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Abstract 
The development of prediction supports is a critical step in information sys-
tems engineering in this era defined by the knowledge economy, the hub of 
which is big data. Currently, the lack of a predictive model, whether qualita-
tive or quantitative, depending on a company’s areas of intervention can 
handicap or weaken its competitive capacities, endangering its survival. In 
terms of quantitative prediction, depending on the efficacy criteria, a variety 
of methods and/or tools are available. The multiple linear regression method 
is one of the methods used for this purpose. A linear regression model is a 
regression model of an explained variable on one or more explanatory va-
riables in which the function that links the explanatory variables to the ex-
plained variable has linear parameters. The purpose of this work is to demon-
strate how to use multiple linear regressions, which is one aspect of decisional 
mathematics. The use of multiple linear regressions on random data, which 
can be replaced by real data collected by or from organizations, provides de-
cision makers with reliable data knowledge. As a result, machine learning 
methods can provide decision makers with relevant and trustworthy data. 
The main goal of this article is therefore to define the objective function on 
which the influencing factors for its optimization will be defined using the li-
near regression method. 
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1. Introduction 

In this digital age, improving a system’s yields is accomplished by rationalizing 
the mobilized resources involved in a production process through the use of op-
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timization methods and models. To accomplish this, specialists in various fields 
such as political economists, statisticians, actuaries, mathematicians, and others 
can make significant contributions to solving certain optimization challenges 
such us climate factors in agriculture harvesting. Proven optimization methods 
can be used for this purpose. 

The emergence of new data concepts such as big data or voluminous and nu-
merous data necessitates the development of new tools, as evidenced by the rise 
of optimization or/and classification. Multiple linear regression models, particu-
larly parametric models, are frequently used in data analysis procedures. The li-
near regression model has a wide range of applications [1]. It enables us to per-
form analyses and make predictions in particular. As a result, if there is a strict 
linear relationship between the variable to be explained or target variable and the 
explanatory variable or predictive variable, the prediction of the value for the 
target variable is unequivocal when the value for the explanatory variable is 
known. The model’s random error term is ignored, and the magnitude of this 
error provides the accuracy of the established estimation [2]. 

In order to achieve the main goal, the present work will employ linear regres-
sion and the least squares method as mathematical tools and equipment. Fur-
thermore, Python language utilities will be solicited for parameter value deter-
mination before discussing the obtained results and emphasizing their novelty 
and potential implications. 

2. Materials, Tools, Equipment and Methods 
2.1. Material 

The spreadsheet and Python language allow you to create a linear regression 
model and determine the values of the model’s parameters by solving the system 
obtained by using the least squares method. 

2.2. Tools and Equipment 

Sums are calculated in Excel, while python language libraries like numpy help 
with numerical calculations when pandas are used during the model data load-
ing process. 

2.3. Methods 

When applied to the linear regression model, the least squares method yields exact 
and correct results. The least squares method is a tool used in all observational 
sciences for error theory or purely algebraic estimation [3]. It solves the linear re-
gression model equation by determining the values of the parameters. According 
to [the Gauss-Markov theorem], “for a linear model, if the errors are uncorrelated 
and have zero expectation together with variances equal, then the least squares es-
timator is the best linear unbiased estimator of the coefficients” [4]. 

In this present work, the least squares method is used in this work to define 
the objective function of the model, from which a system of equations is derived 
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by calculating the partial derivatives with respect to the model’s coefficients. 

2.3.1. Mathematical Modeling 
Linear regression models are classified into two types: 1) simple linear regres-
sion, which employs the traditional intercept slope form and requires a and b to 
be learned in order to make accurate predictions; and 2) multiple linear regres-
sion, which begins with the estimation of parameters involving an endogenous 
variable y and p number of exogenous variables jx . 

2.3.2. Model of Linear Regression 
The equations x and y represent the simple linear regression equation and the 
multiple linear regression equation, respectively. 

y ax b= +                           (1) 

0 1 ,1 2 ,2 3 ,3 ,i i i i p i p iY a a x a x a x a x ε= + + + + + +             (2) 

where Yi is the i-th observation of variable y; ,i jx  is the i-th observation of va-
riable j-th variable; iε  is the model’s error. It summarizes the missing informa-
tion that would allow the values of y to be explained linearly using the p va-
riables jx . 

To solve the regression problem, we must estimate p + 1 parameters, which 
leads to the equation number (3) Written as a matrix. 

Y Xa ε= +                           (3) 

The dimensions of the matrices involved in the expression of equation 3 are as 
follows: for Y, its dimension is (n, 1), for X, it is (n, p + 1), for a, it is (p + 1, 1), 
and finally for its dimension is (n, 1). 

The (n, p + 1)-dimensional matrix X contains all of the observations on the 
exogens, with the first column formed by the value 1 indicating the integration 
of the constant a0 in the model equation. 
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2.3.3. Prediction Using Linear Regression 
The linear regression model is used in prediction because of three key elements. 
The model data (dataset) contains the questions x and answers y for the problem 
to be solved. This data is used to generate a model represented by a mathemati-
cal function, with the coefficients of this function serving as the model’s para-
meters. The cost function or objective function is the set of errors in the model 
on the data. 

3. Results and Discussion 

In the next article we plan to carry out tests of the designed support on climatic 
data in order to predict the harvestable quantities according to the influencing 
climatic factors. Thus, for practical reasons, the model data (dataset) used to de-
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termine the objective function will be taken from those provided by the Geo-
graphical Institute of Burundi (IGEEBU) in 2018. 

3.1. Production Estimation Based on Weather Conditions 

In this study, we used test data from a sampling provided by the Geographical 
Institute of Burundi as shown on Table 1. 

The parameters a, b, c, d, e, f, g, h, i, j, and k are determined by applying the 
least squares method to the model, which is a formulated linear function. 

( ) 1 2 3 4 5 6 7 8 9 10if x ax bx cx dx ex fx gx hx ix jx k= + + + + + + + + + +     (4) 

To begin, let’s use the least squares method on the model’s linear function: 

( ) ( ) ( )( )2

0

1, , , , , , , , ,
2

m i
iiJ a b c d e f g h i j f x y

m =
= −∑           (5) 

( )
( )( )2

1 2 3 4 5 6 7 8 9 100

, , , , , , , , ,
1

2
i

i
m

J a b c d e f g h i j

ax bx cx dx ex fx gx hx ix jx k y
m =

= + + + + + + + + + + −∑
 (6) 

Calculating the partial derivatives in relation to the linear function coefficients 
yields the equations as shown on Table 2. 

We can deduce the system of equations from these partial derivatives calcu-
lated with respect (7). 

3.1.1. Resultant 1: Gradient Descent Equation System 

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 1
2

1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 2
2
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The system of Equations (7) is shown in matrix form in system (8) below: 
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Table 1. Dataset. 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y 

10.2 15 24 15 10.21 7.26 25 2.6 23 6.53 247.25 

11.3 11.9 21 14 14.2 8.6 28 3.45 29 7.3 1147.569 

5.148 4.89 17.6 47 11.6 1.15 29.54 5.9 36 8.95 958.25 

1.575 2.56 3.75 5.94 2.145 1.055 39.95 7.5 45.457 17.5 856.545 

8.7 1.75 5.45 6 7 5.96 35.25 9.54 31.015 11.57 915.75 

9.5 2.65 7.15 9 19.015 6.25 27.97 10.25 25 12.15 715.685 

X1: The solar radiation Level, X2: Water stress level, X3: Temperature of the air, X4: Soil depth, X5: Temperature of the soil, X6: 
Evaporation rate, X7: Precipitation quantity, X8: Wind speed, X9: Soil Humidity, X10: represents relative air Humidity, and Y: 
represents Production. 
 
Table 2. Least square calculation. 

Coefficients Derivatives with regard to Partial derivative expressions 
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3.1.2. Resultat 2: Factor Values or Climate Parameters 
The application of the least squares method to the model’s test data yields the 
effective values of the model’s parameters as shown by the system results (9) 
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426.652529 357.07572 693.95105 700.2115 569.2397 290.040825 1358.78317 288.0637 1326.553275 438.8171 46.423
357.07572 407.1607 734.049 670.9864 446.985 246.5568 1090.7306 171.9635 1103.03617 325.8305 38.75
693.95105 734.049 1421.6475 1600.525 929.551 456.20575 2249.8145 392.0955 2312.8455 683.094 78.95
700.2115 670.9864 1600.525 2782.2836 1123.026 381.6267 2855.913 558.64 3124.10458 903.52 96.94
569.2397 446.985 929.551 1123.026 855.6154 372.411325 1859.8063 421.74725 1854.215265 623.71105 64.17
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(9) 
We obtain the following values of the following parameters after solving the 

system (9): 

15022653.083623783662915a =  
19087801.322295062243938b =  
19617686.517314746975898c = −  
4433188.079017613083124d =  

0.037048308013294e = −  
4477342.56212795432657f = −  
293402.8806244044099g =  

10060668.647367989644408h = −  
7.433182264782304i = −  

2466614.860606360249221j =  
6.230437622139735k =  

The solving system (9) returns the values of the final model’s coefficients, as 
expressed: 

( )1 2 3 4 5 6 7 8 9

1 2 3 4

5 6 7 8

9

, , , , , , , ,
15022653.083 19087801.322 19617686.517 4433188.079

0.037 4477342.562 2934 10060602.880
2466614.860

68.64
.

7
6 230

f x x x x x x x x x
x x x x

x x x x
x

= + −

+ +

−

+

− − +

 

3.2. Discussion on the Obtained Results 

Two results were obtained after applying the model to the study data (dataset). 
1) A system of equations derived from study data using the law of the smallest 

squares and linear regression. 
2) The values of the model’s coefficients or parameters, which can be used to 

minimize or maximize the differences between the final and initial models. 
3) The objective function found constitutes a quantitative prediction support 

which can be used in various fields to estimate the values of indicators of a given 
process involving and interacting quantifiable and countable input factors. For 
the last one, at the output, the results or products obtained are themselves also 
quantifiable, countable and optimal according to the case. 

4) The determination of the influencing factors using the gradient descent 
method makes it possible to minimize or maximize the objective function which 
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ultimately can be used for prediction purposes. 
A subsequent work will elucidate and investigate the avenues of application of 

this fourth result using case studies that trace real-world phenomena. 

4. Conclusions 

The objective function must be determined. Multiple linear regression allows for 
the determination of an objective function, which can then be optimized by ad-
justing the influencing factors. The precision of the influencing factors required 
to obtain an optimal yield has been obtained using the method of gradient des-
cent and can be used for quantitative prediction processes or/and work. 

The solution based on least squares methods coupled with multiple linear re-
gression allowed for the determination of an objective function. The specifica-
tion of influencing factors, combined with the use of gradient descent methods, 
transforms the latter into a tool, a support for quantitative prediction. 

The use of a linear regression model, one of the artificial intelligence super-
vised learning methods, is what distinguishes this work from others. The work 
goes beyond the commonly used decision-making approaches. It focuses on 
prediction modeling for decision support systems in particular. 

This final point will be addressed in future work. Future research will particu-
larly concentrate on the specifications of the influencing factors of the objective 
function, as requested during the optimization process using the gradient des-
cent method. 
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