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Abstract 
The definition of Collatz Operator, the mathematical avatar of the Collatz 
Algorithm, permits the transformation of the Collatz conjecture, which is de-
lineated over the whole natural number set, into an equivalent inference re-
stricted to the odd prime number set only. Based on this redefinition, one can 
describe an empirical-heuristic proof of the Collatz conjecture. 
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1. Introduction 

The present paper follows the published effort of the author to understand some 
aspects of the Collatz conjecture [1] [2] [3] and several characteristics of prime 
numbers [4] [5]. Collatz conjecture has been studied from many points of view 
and still is an active scientific subject; see, for example, references [6]-[28]. 

The aim of this study is to show that one can circumscribe the original Collatz 
or ( )3 1n +  conjecture to the set of prime numbers instead of the whole natural 
number set. In fact, in previous studies [1] [2], one has shown that the odd nat-
ural numbers only can be the subject of the Collatz conjecture, as one can dem-
onstrate that even numbers fulfill it by construction. Out, it will be demonstrated 
that the odd prime numbers are the backbone of the Collatz conjecture. Within 
these results, one can find sufficient arguments to define an Extended Syracuse 
algorithm and obtain empirical-heuristic arguments to prove the Collatz con-
jecture. 

For this purpose, the structure of this study will contain the first needed defi-
nitions, involving the set of prime powers and the definition of natural pseudos-
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paces to understand the factorization of composite numbers, followed by a third 
section, where the Collatz algorithm and operators will be described, and appli-
cation examples are given. To these preliminaries, will follow a section analyzing 
the meaning of a number being Collatz compliant, followed by the characteris-
tics of the Collatz operator applied to the prime numbers in the Mersenne inter-
val [ ]0,31 . This will lead to the final section on the Extended Syracuse algo-
rithm and conclusions. 

2. Definitions 

A previous set of the employed concepts and definitions is necessary before de-
veloping the main idea of the present study. The readers can peruse our previous 
papers on the Collatz conjecture [1] [2] [3] and our studies about some charac-
teristic features of prime numbers [4] [5]. These can provide the previous main 
definitions and some mathematical background. 

The basic principle in the present paper consists of the leading role of odd 
prime numbers in the redefinition of the Collatz conjecture. 

2.1. Natural Numbers Power Set 

Let’s choose any natural number: n∈ . 
Define the natural powers of n as the set: { }0 1 2, , , , ,pn n n n=

 n . Also, 
let’s write the set of all the powers of natural numbers sets n  as1: 

{ }; ; ; ; ;=    

  0 1 2 n .                     (1) 

2.2. Prime Numbers Power Set  

Let’s symbolize the set of natural prime numbers as: ⊂F  . 
Let’s define the set of all the natural powers of the natural prime numbers set 

as: { }; ; ; ;=F 2 3 p   

  .  

2.3. Representation of Natural Numbers 

As a result of defining the elements of the prime natural powers set, one represents 
all natural numbers using products of some elements of the set F . One can 
symbolize this property as: ⊗ =F

 , meaning: 

{ } { }

( ){ } ( )
1

A 1, P 1,

            C 1,  I I

I I

M
p p

I I
I

n a I M p I M

a I M n a
=

∀ ∈ ⇒ ∃ = = ⊂ ∧∃ = = ⊂

 → ∃ = = ⇒ =  ∏

F 

.       (2) 

When one chooses a natural prime set of bases A and some natural power set 
P is selected, their elements construct another natural set C, such that the prod-
uct of their elements yields a natural number. This is a trivial problem, where 
information on factorization of a large set of natural numbers can be found in 
reference [29].  

A simple yet interesting example is: 5005 5 7 11 13= × × × , where 4M = , 

 

 

1Note that there one can admit that the indefinite expression 00 is equivalent to 0. 
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the bases are { }5,7,11,13=a , and the exponents are { }1,1,1,1=p . When 
changing the exponents to the vector { }4,3, 2,1=p , the resultant number is 
337211875. 

2.4. The Vector Pseudospace Structure of the Natural Number  
Generation  

The example described above might suggest an alternative description. One can 
construct such a numerical picture on the fact that natural numbers can be gen-
erated with M-dimensional vector elements (for previous studies on similar 
problems, see references [30] [31] [32]). These vectors could be constructed with 
tuples of prime numbers to the powers of natural numbers as defined in Equa-
tion (1), but choosing just the prime set of powers F described in Section 2.2, 
and finally ordering the vector elements according to the bases’ order. 

For example, define the M-dimensional pseudospace: 

( ) ( )1,Ip
I Mf I M= ∈f A F= .                   (3) 

There is no need to describe any operation on pseudospaces; one only needs 
to consider the existence of the infinite set of elements as M-dimensional vectors 
made of tuples containing powers of prime numbers.  

Defined the M-dimensional pseudospace ( )MA F , then one can construct 
an operation over its elements, transforming them into natural numbers:  

( ): MΠ →A F

 ,                         (4) 

that is: 

( ) ( )
1

: I
M

p
M I

I
n n f

=

∀ ∈ Π = ∈ ← =∏f A F f

 . 

Such a transformation can be considered a non-linear operator or a geometric 
vector norm. Therefore, one can consider the pseudospaces in Equation (3), de-
fined over F , or more generally over  , as some Banach semispaces or lat-
tices, see references [30] [31] [32]. 

As defined in Equation (3), a set of pseudospace vectors with varying dimen-
sion M, and the associated operation (4), might be used to generate the whole set 
of natural numbers. Practical generation on a large set of natural numbers can be 
found in reference [29]. 

3. Collatz Algorithm, Collatz Operator, Collatz Compliant  
Natural Numbers, and the Redefinition of the Collatz  
Conjecture 

A pseudocode implementing a Collatz algorithm, the computational avatar of 
the Collatz conjecture, was described in references [1] [2]. It is provided below 
with slight modifications, which one can easily associate with a Collatz operator, 
the mathematical avatar of the Collatz conjecture, performing the same indi-
cated algorithmic operations on any natural number, as represented in Equation 
(2). 
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3.1. Collatz Algorithm 

[ ]

Input :        !   is any natural number
;    0

Define 
   while 1 
       1;    2
       if  2 :  3 1 else: 
Output :  ,

I

n n
m n I

C m
m

I I c m
c m m m m c

I n

∈
← ←

>
← + ←
∗ ≠ ← ∗ + ←



 

For more details about the Collatz Algorithm and the associated Collatz oper-
ator, see reference [2]. 

3.2. Definitions 

Then, one can use the Collatz algorithm as an operator such that choosing a 
given natural number n, after ( )S n  steps following an n-path (consisting of the 
set of natural numbers resulting from every iteration when applying the Collatz 
algorithm), yields 1. That is, one can write the Collatz Conjecture as: 

( ) [ ] 1S nn C n∀ ∈ → = ,                     (5) 

hence, one can call the natural number n Collatz compliant whenever Equation 
(5) holds. 

3.3. Collatz Operator over a Product of Collatz Compliant Natural  
Numbers 

Admitting the Collatz operator can act on a natural number product of two Col-
latz compliant numbers, as shown in the following sequence: 

( ) [ ] ( ) [ ]
[ ] [ ] [ ]

, 1

                   1 1 1
S m S nm n C m C n p m n

C p C m C n

∈ ∧ = = ∧ = ⋅

→ = ⋅ = ⋅ =



. 

Then, with this property in mind, it will be the same if one writes: 

[ ] [ ] [ ]1 1 1 1C m n C m n C n⋅ = ⋅ = ⋅ = ⋅ = . 

This way of acting of the Collatz operator is the same as saying that its appli-
cation on a product of natural numbers is equivalent to the product of the ap-
plications of the Collatz operator on the factors, or one can alternatively consid-
er the result of the successive Collatz operator application to every factor. 

3.4. Collatz Operator over a Natural Power of a Natural Number 

Thus, one can write the application of the Collatz operator to a natural power p 
of a Collatz compliant natural number n:  

[ ] [ ]( ), 1 1 1
pp pp n C n C n C n ∈ ∧ = → = = =  , 

then one can deduce that any natural power of a Collatz compliant number is 
also Collatz compliant. 

Suppose a Collatz compliant set of natural prime numbers is defined as in 
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Equation (2). Thus, one can write the application of the Collatz operator to such 
a composite number like: 

[ ] ( ) [ ]
1 1 1

1 1II I
M M Mpp p

I I
I I I

C n C a C a
= = =

      = = = =      ∏ ∏ ∏ . 

3.5. The Collatz Conjecture from the Point of View of Prime  
Numbers 

Hence, the Collatz conjecture, usually presented as all natural numbers are Col-
latz compliant, can be reformulated by the equivalent sentence that the set of nat-
ural prime numbers is Collatz compliant. 

4. Collatz Compliance of the Even Numbers and the  
Extended Syracuse Algorithm 

Let’s split the set of natural numbers   as the trivial union of the even number 
set E and the odd number set O, such that: = E O  . 

4.1. Collatz Compliance of the Even Natural Number Set 

It is easy to see now that even natural numbers are Collatz compliant. One can 
write any even number according to the equation: 

2 2p pn x n x∀ ∈ ∧∀ ∈ = ⋅ ⇒ ∈2 O E : .              (6) 

Considering that the odd numbers up to n have been found Collatz compliant, 
accordingly using the definition of the even number x in Equation (6) above, one 
can also write: 

( ) [ ] 1S nn n x C n∈ ∧ < ∧ =O , 

furthermore, the following expression holds: 

[ ] ( ) [ ] ( ) [ ]2 1 2 1 1 1p p
p p pS x S nC x C n n n C x C C n   = ⋅ = ⋅ = ⇒ = ⋅ = ⋅ =    . 

Such a result permits one to be confident that the Collatz algorithm can 
transform into an Extended Syracuse Algorithm, where the powers of two ap-
pearing in all the even composite numbers are obviated in the expression of the 
Collatz path, taking implicitly the fact that : 2 1pp C  ∀ ∈ =   holds; so, for 
example: 

[ ] [ ] [ ] [ ] [ ]3 4
1 440 8 5 2 5 1 5 16 2 1C C C C C C C   = ⋅ = ⋅ = ⋅ = = =    . 

Therefore, only odd natural numbers must be submitted to the Collatz Extended 
Syracuse Algorithm. 

4.2. Collatz Algorithm on the Odd Number Set 

However, this is not all that can be added to the Extended Syracuse Algorithm. 
In this way, define the odd prime numbers set P  such as: 2F P= . Then, the 
odd natural numbers can be considered as products of the elements of the set of 
sets of powers of odd primes: 
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{ }; ; ; ;=P 3 5 q  

 

N . 

One can symbolize this property as: ⊗ =P O .  
Supposing that the odd prime numbers have been proved Collatz invariant up 

to some value, q say. Then, any product where each factor is the power of an ar-
bitrary odd prime number, less or equal to q, becomes an odd composite num-
ber, which is Collatz compliant. 

Therefore, to prove the Collatz conjecture, the odd prime numbers only are 
relevant. In the Collatz paths of the odd prime numbers, one can easily observe 
that these prime numbers might appear larger than the Collatz algorithm origin 
prime. If such an occurrence is present, it also demonstrates that some larger 
than an initial prime number is Collatz compliant within each path.  

4.3. Some Examples in the Mersenne Interval [0,31]  

One can see the definition and usefulness of Mersenne intervals in references [2] 
[4]. One can see the mentioned properties of the Collatz operator or algorithm 
using the following examples. Numbers in red are primes greater than the initial 
and in blue lesser than the initial in the associated paths. Colons indicate a step 
in the corresponding Collatz path. 

First, one can observe the path for the prime numbers 3 and 7: 

( ) [ ]

( ) [ ]

4
3

2 3 4
7

5

11 1

3 3 :10 : :16 2 :1

7 7 : 22 : : 34 : : 57 132 : 2 13 : : 2 5 : : 25 :1
S

S

C

C

⇒ =

⇒ ⋅ ⋅
. 

In this way, it is evident that within the 3-path, the prime {5} is Collatz com-
pliant, and within the 7-path, the prime set { }11,13,17  does appear; thus, these 
three primes are Collatz compliant. Hence, one can skip the observation of their 
paths because they are already contained in the 7-path, and one can enter to test 
the 19-path directly: 

( ) [ ] 3
19 2919 19 : 58 : : 88 2 11: 1 11 :SC ⇒ = ⋅ , 

where the new prime 29 appears, while the 19-path arrives at the already Collatz 
compliant prime 11, and the algorithm sequence can stop. This shows that the 
19 and 29 prime numbers are also Collatz compliant. The prime 23 has been left 
aside in all the studied paths, so one obtains for the 23-path: 

( ) [ ]23 23 23 : 70 : 35 7 15 :SC = = ⋅ , 

where a composite product of two Collatz compliant primes appears. So, the al-
gorithm can stop at this stage, and the prime number 23 can be considered Col-
latz compliant. The following not yet considered prime is the Mersenne number 

( ) 55 2 1 31M = − = : 

( ) [ ]31 31 31: 94 : :142 : : 214 : : 322 :147 71 107 :2361 17SC ⇒ = ⋅ , 

here the Collatz algorithm 31-path provides a trio of new Collatz compliant 
primes: { }47,71,107  and ends with the composite natural number 161. As the 
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two involved primes are already Collatz compliant and lesser than the starting 
number, one can conclude that 31 is a prime Mersenne number which is also 
Collatz compliant. 

4.4. Collatz Compliance of the Prime Mersenne Number  
( )M 77 2 1 127= − =   

A slightly involved example supposes having tested all the sequence of prime 
numbers previously found Collatz compliant, except for the prime Mersenne num-
ber 127. Then, one can write the development of the 127-path as: 

( ) [ ]127 191127 127 : 382 : : 574 : 28 7 417 :1SC ⇒ = ⋅ , 

where a new prime 191 appears to be Collatz compliant. The 127-path can be 
stopped after the step yielding 287, as it is a composite product of two primes 
lesser than 127. Then, resulting in 127 being a Collatz compliant prime number. 

5. Extended Syracuse Algorithm 

Therefore, one can enrich the Extended Syracuse Algorithm with the addition 
that the algorithm can stop whenever a given p-path produces a lesser prime than 
the initial or a composite number, where the present prime powers involve prime 
bases lesser than the initial prime number. 

These final considerations, as well as the prior ones in Section 4.1, constitute 
the structure of the Extended Syracuse Algorithm, which can be presented in 
pseudocode as follows. 

5.1. Extended Syracuse Algorithm 

[ ]

( )

Input :           !  is an odd prime number
 Define 
    ;   0;

     while      and .not. :
            1;    3 1

          if and   2 :  then 
  Output :  ,  

i

J

p
i i i i

n

n n
S n

m n J

a m a a n
J J m m

w m w m w
J n

∈

← ←

∀ ⊂ → ≡ Π ∈⊗ ∀ <

← + ← +

∈ ≡ ⋅ ←

P

P P

O

 

 

,  m

  

5.2. Application Examples on Mersenne Numbers 

As an assorted application example, one could be interested in the behavior of 
higher prime Mersenne numbers when submitted to the Collatz algorithm in the 
Extended Syracuse version. The prime Mersenne number set (see, for example, 
the web-provided list [33]): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }13 , 17 , 19 , 31 , 61 , 89 , 107 , 127M M M M M M M M   

has been studied. The computing website facility constructed by Alpern [34] has 
also been used to handle large primes and prime factors. The resultant paths on 
these primes show that in a few path steps, one arrives at composite numbers 
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involving two or not too many prime products, lesser than the starting Mersenne 
number.  

Extended Syracuse Algorithm doesn’t count the steps where the powers of two 
are simplified. Then, excepting ( )19M  which in two Extended Syracuse Algo-
rithm steps arrives to a composite number: 1179647 7 17 23 431= × × × , and thus 
can be supposed Collatz compliant, the rest of Mersenne primes in the set above 
arrive in one or two steps to composite numbers with two factors. The most con-
spicuous case is the Mersenne ( )61M  number tested: 

( )61 2305843009213693951M = , 

which after the first Extended Syracuse Algorithm step, yields the composite 
number: 

( )61 1019 3394273320726733C M = ×   , 

in this last decomposition, the second number is a large prime, but around four 
orders of magnitude smaller than the initial prime ( )61M . Therefore, one can 
accept ( )61M  as Collatz compliant. 

The example of the prime Mersenne number ( )89M  is also significative, as 
one gets via the Extended Syracuse Algorithm a final composite number of three 
odd prime factors, less than the original prime number: 

( )89 1856910058928070412348686334

5749 57347 2816163471621326689

C M =  
= × ×

. 

Follows the last one, the next Mersenne prime, possessing only two odd primes 
after the first path step, obviating factor 2: 

( )107 486777830487640090174734030864382

13194244031 18446597976509719527361

C M =  
= ×

, 

and finally, one finds three odd prime factors in the next Mersenne prime num-
ber again: 

( )127 510423550381407695195061911147652317182

190837 1062601 1258542562146007274238268043

C M =  
= × ×

. 

In this way, it can be seen how the first Collatz path step on prime numbers, 
followed by a decomposition of the composite number obtained, yields the prod-
uct of a considerably smaller prime, so both last Mersenne numbers can be con-
sidered Collatz compliant. 

An attempt to go beyond the already commented large Mersenne numbers 
has brought to study the set of the successive Mersenne primes on the list [33]: 

( ) ( ) ( ){ }521 , 607 , 1279M M M . However, they contain many digits; therefore, 
publishing the first steps of the corresponding Collatz paths is quite difficult to 
print.  

The behavior of these three Mersenne prime numbers is similar to the already 
commented ones. Besides some reasonably small prime factors, the computa-
tional web procedure yields large composite numbers, which are pretty slow in 
computer time to be further analyzed. These difficulties altogether have decided 
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the present author to skip them and use the results as a wording example; the 
potential readers can use the aforementioned web facility [34] to test this kind of 
mammoth prime number by themselves patiently. 

6. Conclusions 

After the theoretical setup and the studied practical results, one can conclude 
that the original Collatz conjecture involving any natural number is contained in 
the statement: The odd prime number set is Collatz compliant.  

One can presume that the set of prime numbers lesser than the one tested are 
Collatz compliant. Then, the present empirical inductive proof stops the Collatz 
algorithm path, considering the tested number Collatz compliant whenever it ap-
pears: a prime number lesser than the initial or a composite number with all the 
prime number bases less than the initial prime. 

Thus, one can empirically prove the Collatz conjecture in light of the studied 
prime number cases. The larger prime number thoroughly studied and shown Col-
latz compliant is the Mersenne number ( )127M . Although partial, sufficient in-
formation has also been obtained up to ( )1279M , corresponding to a prime 
number with 386 digits. 
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