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Abstract 
In this work, we consider the second order nonlinear integro-differential Eq-
uation (IDEs) of the Volterra-Fredholm type. One of the popular methods for 
solving Volterra or Fredholm type IDEs is the method of quadrature while 
the problem of consideration is a linear problem. If IDEs are nonlinear or 
integral kernel is complicated, then quadrature rule is not most suitable; there-
fore, other types of methods are needed to develop. One of the suitable and 
effective method is homotopy analysis method (HAM) developed by Liao in 
1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Eq-
uation (IEs) of Volterra-Fredholm type; then the standard HAM was applied. 
Gauss-Legendre quadrature formula was used for kernel integrations. Ob-
tained system of algebraic equations was solved numerically. Moreover, nu-
merical examples demonstrate the high accuracy of the proposed method. 
Comparisons with other methods are also provided. The results show that the 
proposed method is simple, effective and dominated other methods.  
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1. Introduction 

In the recent literature, there is a growing interest to solve IDEs, because many 
problems in mathematical physics, theory of elasticity, visco-dynamics fluid and 
mixed problems of mechanics of continuous media reduce to the integro-differential 
Equation (IDEs) (Volterra or Fredholm type) of the first or second kind. Many 
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methods are elaborated as a numerical tool to solve IDEs with initial and boun-
dary conditions, for instance, Adomian decomposition method (ADM) (proposed 
by Adomian [1] [2]). It has been shown that ADM yields a rapid convergence of 
the solution series to linear and nonlinear deterministic and stochastic equations. 
Then, this has been extended by Wazwaz [3] [4] to Volterra integral equation and 
to boundary value problems for higher-order integro-differential equations. There 
are many other methods developed by different researchers for linear and nonli-
near IDEs with initial, boundary or mixed conditions, for instance homotopy analy-
sis method (HAM) developed by Liao [5] [6] [7], modified HAM [8], q-HAM [9], 
new development of HAM [10], homotopy perturbation method (HPM) devel-
oped by Ji-Huan He [11] [12], HPM for nonlinear differential-difference equations 
[13], HPM for nth-Order Integro-Differential Equations [14], collocation method 
[15], new boundary element method [16], Linear Programming Method [17], 
Laplace Decomposition Algorithm [18], polynomial approximations [19], Wavelet 
Galerkin method [20], and so on.  

In this paper, we consider nonlinear Fredholm-Volterra integro-differential 
Equations (FVIDEs) of the order two in the form: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
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with the initial conditions 

( ) ( )0 1,u a b u a b′= = ,                     (2) 

where ( ) ( )ku t  is the kth derivative of the unknown function ( )u x  that needs to 
be determined, ( )1 ,K t s  and ( )2 ,K t s  are the kernels of the equation, ( )kc t  
and ( )g t  are known analytic functions, 1G  and 2G  are nonlinear functions 
of ,u u′ , and 1 2 0 1, , ,b bµ µ  are real constants. 

Primarily, to solve nonlinear IDEs (1) and (2), we have applied a integral 
transformation to reduce it to nonlinear integral Equations (NIEs) of Volterra- 
Fredholm type; then, we applied the standard HAM together with Gauss- 
Legendre quadrature Formulas (GLQFs). Once solving nonlinear IEs, the in-
verse transformation is used to restore the original solutions of the problem (1) 
and (2). The results obtained are compared with other methods at the same 
number of iterations with a different number of node points. 

2. Gauss-Legendre Quadrature Formula 

In Eshquvatov et al. [19], for the kernels of Fredgholm and Volterra integrals on 
the interval [ ],a b  the Gauss-Legendre QF are developed 
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where  
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with jr  are the roots of the Legendre polynomial ( )1nP r+ , i.e. 

( ) [ ]1 0, 1, 2, , 1, 1,1n j jP r j n r+ = = + ∈ −              (6) 

Application of Gauss-Legendre QF for the nonlinear integral is as follows 
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here kw  and kr  are defined by (5) and (6) respectively.  
Quadrature Formulas (7) and (8) are used in the evaluation of kernel integrals 

when integrals in (9) and (11) have no antiderivative functions.  

3. Homotopy Analysis Method (HAM) 

Let us rewrite Eq. (1) and (2) in the form 
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where ( )
2

2

d
d

Lu u t
t

=  is the second order differential operator. 

Acing inverse operator ( ) ( ) ( )( )
1

1
1d d d

tt t

a a a

L t t s sτ− = = −∫ ∫ ∫    on both sides of 

Eq. (9) and taking into account initial conditions (2), we obtain  
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Writing Eq. (10) in the form,  

( ) ( ),N t q P tφ =   ,                      (12) 

where ( ) ( )0 1P t b b t a= + −  and  
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We apply HAM. To do this end search solution of (14) in the series form 
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For the sake of clarity, we will first present a brief description of the standard 
HAM proposed by Liao ([5], 1992). He constructed the so-called zeroth-order 
deformation equation 
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On the basis of Equations (18) and (19), we find sequence of solutions 
( ) ( ) ( ) ( )1 2 3, , , , ,nu t u t u t u t   and substitute it into (16) at 1q =  we obtain 

approximate solution of the form 
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= = = +∑ ∑ .           (18) 

To find iterative solution ( )mu t  of the problem (14) and (15), let us choose 
initial guess ( )0u t  and for 1m = , we have 
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For 2m = , from (18) and (19) it follows that 
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Continue this procedure, we obtain 
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Finding all iterations ( ) , 1, 2,mu t m =   and substituting it into (18) yields 
approximate solution of the Equation (12) which is equivalent solution of inte-
gro-differential Equations (1) with initial conditions (2).  

4. Numerical Experiments 

Example 1. (Ahmed Hamoud.et al. [16]) Consider the following Fredgholm 
integro-differential equation with initial condition.  
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The exact solution of (22) is ( ) su s se= .  
To apply HAM convert Eq. (22) into integral equations of the form 
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In general, m-th term of iteration can be computed as  
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So that three-term approximate solution at 1= −  is 
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We find ( )3U s , ( )5U s , and ( )10U s  for 1= −  according to (18) 
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Numerical results are summarized in Table 1. 
 
Table 1. HAM for Example 1 at different values of “N”. 

S Exact ( ) su s se=  Error (N = 3) Error (N = 5) Error (N = 10) 

0 0 0 0 0 

0.2 0.2442805 0.0002777 0.0000077 9.92 10−10 

0.4 0.5967298 0.0011111 0.0000308 3.96 10−9 

0.6 1.0932712 0.0025000 0.0000694 8.93 10−9 

0.8 1.7804327 0.0044444 0.0001234 1.58 10−8 

1 2.7182818 0.0069444 0.0001929 2.48 10−8 

 
From Table 1, and Eq. (30), we can conclude that the proposed method ap-

proaches to exact solution very fast when number of iteration is increased. 
Example 2. (Huseen [9]) Let us consider non-linear VIEs 
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∫                       (31) 

Solution: There is no analytic solution of Equation (31). To solve it by stan-
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dard HAM, we rewrite it in the operator form 

( )( ) ( ), ,N s q f sφ =                        (32) 

where  

( )( ) ( ) ( )

( )

2
0

, , , d ,

1.

s
N s q s q t q t

s
f s

φ φ φ∂ = − ∂
 = −

∫               (33) 

It is known that 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0
1

10

1

11 0

2 2 2
0 1 00 0

1 1
2

11 0 0

, ,

, ,

, 1 ! ,

, 2 , , ,

1 ,
1 !

m
m

m

q

m

mm q

q q

m m

i m im q i

s q u s q u s

s q u s
q

s q m u s
q

s q u s u s s q u s
q q

s q u s u
m q

φ

φ

φ

φ φ

φ

∞

=

=

−

−− =

= =

− −

− −− =
=


= +


 ∂

=
∂

 ∂ = −
∂

 ∂ ∂
= =

∂ ∂
 ∂ =

− ∂

∑

∑

         (34) 

Applying HAM yields  
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Since ( ) ( )d
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= , by choosing initial guess as ( )0u s s= −  it follows 

that 
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Five terms approximation of the HAM at 1= −  is 
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4 7 10 13 161 1 1 1 37 .
12 252 6048 157248 158505984

HAMU s u s u s u s u s u s u s

s s s s s s

= + + + + +

= − + − + + +
  (37) 

Fifth terms approximation of the Adomian decomposition method (ADM) 
developed in El-Sayed and Abdel-Aziz [21] has the form, 
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( ) ( ) ( ) ( ) ( ) ( ) ( )5 0 1 2 3 4 5

4 7 10 13 161 1 1 1 79 .
12 252 6048 157248 264176640

ADMU s u s u s u s u s u s u s

s s s s s s

= + + + + +

= − + − + + +
 (38) 

From (37) and (38), it has almost same terms except last terms. Let us see the 
numerical comparisons of two methods 

From Table 2, it can be seen that HAM is slightly better than ADM. Both 
methods are highly accurate. 
 
Table 2. HAM and ADM for Example 2 at different values of “N = 5”. 

S Exact ( ) su s se=  HAM ADM 

0.0000 0 0 0 

0.0938 −0.0937 −0.0937935 −0.0937935 

0.2188 −0.2186 −0.2186089 −0.2186090 

0.3125 −0.3117 −0.3117041 −0.3117060 

0.4062 −0.4040 −0.4039240 −0.4039390 

0.5000 −0.4948 −0.4947605 −0.4947230 

0.6250 −0.6124 −0.6123349 −0.6124310 

0.7188 −0.6969 −0.6969540 −0.6969410 

0.8125 −0.7771 −0.7770340 −0.7770900 

0.9062 −0.8520 −0.8519477 −0.8519340 

1.0000 −0.9205 −0.9205260 −0.9204760 

 
Example 3. (Majid Khan, et al. [18]) Let us consider Fredholm integro-differential 

equation with initial condition 

( ) ( )

( )

1

0
1 d ,

3
0 0.

su s stu t t

u

′ = − +

=

∫                      (39) 

The exact solution of Eq. (33) is ( )u s s= .  
To apply HAM convert Eq. (33) into integral equations of the form 

( ) ( )
2 21

0
d

2 6
s su s tu t t s− = −∫ .                   (40) 

Let us write Eq. (29) in the operator form 

( )( ) ( ),N s q P sφ = , 

where 

( )( ) ( ) ( ) ( )
2 21

0
, , , d ,

2 6
s sN s q s q t t q t P s sφ φ φ= − = −∫ .       (41) 

Choose initial guess as ( )
2

0 12
su s s= −  then from Eqs. (19) - (21), it follows 
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that 

( ) ( )( ) ( )
2

1
7, ,
96
su s N s q P sφ

 
 = − = −   

 
  .          (42) 

( ) ( ) ( )( ) ( ) ( )( )
2

2
2 1 1

0

, 1
768q

su s u s N s q P s u s
q

φ
=

∂  = + − = + − ∂
   .(43) 

So that two-term approximate solution at 1= −  is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2 0 1 21 1

5 0 1 2 3 4 51 1

2

1
768

1
393216

U s u s u s u s s s

U s u s u s u s u s u s u s

s s

=− =−

=− =−

= + + = −  

= + + + + +  

= −









     (44) 

Majid Khan, et al. [18] have developed the Adomian decomposition method 
(ADM) and two terms approximation of the Laplace decomposition method 

(LDM). It is shown that ADM at the initial guess ( )
2

0 12
su s s= −  has the form 

( ) ( ) ( ) ( ) 2
2 0 1 2

113
384LDMU s u s u s u s s s= + + = −   .          (45) 

Numerical comparisons of two methods are given in Table 3.  
 
Table 3. LDM [18] and HAM for Example 3 at different values of “N = 2”. 

S Exact ( )u s s=  Error LDM [18] 
(N = 2) 

Error HAM 
(N = 2) 

Error HAM 
(N = 5) 

0 0 0 0 0 

0.2 0.2 0.011771 0.000260 5.08 * 10−7 

0.4 0.4 0.047083 0.000520 1.01 * 10−6 

0.6 0.6 0.105938 0.000781 1.52 * 10−6 

0.8 0.8 0.188333 0.001041 2.03 * 10−6 

1 1 0.294271 0.001302 2.54 * 10−6 

 
From Table 3, it can be concluded that the standard HAM is dominated the 

LDM [18]. From last column of Table 3, we can observe that error term of the 
HAM decreases drastically at five iterations only. 

Example 4. (Manafianheris [22]). Let us consider non-linear FIEs 

( ) ( ) ( ) ( )( )
( ) ( )

1 2 2
0

sinh cosh d ,

0 0, 0 1

u s s s s t u t t

u u

′′ = + − −

′= =
∫           (46) 

The exact solution of Eq. (46) is ( ) ( )sinhu s s= . 
Solution: To apply HAM we convert Eq. (46) into integral equations of the 

form 
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( ) ( ) ( )
13 4 3

2
2

0

1sinh 1 d
12 64
s e su s s u t t

e
 −

= + − + 
 

∫  

To solve it by standard HAM we rewrite it in the operator form 

( )( ) ( ), ,N s q f sφ =  

where  

( )( ) ( ) ( )

( ) ( )

2 3 1 2
2 0

3 4

2

, , , d ,
6

1sinh 1 .
12 4

sN s q s q t q t
s

s ef s s
e

φ φ φ
 ∂

= − ∂
  − = + −   

∫
 

In view of Equation (34), we obtain  

( ) ( )( ) ( ) ( ) ( ) ( )
11

1 1 100 0
, d .

m

m i m iq i
L u s N s q f s u s u t u t t

s
φ

−

− − −= =

∂  = − = −      ∂ 
∑∫ 

 

Since ( ) ( )
2

2

d
d

Lu s u s
s

= , if the initial guess is chosen as ( ) ( )0 sinhu s s=  

then the next iteration is  

( ) ( ) ( ) ( )
2 3 3 41 2

1 2 20

1sinh sinh d sinh 1 0
6 12 4
s s eL u s s t t s

s e

   ∂ −
= − − + − =        ∂    

∫
 

Apparently, the next iterations are as follows 

( ) ( ) ( )1 2 0nu s u s u s= = = = . 

So that, ( )mU s  is 

( ) ( ) ( ) ( ) ( )0 1 2 1
sinhm mU s u s u s u s u s s

=−
= + + + + + =  



        (47) 

Thus, for the choice of initial guess ( ) ( )0 sinhu s s=  we got exact solution. 
To get approximate solution let us choose an initial guess as ( )0u s s= . In this 
case, next iterations has the form 

( ) ( )

( ) ( ) ( )

5 5 4

1 2

5 5 4
2

2 1 2

5 4

2

1sinh 1
360 240 4

1sinh 1
360 240 4

1 1 1 7391
60 1680 2520

s s eu s s s
e

s s eu s u s s
e

s e s
e e

  −
= − + + − −  

   
  −

= − + + −  
  

  −
− + − − −        



           (48) 

From Eq. (18), one can find two-terms approximate solution at 1= −  in the 
form 

( ) ( ) ( ) ( )
5 4

2 0 1 2 41

1 319 421 1sinh 1
60 2520 1680 4
s eU s u s u s u s s

e e=−

  −
= + + = + − + −         



, 

Numerical results of HAM at two iterations with initial guess ( )0u s s=  are 
given in Table 4. 
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Table 4. LDM, and HAM for Example 3 at different values of “N = 2”. 

S Exact HAM (N = 2) Error HAM (N = 2) 

0 0 0 0 

0.2 0.201336 0.20134264 0.00000664 

0.4 0.410752 0.41096505 0.00021273 

0.6 0.636654 0.63826899 0.00161542 

0.8 0.888106 0.89491333 0.00680736 

1 1.175201 0.19597561 0.02077443 

 
Table 4 demonstrates that by increasing the number of iteration, error term of 

HAM decreases gradually. Thus, the proposed method is highly accurate and 
suitable. Manafianheris [22] have used LDM for Eq. (46) and got exact solution 
by LDM. In Eq. (47), it is shown that HAM can also give exact solution too when 
initial guess ( ) ( )0 sinhu s s= . 

5. Conclusions 

In this work, we have developed HAM for nonlinear Fredholm-Volterra integro- 
differential equations by combining Gauss-Legendre quadrature formulas. Nu-
merical results (Example 2 and Example 4) reveled that HAM gave exact solu-
tion for the suitable choice of initial guess. From Example 1, it follows that HAM 
approaches to the exact solution very fast by increasing number of iterations. In 
Example 2, we can see that HAM and ADM are highly accurate and approaches 
to the exact solution. Example 3 shows that standard HAM is better than stan-
dard ADM. In Example 4, Manafianheris [22] found an exact solution using the 
Laplace transformation together with ADM, and we also found an exact solution 
by choosing ( ) ( )0 sinhu s s=  as an initial guess. For the another initial guess 

( )0u s s= , we got a very high accurate solution at 2m = . 
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