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Abstract 
We applied the method of Thermomechanical Dynamics (TMD) to a low- 
temperature Stirling engine, and the dissipative equation of motion and 
time-evolving physical quantities are self-consistently calculated for the first 
time in this field. The thermomechanical states of the heat engine are in Non-
equilibrium Irreversible States (NISs), and time-dependent thermodynamic 
work ( )W t , internal energy ( )t , energy dissipation or entropy ( )dQ t , and 

temperature ( )T t , are precisely studied and computed in TMD. We also in-

troduced the new formalism, ( )Q t -picture of thermodynamic heat-energy 
flows, for consistent analyses of NISs. Thermal flows in a long-time uniform 
heat flow and in a short-time heat flow are numerically studied as examples. 
In addition to the analysis of time-dependent physical quantities, the TMD 
analysis suggests that the concept of force and acceleration in Newtonian me-
chanics should be modified. The acceleration is defined as a continuously dif-
ferentiable function of Class C2 in Newtonian mechanics, but the thermome-
chanical dynamics demands piecewise continuity for acceleration and thermal 
force, required from physical reasons caused by frictional variations and ther-
mal fluctuations. The acceleration has no direct physical meaning associated 
with force in TMD. The physical implications are fundamental for the concept 
of the macroscopic phenomena in NISs composed of systems in thermal and 
mechanical motion. 
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( )Q t -Picture of Thermodynamic Heat-Energy Flows, Temperature of a 
Nonequilibrium Irreversible State, A Low-Temperature Stirling Engine 
(LTSE) 

 

1. Introduction 

Heat and energy are indispensable for the prosperity of human societies and 
ecological systems on Earth, and thermomechanical work is derived from me-
chanical, electric, and thermal energy sources and is extensively used for social 
living activities by sustaining the natural environment. Technologies for renewable 
energies have been actively investigated in the modern world. Heat engines are 
one of the energy-sustainable clean technologies, which converts thermal energy 
into mechanical energy and electric energy. It is important to understand that 
the mechanism of energy conversion goes through a nonequilibrium irreversi-
ble state, and so, it is necessary to have a theoretical model or method to study 
nonequilibrium irreversible states. The Thermomechanical Dynamics (TMD) 
is a theoretical model proposed for the first time by the authors of this paper to 
study Nonequilibrium Irreversible States (NISs), which is constructed from the 
TMD analysis of a drinking bird [1] [2]. The drinking bird’s equation of motion, the 
dissipative equation of motion, is consistently solved, producing time-evolving 
thermodynamic quantities, such as internal energy, work, entropy, and temper-
ature. 

A drinking bird’s motion is a manifestation of transitions from thermodynam-
ic equilibrium to a nonequilibrium irreversible state and vice versa. The analysis 
of a drinking bird system directed us to study emergent phenomena: the coupling 
or decoupling between mechanics and thermodynamics. It is never a simple, 
complementary mechanism explained by adding mechanics and thermodynamics. 
It demands the transition from a time-symmetric state to a time-symmetry-broken 
state and vice versa. Both mechanics and thermodynamics will break down, and 
new states emerge as NISs. In other words, the time-symmetry of Hamiltonian or 
Lagrangian is broken, resulting in the non-conservation of mechanical energy, but 
instead, the total thermal energy is conserved in the time range of NISs. This is 
the physical reason why we call the drinking bird’s equation of motion as the dis-
sipative equation of motion, indicating no Lagrangian or Hamiltonian exists dur-
ing NISs. 

Mathematically speaking, the equation of motion for the mechanical equili-
brium of a drinking bird’s system is given by a nonlinear differential equation 
with constant coefficients, and when the drinking bird system progresses to a 
nonequilibrium irreversible state, the equation of motion changes to the same 
nonlinear differential equation with time-dependent parameters. The nonlinear 
differential equation with time-dependent parameters has independent solutions 
not derivable from the identical nonlinear differential equation with constant 
parameters. The transition from a nonlinear differential equation with constant 
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parameters to time-dependent parameters corresponds to a mathematical way of 
expressing a transition to a new emergent physical phase: a nonequilibrium ir-
reversible state. Therefore, the nonlinear differential equations with constant and 
time-dependent parameters must be mathematically categorized respectively as a 
different class of nonlinear equations. This is one of the important mathematical 
properties discovered in the TMD analysis of a drinking bird system [1]. 

The physical indication of the dissipative equation of motion would be more 
fundamental than that of mathematics. In order to determine the dissipative eq-
uation of motion consistent with thermal states, it is required to introduce a 
driving force produced by a piecewise continuous force caused by frictional var-
iations and thermal fluctuations. The mechanical system of heat engines is dri-
ven by heat flows, but frictional variations of the working fluid, and friction in 
every internal part of the engine accelerate or decelerate the motion of heat en-
gines. This means that angular accelerations for the flywheel rotation in heat en-
gines cannot be determined continuously in time. The acceleration is a conti-
nuously differentiable function (Class C2) in Newtonian mechanics. A piecewise 
continuous function is differentiable in its subdomain, but is not continuous on 
the entire domain. Hence, it is not possible to obtain a continuously differentia-
ble function in the analysis of heat engines. If one dares to numerically differen-
tiate a piecewise continuous line to obtain accelerations, one obtains spiny, hed-
gehog-like lines, which may be considered to be a realization of frictional and 
viscous variations, and the hedgehog-like accelerations produce wavy lines when 
velocity is numerically calculated. The results are shown in Section 6. 

The hedgehog-like accelerations or decelerations are produced by the way of 
sudden changes in friction, the viscosity of fluids, and thermal fluctuations. These 
phenomena are observed and shown numerically in the analysis of a drinking 
bird system and also in the current analysis of a low-temperature Stirling engine. 
The velocity appears as a wiggly line depending on how intense the viscous and 
frictional fluctuations are affecting the entire motion. The resultant trajectory or 
line of motion becomes a continuous smooth line. The impact of hedgehog-like 
spiny variations on physical values is numerically shown in the current analysis 
of a low-temperature Stirling engine. The time-dependent physical quantities in 
NISs are explicitly evaluated. The results are interesting and showing the TMD 
analysis is self-consistent for thermal internal energy, work, heat, and tempera-
ture progressing from thermodynamic equilibrium to NISs and vice versa. 

The TMD method and results are applied to a mechanoelectrical power con-
version of a low-temperature Stirling engine, and a new type of heat-electricity 
conversion technique is developed, which is tentatively termed as the Disc-Magnet 
Electromagnetic Induction (DM-EMI) technique, and electric power can be ex-
tracted from boiled water (50 - 100), even from tiny drinking bird oscillations. It 
is usually understood that a turbine must be accelerated to a very high speed in 
order to extract a large amount of energy. However, the DM-EMI technique shows 
that there exists an optimal speed of rotation (rotation per minute, rpm) to pro-
duce electric power to a low-temperature Stirling engine. This is one of the im-
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portant results for constructing a thermoelectric conversion generator [3] [4]. It 
is possible to improve the DM-EMI technique to a high-temperature heat flow, 
such as geothermal and thermal power plants to produce kW-level intermediate 
energy for realistic applications. 

The triad propositions in TMD are reviewed in Section 2. The first proposi-
tion demands the dissipative equation of motion for a low-temperature Stirling 
engine. The dissipative equation of motion is discussed in Section 3, which has a 
piecewise continuous driving force coming from frictional variations and ther-
mal fluctuations. The second proposition demands that all heat-energy thermal 
flows are defined consistently with the thermodynamic conservation law. We in-
troduce ( )Q t -picture of thermodynamics in order to be precise and prudent, which 
is explained in Section 4. The dissipative equation of motion for a low-temperature 
Stirling engine is introduced in Section 5. The motion and thermodynamic quan-
tities of a low-temperature Stirling engine are solved by the TMD model. The 
piecewise continuous acceleration or deceleration in TMD vs the continuously 
differentiable acceleration in Newtonian mechanics is discussed in Section 6. 
The numerical simulations of time-progressing thermodynamic work, internal 
energy, heat flows, and temperature are shown in the case of a homogeneous 
slow heat flow and a local ignition-type rapid heat flow in Section 7. Conclusions 
and perspectives are discussed in Section 8. 

2. The Triad Propositions of Thermomechanical Dynamics  
(TMD) 

The method of TMD consists of three propositions for constructing the equation 
of motion (the dissipative equation of motion), the conservation law for the total 
energy flow, and the definition of measure for temperature in NISs. The method 
of TMD is based on the analysis of NISs in the drinking bird system [2], and it is 
different from probability theory and distribution function approach in kinetic 
theories. A low-temperature Stirling engine is a mechanical system of heat en-
gines driven by the cyclic compression and expansion of gas in order to convert 
thermal energy into mechanical work. In the current paper, we apply the TMD 
model to a low-temperature Stirling engine [5] in order to study thermomechani-
cal motion and time-progressing internal thermodynamic quantities. 

The three propositions in the TMD method are [1]: 
1) The dissipative equation of motion: In the case that mechanical and ther-

mal states coexist (thermomechanical states), the dissipative equation of motion 
for work must be constructed by considering phenomenological effects of fric-
tional variations, time-dependent changes of physical quantities, thermal con-
ductivity and efficiency. It would be useful to make use of Hamiltonian or Lagran-
gian, however, one should note that the time-symmetry is broken in NISs. 

2) The total energy-flow conservation law at time t: The thermodynamic work 
( )d thW t , the internal energy ( )d t  and the total entropy ( ) ( )dT t t  are related 

to each other by the energy conservation law. Equivalently, it is essential in TMD 
that the time-dependent total energy-flow maintains,  
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( ) ( ) ( ) ( ) ( ) ( )d d d d d d d d d d .eq tht t T t t t W t t Q t t W t t= + = +       (1) 

The expression of heat flow (entropy flow), ( ) ( ) ( )d d d dT t t t Q t t= , is ex-
plicitly used in the analysis of heat engines. The time-dependent thermodynamic 
power in a nonequilibrium irreversible state, ( )d dthW t t , is essentially different 
from mechanical work, because of the constraint from the first law of thermo-
dynamics and energy dissipation phenomena. Thermodynamic equilibrium is 
defined by ( )d d 0eqW t t = : no thermodynamic power exists in thermodynamic 
equilibrium [2]. 

3) Temperature in a nonequilibrium irreversible state: The measure of a non-
equilibrium irreversible state is defined by the ratio of entropy-flow against 
energy-flow:  

( ) ( ) ( )
( )

( )
( )

d d d d
.

d d d d
T t t t Q t t

t
t t t t

τ = =


 
                  (2) 

The value of ( )tτ  is a dimensionless, positive-definite function, ( ) 0tτ > . The 
temperature in NISs is defined by,  

( ) ( ) ,T t T tτ≡                           (3) 

where T is the initial equilibrium temperature. When ( ) 1tτ =  holds identically 
with respect to time t, it defines thermodynamic equilibrium, which shows no 
work exists, ( )d d 0thW t t = , at thermodynamic equilibrium. The conditions of 
near equilibrium states, local equilibrium, linearity of fluxes and forces of trans-
port processes [6] [7] [8] [9] [10] are examined by the condition,  
( ) ( )( ) ( )d d d d ~ 1t T t t tτ =    in the TMD model. When ( ) 0tτ = , it leads to 

a contradiction that thermodynamic power ( )d dthW t t  exists without heat con-
duction, which is proven by ( ) 0tτ =  and Equation (1). The values of ( ) 1tτ > , 
or ( )1 0tτ> > , correspond respectively to a high or a low-temperature state in 
a nonequilibrium irreversible state.  

The nonequilibrium irreversible state of a drinking bird’s motion is rigorously 
solved and consistently explained by TMD [1] [2], which is the example of the 
case: ( )1 0tτ> > . The drinking bird motion in an initial thermodynamic equi-
librium develops to a low-temperature nonequilibrium irreversible state, which 
is a local, thermal equilibrium with temperature ( ) ( )T t T tτ= . The drinking 
bird repeats back and forth oscillations from thermal equilibrium to NISs and 
then to thermal equilibrium, and so, it is important to understand that the equa-
tion of motion of the drinking bird expresses transitions from NISs to thermo-
dynamic equilibrium. Without water to keep the drinking bird’ head wet, the 
system eventually progresses to thermodynamic equilibrium with ( ) 1tτ →  as 
t →∞ . 

3. The Classification of Thermodynamic Processes of a  
Low-Temperature Stirling Engine 

The mechanical rotations of a low-temperature Stirling engine are ideally explained 
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by four approximate thermodynamic processes: isothermal expansion, isovo-
lumetric (isochoric) heat-removal, isothermal compression and isovolumetric 
heat-addition. The system of a heat engine is physically driven by mechanical 
and thermal energies induced by heat-energy flows. Therefore, it is fundamen-
tal to examine the physical meanings of four processes of a heat engine in or-
der to apply the method of TMD. The analysis of four processes of a low- temper-
ature Stirling engine is essential to determine the dissipative equation of mo-
tion. 

A low-temperature Stirling engine is a thermomechanical rotation-motor, or a 
motion-converter from reciprocating motion to rotary motion using heat flows, 
schematically shown in Figure 1. It converts the reciprocating motion of a pis-
ton and a displacer into mechanical work (the rotation of the flywheel). The sys-
tem is composed of:  

1) Heat source: A homogeneous heat flow, such as from boiled water (40˚C - 
100˚C) and geothermal heat,  . The heat flow coming in the system is defined 
by ( )d d 0Q t t > . 

2) Heat exchangers: The power piston is used to improve the heat flow and 
the flywheel rotation affected by friction losses. 

3) Regenerator: The internal mechanism of heat exchangers between a hot 
plate and a cold plate. The thermomechanical conversion for work (mechanical 
rotations) depends on thermal efficiency, heat transfer, viscous pumping and 
friction losses. 

4) Heat sink: The temperature difference between a hot plate and a cold plate 
is needed for internal heat flows. 

5) Displacer: The thermal heat flow from a hot plate to a cold plate exerts ver-
tical oscillations of the displacer. The efficiency of displacer to maintain appro-
priate heat dissipations is essential for mechanical rotations of the flywheel.  

 

 
Figure 1. A schematic structure of a Low-Temperature Stirl-
ing Engine (LTSE) [11]. 

https://doi.org/10.4236/jamp.2023.111019


H. Uechi et al. 
 

 

DOI: 10.4236/jamp.2023.111019 338 Journal of Applied Mathematics and Physics 
 

It is important that mechanical energies are extracted according to time- 
dependent variations of internal energy, thermodynamic force, work and entro-
py. Temperature variations and thermal fluctuations come out together with 
energy losses via internal frictions of a mechanical system and thermal conduc-
tion. The driving force inside cylinder comes from heat flows, and in order to 
continue the rotational motion, the displacer room inside cylinder must be returned 
to a local-equilibrium state or an approximately similar thermal state. In other words, 
the expansion-space and heat exchanger should be maintained at a thermal temper-
ature so that the displacer can maintain oscillations in near-isothermal states by ab-
sorbing and releasing heat from the hot plate to the cold plate. To understand 
the relations among thermodynamic processes, heat flows and thermodynamic work 
(the flywheel rotation) is essential to solve thermomechanical motion of heat en-
gines by way of the TMD method. 

4. The Total Heat-Energy Conservation Law, Conditions and  
Constraints in Q(t)-Picture  

In traditional explanation, vertical oscillations of a power piston and a displacer 
are explained by pressure, compression and expansion of air in the container, 
and they are smoothly connected so that air can move freely between the hot plate 
and cold plate, mixing heated and cooled air in the cylinder container. However, 
the concept of motion is changed in TMD such that the cyclic vertical oscillations 
of a power piston, a displacer in the container and a flywheel are driven by the 
incoming and outgoing heat flows, thermal conduction and dissipation of heat, 
which is supposed to maintain thermal states in the container for continuous ver-
tical oscillations. 

The fundamental relation among motions and kinetic work, associating heat 
dissipation and internal energy and associating heat flows should be carefully 
studied. Thermodynamic work and internal energy respectively have their por-
tions of heat for mechanical motion and dissipation. In other words, thermome-
chanical work, ( )wQ t , is assumed completely partitioned into portions of heat 
contributing to mechanical work and heat for dissipation. All mechanical motions, 
internal energy, heat dissipations, and other heat-energy losses must maintain the 
total heat-energy conservation law. 

The second proposition of TMD (the conservation law of energy flows) must 
be carefully established to the total heat-energy flows constrained by frictional 
variations, heat conduction and thermal efficiency of the mechanical structure of 
heat engines. We introduce ( )Q t -picture to carefully manage time-dependent 
variations of thermodynamic energies. For example, internal energy is expressed 
as ( ) ( )t Q tε→  in calorie unit, and thermodynamic work as ( ) ( )th wW t Q t→ , 
the total entropy dissipation ( ) ( )dTS t Q t→  and so forth. The expression becomes 
convenient to use when thermal energies progress in time. We assume that ther-
mal energy is decomposed into two parts as:  

( ) thermally conserved energy thermally dissipating energy,Q t = +     (4) 
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for time-dependent internal energy, work and other thermodynamic quantities. 
The entropy is given by the sum of all thermally dissipating energies. The ( )Q t
-picture is useful for checking and maintaining thermodynamic consistency, and 
it is explicitly defined and used in the following discussions. 

The integrated expression of the heat-energy conservation law (1) in the TMD 
Proposition 2) is written in the following form:  

( ) ( ) ( ) ,in tht Q t W t∆ = +                     (5) 

where ( )inQ t  denotes the total heat coming in the system at time t. The heat 
( )inQ t  is positive and the heat flow-in is, ( )d d 0inQ t t > , to operate a heat en-

gine and has a minimum value to produce work. It is determined by external 
conditions and constraints, depending on thermal efficiency and structure of 
machines. The time-change of internal energy is written as, ( ) ( ) 0t t∆ = −   , 
with ( ) 00 =  , measured from the initial value 0 . Thermodynamic work, 

( )thW t , consists of the energy of the flywheel rotation, power piston, and asso-
ciating heat dissipation. The initial conditions are set as: ( )0 0inQ = , ( )0 0thW = , 

( )0 0∆ = . 
Let us denote thermodynamic work as ( ) ( )th wW t Q t≡  and internal energy as 
( ) ( )t Q tε≡ . The heat used for thermodynamic work ( )wQ t  is written by  

( ) ( ) ( ).w wk wdQ t Q t Q t= +                     (6) 

The heat ( )wkQ t  is thermal energy used for the kinetic energy of the flywheel 
rotations, the displacer and power piston oscillations, and ( )wdQ t  is the asso-
ciating heat dissipation. Similarly, the total heat used for internal energy process 

( )Q tε  is written by:  

( ) ( ) ( ).i dQ t Q t Q tε ε ε= +                       (7) 

The heat ( )iQ tε  is thermal energy used to change internal energy (thermal 
internal energy), and ( )dQ tε  is the associating heat dissipation. 

The total heat into the system of heat engine is denoted by ( )inQ t , and the 
heat-energy conservation law (5) is now rewritten as:  

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ).

in w

i d wk wd

i wk d

Q t Q t Q t

Q t Q t Q t Q t

Q t Q t Q t

ε

ε ε

ε

= +

= + + +

= + +

               (8) 

The total heat dissipation with internal friction losses is defined by  
( ) ( ) ( )d d wdQ t Q t Q tε= + , with ( )0 0dQ = . The differential form of  

time-dependent total energy-flow of (1) is written in ( )Q t -picture as:  

( ) ( ) ( )d d d d d d .d wQ t t Q t t Q t tε = +                  (9) 

Similarly, temperature ( )tτ  in (2), in ( )Q t -picture is expressed as:  

( ) ( ) ( )
( )

( )
( )

d d d d
.

d d d d
d

i

T t t t Q t t
t

t t Q t tε

τ = =



                 (10) 

Now, the total heat-energy conservation law or the Carnot cycle in NISs is ex-
pressed by:  
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( ) ( ) ( ) ( ) ,in d i wkQ t Q t Q t Q tε− = +                  (11) 

which must be valid from the initial thermodynamic equilibrium state to a thermal 
equilibrium. The kinetic heat energy, ( )wkQ t , is interpreted as the flywheel energy 
of rotations at time t:  

( ) ( )20 .
2wk
I

Q t tθ ′=                       (12) 

In ( )Q t -picture, thermodynamic variables such as volume, pressure, work, 
internal energy and total entropy are completely suppressed in ( )wQ t , ( )Q tε  
and ( ) ( )in dQ t Q t− . One should note that the time-change of internal energy 
and work are explicitly included in the Carnot cycle in NISs. 

The heat-in ( )inQ t  and the total dissipation heat ( )dQ t  are related with the 
definition of thermal efficiency:  

( ) ( ) ( )
( )

( )
( )

1 .in d d
th

in in

Q t Q t Q t
t

Q t Q t
η

−
= = −                 (13) 

The amount of heat, ( ) ( ) ( ) ( )in d th inQ t Q t t Q tη− = , is used for internal energy 
and mechanical work as ( )iQ tε  and ( )wkQ t  in (11). The thermal efficiency is 
usually introduced as a constant, for example ~ 20%thη , constrained by ma-
chine structure and thermal efficiency of mechanical system. However, it can 
change according to the time-variation given by (13) and becomes time-dependent, 

( )th th tη η→ . The thermal efficiency at time t in NISs is numerically determined 
to be consistent with (13) with the initial condition ( )0th thη η=  and the con-
straint ( )th thtη η=  at thermal equilibrium when the heat engine reaches an in-
ternal thermal equilibrium. 

The time-dependent thermal efficiency is closely related to temperature in NISs 
inside heat engines, ( ) ( )0T t T tτ= . Temperature at ( ) 00T T=  changes abruptly 
at the beginning and becomes a constant, ( )T t T=  , at a thermal equilibrium. In 
numerical simulations, time-retardation of heat transfers among right terms in 
(11) is neglected; in other words, the upper gas and the lower gas of the displacer 
in the cylinder room are supposed to be mixed uniformly and simultaneously during 
the cycle of oscillations (see, Figure 1). The time-retardation and spatial thermal 
conduction mechanism will be included in TMD in the future work. 

5. The Dissipative Equation of Motion for a System of a  
Low-Temperature Stirling Engine 

The vertical oscillations of the displacer are driven by thermal conduction and 
converted to rotations of the flywheel, and the thermomechanical motions are re-
lated to thermal efficiency of a hydraulic gas in the container. Therefore, thermo-
dynamic accelerations and decelerations of motion by heat flows and friction of 
working fluid and all crankshafts of the Stirling engine must be considered to 
construct the dissipative equation of motion for the flywheel. One should note 
that the equation of motion is not derivable from Lagrangian or Hamiltonian be-
cause of the time-dependent change of entropy and internal energy. The dissipa-
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tive equation of motion must be determined self-consistently with Propositions 
2) and 3). 

The variable to express thermal work of a low-temperature Stirling engine is 
the angle θ , used for rotations of the flywheel shown in Figure 2 and chosen 
from the vertical axis (starting from z-axis as 0θ = ). The rotation of the flyw-
heel is connected to vertical oscillations of the displacer exerting the resultant 
rotational force (torque). In the TMD model, it is essential to recognize that the 
rotation of the low-temperature Stirling engine is produced by heat flows and 
friction of working fluid, and so, the coupling among rotational force, heat flows 
and frictional variations must be carefully considered to construct the dissipative 
equation of motion. 

Based on the discussions so far, one could start from an equation of motion 
for a simple pendulum or a drinking bird [2]. The starting mechanical equation 
of motion may be chosen as:  

( ) ( ) ( )0 sin 0,I t c t glm tθ θ θ+ + =                    (14) 

where cθ  is a friction term; the length, l , may be considered as the radius 
of the flywheel, ~ 10.0l  (cm); 980g =  (cm/s2). The masses of the flywheel, 

1 50m =  (g), 2 200m =  (g): the width 3.0d =  cm. The moment of inertia of 
the flywheel in Figure 2 is:  

( ) ( )22 2
0 2 1 22 2 3 2 1 .I m l m m l d l= + + −               (15) 

The moment of inertia of a power piston and frictional effects can be effec-
tively included in (15) as mass of displacer portion × (displacer amplitude)2. 
However, the effective moment of inertia hardly changes numerical results com-
pared with the flywheel-only calculations. The angle θ = π  is mechanically ad-
justed as the point of the lowest potential energy, and the gravitational force, g, 
frictional forces from the working gas in the container change respectively for 
and against the θ-direction, in the range, 0 θ≤ ≤ π  and 2θπ ≤ ≤ π , resulting 
in a rapid convergence to θ = π . Hence, the equation of motion (14) cannot re-
produce the motion of the heat engine, but it gives ideas to construct a correct 
dissipative equation of motion. 

Now, it is essential to consider carefully about driving forces of the heat en-
gine. The vertical oscillation of displacer receives friction from mechanical con-
nections and working fluid (gas inside cylinder) and thermal fluctuations. The 
frictions of working fluid work always against the θ-direction and heat flows 
are directed in the positive direction defined by the heat flows of heat-in and 
heat-out. In other words, the heat flows are working against the motion in the 
range, 0 θ≤ ≤ π  and for the motion in the range, 2θπ ≤ ≤ π . The directions 
of frictional forces of working fluids change suddenly against θ-direction in 
the range 0 θ≤ ≤ π  (upper direction) and 2θπ ≤ ≤ π  (lower direction). The 
sudden changes of frictional forces on the displacer produced by mechanical ro-
tations, working fluid and heat flows are not correctly expressed in Equation 
(14). 
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Figure 2. The rotational angle, θ, starting from 
the vertical axis. 

 
Therefore, it is important to account for sudden changes of frictional forces, 

resulting in a discontinuity of acceleration or deceleration in oscillations of the 
displacer. The characteristics of discontinuous forces against θ-directions in ver-
tical oscillations can be mathematically defined by introducing a piecewise con-
tinuous function to express sudden changes of frictional forces. The function is 
piecewise continuous and differentiable on the corresponding intervals, but it is 
not continuous on the entire domain as it contains jump discontinuities. The piece-
wise continuity of motion is required in thermomechanical motion as well as nat-
ural phenomena. 

The well-known example of piecewise continuous change of motion would be 
Brownian motion of pollen through the microscope, and the random Brownian 
motion is produced by the external driving force of the intermediate-microscopic 
interactions between a pollen and particles, resulting in the random fluctuations 
of a pollen’s position in a medium [12]. Brownian motion of a relatively larger 
particle (dust particle) than molecules of medium moves with different random 
trajectories, velocities and accelerations. 

The external, thermal driving force in heat engines produces piecewise conti-
nuous force (torque) to oscillations for the displacer. Therefore, we introduce 
the appropriate and phenomenological thermal driving force by employing the 
piecewise continuous function in the form ( )sin tθ . We assume that the piecewise 
continuous driving force couples to thermodynamic work, ( )wQ t , and the driv-
ing force produces mechanical rotations of the flywheel and power-piston with 
associating heat dissipation in the form (6). As the first requirement of TMD, the 
dissipative equation of motion for a low-temperature Stirling engine is defined 
by:  

( ) ( ) ( ) ( )0 sin 0,w wI t c t Q t tθ θ λ θ′′ ′+ − =               (16) 

where wλ  is a dimensionless coupling constant for heat and mechanical work. 
The coupling constant, wλ  and heat for work ( )wQ t , mainly determine the mag-
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nitude of angular velocity and number of rotations, and so, they are carefully 
adjusted in computer simulations. One should also be careful that the (cgs) and 
calorie unit are used in the numerical calculations. The initial value of heat for 
work ( )wQ t  is chosen as ( ) ( )w w inQ t Q tη=  ( wη  is an arbitrary small number) 
and the computation is repeated until one obtains solutions: the number of rota-
tions, ( ) 2tθ π  and a stable maximum angular velocity, ( ) 2tθ ′ π , rotations per 
minute (rpm). 

Although the fundamental equation of motion (16) seems simple, its mathe-
matical and physical consequences are profound. The piecewise continuous 
driving force in (16) immediately indicates that the acceleration is not defined as 
differentiable and continuous quantity as supposed in Newtonian mechanics. 
The acceleration cannot be determined as the second-order derivative derived 
from the trajectory of motion, because the driving force contains jump disconti-
nuities in the entire domains of motion. In TMD, the concept of force is physical, 
and force only changes directions of motion or velocities of particles, but not as-
sociated with mass × acceleration. The jump discontinuities are not avoidable, and 
they naturally emerge from friction and viscosities of working fluid, sheer stress and 
machine structure, temperature and thermal fluctuations. Macroscopic motions of 
fluids or particles are all exposed in sudden and unexpected thermal distur-
bances. In the TMD model, the trajectory and velocity are continuous and diffe-
rentiable, but the acceleration is only piecewise continuous, and when numerical 
differentiation is executed to an angular velocity, one obtains spiny hedgehog-like 
lines. 

The observability of macroscopic motion indicates that the jump discontinui-
ties or frictional and thermal disturbances must be small enough so that veloci-
ties and trajectories or reciprocated motion of heat engines are able to be ob-
served as a continuous motion. The concept of indeterminacy of acceleration in 
the macroscopic disturbances, or piecewise continuity in the mathematical sense 
must be manifest in the dissipative equation of motion (16) as physical constraints 
required by natural phenomena. The concept required by TMD is new and dif-
ferent from methods in Newtonian mechanics and thermodynamics. 

The dissipative equation of motion for a low-temperature Stirling engine and 
piecewise continuous changes of accelerations are explicitly examined by numeri-
cal simulations in the following section. 

6. The Solutions to the Dissipative Equation of Motion and  
the Piecewise Continuous Force 

Numerical simulations of a low-temperature Stirling engine are performed by 
solving (16) with initial conditions, for instance, ( )0 0θ =  and ( )0 0.1θ ′ = π . 
The unit of angle ( )tθ  is expressed by (radian) or the number of revolutions 
( ) 2tθ π . Similarly, the speed of rotation is expressed by ( )tθ ′  (rad/s), or rev-

olutions per second ( ) 2tθ ′ π  (revolutions/s). The numerical calculations of angu-
lar accelerations, ( )tθ ′′  (rad/s2), are formally executed, resulting in hedgehog-like 
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spiny lines. 
The thermomechanical coupling constant, wλ , is a small constant, and the 

appropriate initial starting value should be chosen arbitrarily and adjusted in 
self-consistent calculations, because the speed of rotations apparently depends 
on wλ , affecting values of internal energy, entropy, work and temperature. The 
thermal efficiency, ( )th tη , is a device-dependent external constraint, and so, we 
supposed 0 20%η =  at thermodynamic equilibrium and thermal equilibrium of 
the heat engine. The numerical simulations are performed in two cases: a slow-
ly-decreasing long-time uniform heat flow and a rapidly-decreasing short-time 
uniform heat flow. 

6.1. Thermodynamic Work in a Slowly-Decreasing, Long-Time  
Uniform Heat Flow  

Two types of flywheel rotations driven by (A) a slowly-decreasing, long-time 
uniform heat flow and (B) a rapidly-decreasing, short-time heat flow are computed 
as examples. The constant heat source like a solar heat collector, a low-temperature 
hot-spring, heat exchanger and waste heat from industrial systems may corres-
pond to examples for (A), and an internal combustion engine, reciprocating heat 
engines (piston engines) may be regarded as examples for (B), which should be 
respectively investigated in detail in the future. The rotations, velocities and 
accelerations are calculated specifically in the following analyses. 

The heat flow-in, ( )inQ t , is defined by:  

( ) ( )1
1 1.0 e .t

in HQ t Q ξ−= −                      (17) 

The constants are fixed in the case of (A) as, 1 100.0HQ =  (cal) and  
3

1 6.51 10ξ −= ×  (1/s); the total heat ( )inQ t  and heat flow ( )d dinQ t t  are shown 
in Figure 3. The heat ( )inQ t  slowly increases to its maximum value 1HQ , and 
accordingly, ( )d dinQ t t  decreases in the time range 0 1000t< <  (s), but the 
motion continues to over 2400 (s). The constant 1ξ  would be related to thermal 
conductivity of working fluid and materials used in a heat engine, and a delicate 
task is necessary by adjusting parameters in computer simulations. The initial 
value of heat used for thermomechanical work (the flywheel rotations), ( )wQ t  
in (6), should be supplied, for example, as ( ) ( )1w w inQ t Q tη= , and 1wη  is a small 
number at the beginning and an appropriate value has to be determined consis-
tently by repeating numerical calculations. The mechanical and thermal responses 
of the heat engine are reasonably controlled in numerical simulations by chang-
ing values of 1wλ , 1ξ  and 1wη . The constants are adjusted to obtain the angu-
lar velocity ( )60 2tθ ′× π  (rpm), compatible with experimental values of a low- 
temperature heat engine. 

The maximum value of angular velocity is set around, ( )30 60 2 40tθ ′ π< × <  
(rpm), in the simulation (A), and the dissipative equation of motion (16) is 
solved to obtain the solution, ( )tθ  and ( )tθ ′ . It is better to note that the op-
timum angular velocity for thermoelectric energy conversion should exist in 

( )max30 60 2 40tθ< × π′ <  (rpm) in the low-temperature Stirling engine, and it is  
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(a)                                  (b) 

Figure 3. The total heat ( )inQ t  and the heat flow ( )d dinQ t t  for a slowly-decreasing, 

long-time uniform heat flow. (a) The total heat ( )inQ t  in time range 0 1000t< <  (s). 

(b) The heat flow ( )d dinQ t t  in time range 0 1000t< <  (s). 

 
discussed in detail as DM-EMI thermoelectric conversion to extract electric 
energy from boiled water ( 100T  ), using the current type of rotations of a 
low-temperature Stirling engine [3] [4]. Thermodynamic work of the flywheel 
rotations at a time t is given by:  

( ) ( )20 .
2wk
I

Q t tθ
∗

′=                       (18) 

The effective inertial mass of moment, 2
0 0 dpI I m a∗ = +  ( dpm  for the mass of 

displacer and power piston, a for the rotational amplitude of the displacer), is 
used to include effectively the displacer and piston oscillations into flywheel ro-
tations, as explained in Section 5. When thermomechanical work ( )wkQ t  is 
obtained, the associating heat dissipation, ( )wdQ t , is determined by  

( ) ( ) ( )wd w wkQ t Q t Q t= −  in (6). 
The number of rotations ( ) 2tθ π  and the angular velocity ( )tθ ′  (revolu-

tions/s) of the flywheel are respectively shown in Figure 4(a) and Figure 4(b). 
One can check that the trajectory of motion, ( ) 2tθ π , changes continuously. 
Thermal force exerted by heat flows from a cold plate to a hot plate accelerates 
the angular velocity of rotations in the beginning, but mechanical motions reach 
a plateau, a relatively stable level of the angular velocity, as shown in Figure 4(b). 
The stable maximum angular velocity seems constant, but one can notice that the 
angular velocity in Figure 4(b) has tiny fluctuations along the ( ( ) 2tθ ′ π )-solution. 
The tiny fluctuations are caused by frictional variations and thermal fluctuations 
between the displacer and working fluid, which can be naturally examined in the 
experiment of a low-temperature Stirling engine. The realistic flywheel thermal 
motion is produced reasonably well by the dissipative equation of motion (16). 
When heat exchangers and regenerators work properly, the heat engine persists 
in a long period of time. 

It is important to compare the corresponding values between the heat flow, 
( )d dinQ t t  in Figure 3(b) and the angular velocity, ( ) 2tθ ′ π  in Figure 4(b), 

after they reached a stable value ( 400 t ). The heat flow becomes small and very 
slowly decreasing with time, but the flywheel keeps a stable maximum angular  
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(a)                                     (b) 

Figure 4. The number of revolutions and angular velocity (revolutions/s) for a slow-
ly-decreasing, long-time uniform heat flow. (a) The number of revolutions, ( ) 2tθ π , in the 

time range 0 1000t< <  (s). (b) The angular velocity, ( ) 2tθ′ π  (revolutions/s), in the time range 

0 1000t< <  (s). Note the tiny fluctuations along the angular velocity.  
 

velocity for a long time period, which physically indicates that the flywheel can 
keep its maximum angular velocity for a long time with very small amount of 
heat flows ( )inQ t . In other words, once the flywheel rotation reaches a maxi-
mum stable angular velocity, thermodynamic work of flywheel can be main-
tained with a very little addition of rotational energy or rotational force (torque). 
It confirms the empirical fact of inertia to keep the flywheel rotations, which is 
specifically shown for the first time in the TMD method. The fact and analyses 
would be helpful for heat-energy conversion and flywheel-storage technolo-
gies. 

As discussed in Section 5, the fact that thermal disturbances and frictional 
forces create jump discontinuities on the angular velocity can be clearly observed 
in numerical calculations, and it is important to recognize that wiggly lines of angu-
lar velocity and hedgehog-like spiny lines of angular accelerations become visible 
when lines are magnified. One can notice that the angular velocity, ( ) 2tθ ′ π , 
changes as a small wiggly line, shown explicitly in Figure 5(a) by changing the 
scale and expanding the line segment of Figure 4(b), and the numerical values 
of angular acceleration derived from the angular velocity in Figure 5(a) are shown 
in Figure 5(b), and they are solutions restricted in the time range 0 100t< <  
(s) in a magnified fashion. The results come from abrupt changes of frictional 
braking effects against up-down oscillations of the displacer. Mathematically speak-
ing, the sinuous small oscillations of angular velocity are produced by numerical 
integration of piecewise-continuous angular acceleration, ( )tθ ′′ . In case that 
oscillations caused by friction are too small to be observed in a macroscopic ener-
gy-time scale, angular acceleration, velocity and trajectory would be regarded as 
smooth, continuous and differentiable quantities. 

Thermodynamic work (rotational energy of the flywheel and power piston), 
( )2

0 2I tθ∗ ′  (Joule), is shown in Figure 6(a). The rotational energy reaches a max-
imum stable value, which has a continuous, tiny-wiggly line because of ( )tθ ′ . 
The stable rotational velocity of the heat engine produced by the dissipative equ-
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ation of motion should not be considered smooth and constant as perceived and 
supposed in human sense, which is essentially related to frictional variations and 
internal thermal fluctuations. 

The TMD thermomechanical approach to physical phenomena demands 
fundamental changes regarding the concept of thermodynamic force and work, 

( )thW t . Mechanical work is based on continuity and differentiability of motion, 
which is integrated in changes of velocity and trajectory of particles. In other 
words, it is essential to recognize that modifications of mechanical motion 
caused by friction, wear, deformation and thermal fluctuations generate the 
fundamental change to the concept of differentiability of physically observable 
quantities. The trajectory ( )tθ  and angular velocity ( )tθ ′  are continuous and 
differentiable, whereas the angular acceleration, ( )tθ ′′ , is piecewise continuous 
and has finite numbers of jump discontinuities in a finite interval. The whole 
view of acceleration results in an assembly of hedgehog-like spiny lines as shown  

 

 
(a)                                    (b) 

Figure 5. (a) The continuous and differentiable angular velocity (the line-segment expanded 
view), and (b) the corresponding piecewise continuous angular acceleration derived from the 
time-derivative of (a). (a) The angular velocity ( ) 2tθ′ π  (rotations/s) is continuous and 

differentiable. The scale is changed in a magnified fashion to show wiggly lines of the angular 
velocity line, 0 100t< <  (s) in Figure 4(b). (b) The piecewise continuous angular accelera-
tion, ( )tθ′′  (rad/s2), 0 100t< <  (s), derived from the angular velocity in Figure 5(a).  

 

 
(a)                                    (b) 

Figure 6. Thermodynamic work (rotational energy of the flywheel and power piston) and 
the angular acceleration for a slowly-decreasing, long-time uniform heat flow. (a) Thermo-

dynamic work (rotational energy of the flywheel and power piston), ( )2
0 2I tθ∗ ′  (Joule), in 

the time range 0 1000t< <  (s). (b) The piecewise continuous angular acceleration, ( )tθ′′  

(rad/s2), 0 1000t< <  (s), derived from the velocity in Figure 4(b). 
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in Figure 6(b). The angular acceleration cannot be determined in the mechani-
cal sense of differentiable continuous functions of Class C2, but force remains as 
a physical entity related to change velocities and positions of particles and matter, 
which is one of the fundamental consequences in TMD. 

The numerical results of the dissipative equation of motion should be consi-
dered as a reflection of physical macroscopic phenomena, which consists of ir-
reversible heat-energy dissipations, thermal fluctuations, or random fluctuations 
in a mathematical term. Thermal fluctuations become larger as temperature, pres-
sure and thermal efficiency change while a thermal process, as well as motions of 
wheels, power pistons, coupler, and crank, fluctuates about mechanically given 
conditions and states. When dissipative changes on motion are suppressed small 
in the macroscopic heat-energy scale, thermomechanical trajectory and motion, 
thermal work, internal energy and heat would be considered smooth and conti-
nuous as classical functions in Class C2. The dissipative equation of motion is suc-
cessful for producing thermomechanical flywheel rotations, and it is also useful 
to apply to the thermoelectric energy conversion [3]. 

The wiggly line of angular velocities and spiny hedgehog-like accelerations are 
also found in the dissipative equation of motion for a drinking bird system, which 
is a reasonable experimental device to study NISs. The time-dependent progres-
sion of internal energy, work, entropy and temperature is solved and studied 
consistently, which is the origin of the TMD method [1] [2]. The low-temperature 
Stirling engine is the second example solved consistently by the TMD method. 
The applications of the TMD method to other types of α, β, γ Stirling engines 
and piston engines as well as internal combustion engines in general would be ex-
pected, and also, the applications are useful for thermomechanical and thermoe-
lectric energy-conversion technologies [4]. The construction of the dissipative 
equation of motion based on mechanical equations of motion is a key to solve 
thermal and macroscopic mechanical systems, which is one of the interesting 
open questions. 

6.2. Thermodynamic Work in a Rapidly-Decreasing, Short-Time  
Uniform Heat Flow  

The flywheel rotations in the case (B) is computed in this section, and it is de-
fined by (17) with 2 1H HQ Q=  and 2 1100ξ ξ= × . The flywheel rotations and 
angular velocities are slow and small, and the heat flow rapidly ends within 18 
seconds. Other constants, 2wη  and 2wλ , are adjusted accordingly in numerical 
simulations, considering applications to an ignition mechanism of heat engines 
and internal combustion engines. The numerical result of the flywheel revolu-
tions is shown in Figure 7(a), and the corresponding angular velocity is shown 
in Figure 7(b). The short-time uniform heat flow exhibits that the heat flow 
ends very rapidly and produces only several rotations (4 rotations, in Figure 
7(a)), and the angular velocity is very slow shown in Figure 7(b). The heat 

( )inQ t  soon reaches its maximum value 2HQ , and accordingly, the flywheel ro-
tation ends at ~ 18t  (s). In reality, a low-temperature Stirling engine continues  
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(a)                                  (b) 

Figure 7. The number of revolutions and angular velocity (revolutions/s) for a repidi-
ly-decreasing, short-time uniform heat flow. (a) The number of revolutions, ( ) 2tθ π  

(revolutions) in the time range 0 20t< <  (s). The flywheel rotations stop at ~ 18t . (b) 
The angular velocity, ( ) 2tθ′ π  (revolutions/s), in the time range 0 20t< <  (s). The 

angular velocity ends at ~ 18t .  
 

some back-and-force small swingings before it stops completely, but the last 
small flywheel swingings are completely ignored in computer simulations, be-
cause they do not make a rotation, resulting in the sudden stop of rotation in the 
simulation. 

The flywheel rotation-time is flexibly adjusted by changing 2ξ , and a faster 
angular velocity is produced by assuming a larger heat energy, 2HQ . The short-time 
ignition-like experiment could be feasible by supplying the heat, ( )inQ t , dis-
cretely in time as:  

( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , , , .in in in inQ t Q t t Q t t Q t t t t t= + + + < <       (19) 

where ( ),in iQ t t  ( 1,2,i =  ) could be taken as rectangular functions. This is 
possible to calculate in the current TMD approach by setting the discrete igni-
tion-time, which may be applied as a model to scrutinize complicated mechan-
ism of piston engines or internal combustion engines in general. 

The magnified views of numerical results are useful to clearly examine me-
chanical quantities in NISs. The angular velocity in Figure 7(b) shows a slowly 
increasing and wiggly angular velocity. It is compatible with empirically ob-
served motion of the flywheel rotations when the flywheel rotates slowly, and the 
wiggly motion can be specifically checked by the flywheel experiments, which is 
produced by frictional variations of working fluid and mechanism of the heat 
engine. The rotations and angular velocities ( )tθ  and ( )tθ ′ , should be com-
pared with Figure 4 to understand how frictional variations affect work of heat 
engines. 

The angular acceleration and thermal kinetic energy of the flywheel rotation 
are shown in Figure 8(a) and Figure 8(b) in a magnified fashion. The angular 
acceleration is a piecewise continuous quantity induced by frictional, mechanical 
and thermal disturbances to the system of displacer and flywheel. One can spe-
cifically observe the small and slow wiggling angular velocity ( ) 2tθ ′ π , in an 
experiment of a low-temperature Stirling engine, showing that the angular velocity  
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(a)                                   (b) 

Figure 8. Thermodynamic work (rotational energy of the flywheel and power piston) and 
the angular acceleration for a rapidly-decreasing, short-time uniform heat flow. (a) Ther-

modynamic work (rotational energy of the flywheel and power piston), ( )2
0 2I tθ∗ ′  (Joule), 

in the time range 0 20t< <  (s). The angular velocity ends at ~ 18t . (b) The piecewise 
continuous angular acceleration, ( )tθ′′  (rad/s2), 0 20t< <  (s), corresponding to the 

velocity in Figure 7(b).  

 
is approximately constant: ( )tθ ω′ ≈ , with tiny, wiggly changes. The dissipative 
equation of motion and the thermomechanical method to the Stirling engine 
produce motion of the flywheel rotation reasonably well. 

The energy of the flywheel rotations and angular accelerations (Figure 6 and 
Figure 8), should be respectively compared. The results help us understand how 
we perceive motion in human macroscopic scale. When the flywheel angular 
velocity is relatively fast to human conception of motion, the angular velocity with 
tiny-wiggly line would not be recognized and lead to the assumption that the 
angular acceleration be assumed smooth and differentiable. The theoretical and 
numerical analyses reveal clearly that accelerations are not directly useful in NISs, 
but the concept of force is fundamental for changing velocities and directions of 
motion. 

The thermomechanical relations among quantities, ( ) ( ) ( ), ,t t tθ θ θ′ ′′  and 
( )wkQ t  in (18), are consistently solved by the dissipative equation of motion. 

Applications to reciprocating engines or piston engines to convert high-temperature 
and pressure heat flows to a rotating motion, as well as thermoelectric conver-
sions are expected [3] [4] These are also interesting open questions. Based on the 
thermomechanical results, thermodynamic relations among temperature, inter-
nal energy and entropy flows, thermodynamic work in NISs are studied in the 
next section. 

7. Internal Energy, Dissipations of Heat and Temperature  
for a Low-Temperature Stirling Engine 

The thermal energy flows produce the time-progress of thermomechanical work 
( )wkQ t , internal energy ( )Q tε  and associating dissipations of heat, ( )d dwdQ t t , 
( )d ddQ t tε , the total dissipation ( )d ddQ t t , and temperature ( ) ( )T t T tτ= . 

These dynamical quantities must maintain thermodynamic consistency, (9) and 
(10) as Requirements 2) and 3) in the TMD hypothesis. The time-dependent physi-
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cal quantities derived from the solutions of the dissipative equation of motion are 
specifically examined in the section. 

7.1. Thermodynamic Quantities in a Slowly-Decreasing,  
Long-Time Uniform Heat Flow  

The dissipation of heat from thermomechanical work, ( )wdQ t  (the flywheel 
rotations), and the total heat dissipation, ( ) ( ) ( )d d wdQ t Q t Q tε= + , are shown in 
Figure 9(a) and Figure 9(b). The heat dissipation from work ( )wdQ t  increases 
for a while at the beginning, but when the heat-kinetic energy conversion gradu-
ally becomes effective and smooth with the inertia of flywheel and power piston, 
the total heat dissipation, ( )wdQ t , gradually reaches a minimum and stable val-
ue; it is consistent with the empirically known performance of piston engines in 
general, which is theoretically produced for the first time in the TMD method. 

The kinetic work ( ) ( ) ( )2
0 2wkQ t I tθ∗ ′=  and the associated heat-flow ( )wdQ t  

give the thermomechanical work ( ) ( ) ( )w wk wdQ t Q t Q t= + . The heat engine ef-
ficiency is an externally given constraint defined in (13), taken as ~ 20%thη  
in the computer simulation. Therefore, the residual heat, ( ) ( )in wQ t Q t− , is used 
for the internal energy ( )iQ tε  and the associating dissipation ( )dQ tε . The to-
tal internal energy is given by ( ) ( ) ( )in wQ t Q t Q tε = − , and so, as the overall 
machine condition, the heat efficiency confines, ( )iQ tε  (thermal internal energy) 
as:  

( ) ( ) ( )( ) ,i th in wQ t Q t Q tε η= −                   (20) 

and the associating heat dissipation of internal thermal energy as:  

( ) ( ) ( ) ( )( )1 ,d th in wQ t Q t Q tε η= − −                 (21) 

and the total internal energy ( )i dQ t Qε ε+ , is consistent with ( ) ( )in wQ t Q t−  
(see discussions in Section 4). The thermal efficiency is a machine-dependent 
value and fixed at the beginning and at thermal equilibrium as ~ 20%thη , but it 
changes in time as ( )th tη  in NISs. We used a time-dependent function to satisfy 
the condition, 20%thη = , for ( )th tη  as,  

 

 
(a)                                (b) 

Figure 9. The dissipation of heat from thermodynamic work, ( )wdQ t  and the total dis-

sipation of heat, ( )dQ t . (a) The dissipation of heat, ( )wdQ t , from thermodynamic work 

of the flywheel and displacer rotations. (b) The total dissipation of heat,  
( ) ( ) ( )d d wdQ t Q t Q tε= + .  
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( ) ( ) ( )( )0 0
01 1.0 e 1.0 e ,t t

th tht η ηη η η −= − − +               (22) 

where 0η  is a suitable constant determined by computer simulations. It should 
be consistently adjusted with other parameters, the number of revolutions, an-
gular velocities and thermal quantities in computer simulations. 

The total heat dissipation ( )dQ t  reaches a stable maximum value shown in 
Figure 9(b), corresponding to the stable minimum dissipation ( )wdQ t . The re-
sults indicate that heat-mechanical energy conversions are optimally performed 
in the stable region, indicating that the mechanical energy of rotations can be op-
timally extracted in the stable region. The time-retardation of the flywheel-rotation 
performance can be observed by comparing Figure 9(a) and Figure 9(b). In 
other words, a system of heat engines demands certain excessive heat before it 
reaches an optimal angular speed, and the heat dissipation is minimum at an op-
timal stable angular velocity. This is a well known empirical phenomenon, and 
the performance of engine is calculated explicitly in theoretical calculations in 
TMD. Thermomechanical work ( )wkQ t  and associated heat dissipation ( )wdQ t  
maintain the relation (6), and ( )wkQ t  is small compared to ( )wdQ t . The ratio 
is ( ) ( ) ~ 0.05wk wdQ t Q t  for the time region of a stable angular velocity in the 
computer simulation. The results depend on combinations of empirical parame-
ters, wλ , ξ , wη , c and thermal efficiency of heat engines, and so, the ratio is 
useful to study the heat engine performance. 

The angular velocity, ( )tθ ′ , reaches a stable maximum value and persists for 
a long time until ~ 2400t  (s). It is noteworthy that the maximum stable angu-
lar velocity ( )tθ ′  can be maintained for a long time, although the heat flow, 

( )d dinQ t t , becomes very small for 500 t<  as shown in Figure 3(b), indicating 
that the maximum angular velocity can be maintained by supplying a very small 
amount of external heat flow. In other words, heat losses are suppressed mini-
mum at a maximum stable rotation, and the energy restorations and extractions 
are performed suitable in the time range of a stable maximum rotation. The re-
sult is useful for the analysis of engine-performance and applications to the flyw-
heel energy storage [13] and energy conversion mechanism [4]. 

The internal energy ( )Q tε  and the measure of NISs, ( )tτ  are respective-
ly shown in Figure 10(a) and Figure 10(b). The time-dependent change of in-
ternal energy ( )Q tε  is similar to that of ( )dQ t  and soon reaches a stable maxi-
mum value. The derivatives of internal energy and entropy (the total heat dissipa-
tion) are fundamentally important as Requirement 3) in TMD, which defines 
( )tτ  or temperature ( )T t  in NISs. The time-dependent temperature ( )T t  in 

a nonequilibrium irreversible state of a low-temperature Stirling engine is shown 
in Figure 10(b) for the first time, in the theoretical calculation. The temperature, 
( ) ( )T t T tτ= , (T is an initial temperature defined by ( )0 1τ =  at 0t = ) changes 

rapidly within 0 50t<   (s) and then, approaches a stable temperature, ( )T t , 
at thermal equilibrium, which indicates that the system of heat engine needs 
certain amount of excess heat at the beginning of motion. The effect of wiggly 
deviations from frictional and thermal fluctuations appears at some times in  
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(a)                                 (b) 

Figure 10. The time variation of internal energy, ( )Q tε  and the measure of NISs, ( )tτ . 

(a) The total internal energy, ( ) ( ) ( )i dQ t Q t Q tε ε ε= +  (cal). (b) The measure of nonequi-

librium irreversible states, ( )tτ . Note the tiny-wiggly line of ( )tτ . Temperature is de-

fined by ( )T T tτ= .  

 
( )T t , especially about the end of rotation; otherwise, temperature ( )T t  inside 

heat engines is quite stable against uniform heat flows. 
The sudden change of initial temperature would be consistent with an empir-

ically known engine-response, which is reproduced naturally by the TMD method. 
In case of Stirling engines, the system needs certain amount of large heat-energy to 
initially activate the displacer and flywheel, which is consistent with the initial 
heat-demand indicated in Figure 9(a), but it is interesting that ( )T t , inside heat 
engines is quite stable during the time-progression against uniform heat flows. 
Thermal temperature depends on mechanical structure and thermal efficiency of 
heat engines, and so, the ( )T t -analysis is useful to understand thermodynamic 
state inside heat engines, responses and efficiency of engines. It is interesting to 
know if the current model can be extended to ignition, detonation and internal 
combustion engine mechanism, which is a reason why we apply the model to a 
rapidly-decreasing, short-time uniform heat flow. 

7.2. Thermodynamic Quantities in a Rapidly-Decreasing,  
Short-Time Uniform Heat Flow  

Thermodynamic quantities derived from the result in Section 6.2 by solving the 
dissipative equation of motion in case (B) are employed to examine time-dependent 
thermal quantities. The associated heat-flow ( )wdQ t  from thermomechanical 
work ( )wkQ t  (the flywheel rotations) and the total dissipation of heat, ( )dQ t , 
are shown in Figure 11(a) and Figure 11(b). As explained in the previous sec-
tion, the flywheel rotation ends at ~ 18t  (s), and the last back-and-force small 
swingings of the flywheel are completely ignored in computer simulations, re-
sulting in a sudden brake of motion in Figure 11(a). The heat dissipation increas-
es abruptly to a stable maximum value and ends at ~ 18t  (s). The total heat of 
dissipation dQ , internal energy ( )Q tε  and temperature ( )T T tτ=  should be 
understood in the time range 0 18t<   (s). 

The thermal dissipations progress rapidly to respective values of thermal equili-
brium and a maximum stable state. It is noticeable that the ignition-like, short-time 
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heat flows and time-progresses of thermal state are reproduced self-consistently. 
The results would indicate applicability to study heat engines by introducing the 
external discrete heat flows in (19). The heat dissipations change rapidly in time 
and reaches their maximum values, and the heat dissipation, ( )wdQ t , suddenly 
breaks off at ~ 18t  (s), because the flywheel rotation, ( ) 2tθ ′ π , stops, shown 
in Figure 7(b) in the model simulation. However, the rotation of flywheel can be 
readily maintained by adding a small amount of heat flow, ( )d dinQ t t , as ex-
plained in Section 6, and in this sense, the rapidly-decreasing, short-time calcula-
tions may be used to analyze one ignition or detonation mechanism. The theo-
retical analysis in a rapidly-decreasing, short-time uniform heat flow may suggest 
that the TMD analysis is applicable to study piston engines or internal combus-
tion engines that use one or more reciprocating pistons to convert complicated 
heat flows into mechanical motion. 

Internal energy ( )Q tε  and a measure of NISs, ( )tτ , are shown in Figure 
12(a) and Figure 12(b). The total internal energy ( )Q tε  changes in time simi-
lar to ( )dQ t , and the measure, ( )tτ  is directly calculated by (2) with the initial 
condition ( )0 1τ =  and ( ) ( )T t T tτ=  at thermal equilibrium. Internal energy 

( )Q tε  rapidly reaches a stable maximum value, and heat flows of ( ) dQ t tε  and 
( ) ddQ t t  produce a stable thermal temperature. The sudden jump from thermo-

dynamic equilibrium temperature T ( ( )0 1τ = ) to thermal equilibrium tempera-
ture ( )T t  should be taken qualitatively, since thermal conduction mechanism 
characterized by thermal conductivity of working fluid and mechanical structure 
is not included in the current calculations. The inclusion of thermal conduction 
mechanism would make ( )tτ  smooth and continuous. Time-retardation effects 
of physical quantities could be realized by including Fourier thermal conduc-
tion mechanism in the TMD formalism, The analysis of continuous progress 
from thermodynamic equilibrium to NISs by employing Fourier’s law of 
thermal conduction, and the thermal analysis of ignition and detonation me-
chanism is a physically interesting open question, which should be considered in 
the future work. 

 

 
(a)                                   (b) 

Figure 11. The associating dissipation of heat from thermal work, ( )wdQ t  and the total 

heat of dissipation, ( )dQ t . (a) The associating dissipation of heat from thermal work, 

( )wdQ t  in the process ( )wQ t . The flywheel rotations end at ~ 18t  (s). (b) The total 

dissipation of heat, ( ) ( ) ( )d d wdQ t Q t Q tε= + .  
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(a)                                 (b) 

Figure 12. The change of internal energy, ( )Q tε  and the measure of NISs, ( )tτ . (a) 

The internal energy, ( ) ( ) ( )i dQ t Q t Q tε ε ε= + . (b) The measure of nonequilibrium irre-

versible states, ( )tτ . Note that temperature is defined by ( )T T tτ= .  

 
The thermal temperature ( )T t  is stable, but it deviates abruptly about the 

end of rotations. It would be a physically reasonable phenomenon, because the 
flywheel oscillation becomes very slow and the displacer is not able to dissipate 
heat properly, resulting in accumulation of heat and the high-temperature devi-
ation. The fact indicates that the dissipative heat ( )dQ t  must first accumulate 
before thermal temperature ( )T t  increases. In other words, thermal temperature 
increases slowly than heat-flow does and the fact could be useful to apply the 
TMD method to the law of Fourier thermal conduction. Thermal temperature 
inside cylinder shows the existence of a steady state thermal state, which is as-
sumed in a thermal conductivity measurement. The existence of a stable thermal 
temperature is shown in Figure 10(b) and Figure 12(b). The stable thermal tem-
perature ( )T t  at thermal equilibrium and properties at the beginning and end 
of rotations would depend on parameters of thermal conduction, and so, ther-
mal temperature, ( )T t , is an important quantity to analyze properties of inter-
nal energy, thermodynamic work and entropy in thermal states inside machines, 
theoretically and experimentally. Thermomechanical phenomena in NISs in a 
low-temperature heat engine are reasonably and consistently studied by the TMD 
method, and it is expected to be applied to other types of sophisticated heat en-
gines as well as piston engines. 

8. Conclusions and Perspectives 

One of the fundamental results in TMD is that the concept of acceleration is no 
longer decisive for trajectories of thermomechanical motion, while it is funda-
mental in Newtonian mechanics. The common concept of force between TMD 
and Newtonian mechanics is confined to the fact that force can cause an object 
to change its velocity and direction. The force is rather important in TMD as ex-
ternal piecewise-continuous force coupled to the heat of work ( )wQ t  (kinetic 
energy + associated entropy) as shown in the dissipative equation of motion and 
time-progressing physical quantities. In other words, Newtonian mechanics is 
rigorous in the world without friction and thermal fluctuations, which is de-
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clared at the outset in Newton’s assumption that excludes friction in the prin-
ciple of inertia as the first law, and mathematically speaking, the mechanical mo-
tion is defined as continuous and differentiable functions of Class C2. However, 
in the TMD model, thermomechanical motion and physical quantities are con-
fined to functions of Class C1. 

The nonequilibrium irreversible motion and time-dependent work, internal 
energy, and entropy are first solved and examined for the first time by authors, 
and the theoretical analysis of the drinking bird system led us to the TMD model 
[1] [2]. The low-temperature Stirling engine is the second example solved con-
sistently by the TMD method, and heat engines are excellent experimental de-
vices to study NISs. Thermomechanical velocities in a thermal state are fundamen-
tally different from Newtonian mechanics when mass is affected by time-dependent 
variation of frictions and thermal fluctuations caused by heat flows. In the non-
equilibrium irreversible state, the concept of force is only effective to change the 
direction of motion, and force is not necessarily associated with mass × accelera-
tion. The time-dependent thermal quantities, such as internal energy, thermal 
work, entropy, and temperature are self-consistently obtained by solving the dis-
sipative equation of motion and the triad propositions in TMD. It is remarkable 
that the fundamental requirements for a scientific theory, reproducibility, testa-
bility, and self-consistency explained in the paper [2], are maintained in calcula-
tions. The self-consistent results suggest that the thermal conduction mechanism, 
for example, Fourier’s law of conduction could be incorporated into the TMD me-
thod to improve analyses of thermal conduction. 

When the dissipations of energy caused by frictional variations and thermal 
fluctuations do not affect the motion of particles so much, the trajectory, velocity, 
and acceleration of particles are well described by Newtonian mechanics. Statis-
tical mechanics is the description of states, which fluctuates about average values 
and is characterized by probability distribution. However, the fundamental re-
quirements of the TMD method are different from Newtonian mechanics, statis-
tics and probability approaches. The frictional variations only appear in physical 
quantities by way of velocities. The dissipative equation of motion for heat engines 
in the TMD method consists of the external driving force composed of thermal 
work and frictional variations, which indicates that heat engines cannot operate 
without friction and viscosity of the working fluid. In other words, heat engines 
cannot function without friction and viscosity, which is a positive and scientific 
way of understanding the ability of friction. 

The trajectory, velocity, and acceleration of Brownian motion are random and 
piecewise continuous, which indicates that velocity and acceleration have no di-
rect physical meaning in the thermal world. However, the trajectory and velocity 
are physical in the TMD model; the trajectory and velocity of motion are only 
meaningful as Class C1 continuously differentiable functions. The external driving 
forces are meaningful to cause an object to change its velocity and direction, but 
the derivation of acceleration is not meaningful, resulting in spiny hedgehog-like 
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lines. The fundamental assumptions in TMD are general and simple and yield 
maximum knowledge from a system of minimum basic laws. When the assump-
tions in TMD are adapted, the nonequilibrium irreversible states of a drinking 
bird and a low-temperature Stirling heat engine are solved consistently [1] [2] [3] 
[4]. Applications are expected, for example, in the fields of irreversible processes 
such as complicated piston engines, ignition, combustion, and detonation me-
chanisms and systems [14] [15] [16], quantum heat engines [17] [18] [19], so-
lar-powered, high and low-temperature Stirling engines, quantum thermody-
namic systems and technologies for sustainable energies [20] [21] [22] [23] [24]. 

The analysis in TMD for thermomechanical phenomena becomes useful in 
realistic applications for clean and sustainable technologies by way of thermoe-
lectric energy conversions. In conventional applications of heat engines and ener-
gy generations, high-temperature pressurized steam for high rotations of the tur-
bine is assumed to produce much electric energy, resulting in the massive and 
sturdy structure of heat engines. The method of thermoelectric generation pro-
duces, for example, a different technological device, which we call the DM-EMI 
low-temperature thermoelectric generator [4]. The very high-temperature pressu-
rized steam is not necessarily required to obtain electric energy in thermoelectric 
energy conversions. A low-temperature thermoelectric heat generator can be de-
veloped by way of thermoelectric energy conversion of hot water about 40˚C - 
100˚C [3] [4]. The TMD method is useful for practical applications and can be 
applied to resolve energy and environmental problems for clean and sustainable 
energy. 
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