markov model for predicting 
COTRA-Honey stock states. 

 

 
Figure 2. State transition diagram. 
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Analyzing the transition matrix for the different stages, given, for example, 
that there are three cans of honey in stock at the end of the month, the probabil-
ity that there will be no cans of honey in stock two months later is 0.1279 or 

( )2
30 0.1279p = . The probability that there will be three cans of honey in stock two 

months later is 0.1839 or ( )2
33 0.1839p = . The probability that there will be one 

can of honey in stock three months later is 0.1519 or ( )3
31 0.1519p = . The proba-

bility that there will be five cans of honey three months later is 0.1589 or 
( )3
35 0.1589p = . The probability of having two cans of honey four months later is 

0.2079 or ( )4
32 0.2079p = . The probability of having two cans of honey in stock 

eight months later is 0.2227 or ( )8
32 0.2227p =  and the probability of having four 

cans sixteen months later for example is 0.2046 or ( )16
34 0.2046p = . 

By analyzing the sixteen step transition matrix, we notice that each of the six 
rows has identical entries. This then means that the probability of being in state j 
after sixteen months is essentially independent of the initial state of the system. 
The equilibrium probabilities jπ  also called stationary probabilities that are 
found by solving the system up are the same results as those appearing in the 
sixteen step transition matrix. This means that the probability that there will be 
zero, one, two, three, four and five honey cans in stock after several months (≥16 
months) tends to 0.0819; 0.1404; 0.2224; 0.2213; 0.2046; 0.1293 respectively. The 
main interest of the developed management model is to predict the probable 
states of the stock, i.e. its behaviour over time, in order to know in advance when 
to place orders with suppliers and to avoid all the risks that can be caused by the 
hasardeous stock management. 
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