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Abstract 
This paper addresses the problem of event-triggered finite-time H∞ filter de-
sign for a class of discrete-time nonlinear stochastic systems with exogenous 
disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted 
to design a filter such that the filtering error system is stochastic finite-time 
stable (SFTS) and preserves a prescribed performance level according to the 
pre-defined event-triggered criteria. Based on stochastic differential equations 
theory, some sufficient conditions for the existence of H∞ filter are obtained 
for the suggested system by employing linear matrix inequality technique. 
Finally, the desired H∞ filter gain matrices can be expressed in an explicit 
form.  
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1. Introduction 

During the past few decades, there has been a rapidly growing interest in nonli-
near stochastic systems. Based on the fundamental stochastic stability theory [1] 
and Lyapunov-Krasovskii functional [2], some results can be found in the lite-
rature [3]-[15]. Specifically, problems of stochastic stabilization and destabiliza-
tion were studied for nonlinear differential equations by noise and impulsive 
stochastic nonlinear systems respectively in [4] [6] [10] [14]. References [5] [7] 
[11] [12] [15] investigated state-feedback and output feedback stabilization 
problems for stochastic nonlinear systems and stochastic delay nonlinear sys-
tems. Fault detection filter and full-order H∞ filter were provided for nonlinear 
stochastic systems and nonlinear switched stochastic systems in terms of second- 
order nonlinear Hamilton-Jacobi inequalities and T-S fuzzy framework respec-
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tively in references [3] [8]. Dissipativity and tracking control problems were 
presented for nonlinear stochastic dynamical systems in references [9] [13]. 

On the other hand, increasing effort has been paid to the study of event-triggered 
control (ETC) of nonlinear stochastic systems due to their significance in science 
and engineering applications. Many important results have been presented for 
event-triggered control of nonlinear stochastic systems in references [16]-[24]. 
Dynamic event-triggered control, dynamic self-triggered control and event-triggered 
stability were investigated for a class of nonlinear stochastic systems by intro-
ducing an additional internal dynamic variable in [16] [17]. Based on event- 
triggered predictive control (ETPC) scheme, a novel discrete-time feedback law 
was designed for the stabilization of continuous-time stochastic systems with 
output delay in [24]. The input-to-state practically exponential mean-square sta-
bility of stochastic nonlinear delay systems with exogenous disturbances was 
provided and a framework of event-triggered stabilization was received for the 
stochastic systems without applying the well-known Lyapunov theorem respec-
tively in [18] and [21]. Periodic event-generators and continuous event-enerators 
were studied in both static and dynamic cases in [19]. Reference [20] addressed 
the dynamic event-based fault detection problem of nonlinear stochastic systems 
influenced by random nonlinearity, data transmission delays and packet dro-
pout. Based on fuzzy technique, the problem of event-triggered optimized con-
trol for uncertain nonlinear Itô-type stochastic systems with time-delay was ad-
dressed in [22]. The modified unscented Kalman filter was proposed for stochas-
tic nonlinear system with Markov packet dropout in [23]. 

Although the problem of event-triggered control for nonlinear stochastic sys-
tems has been investigated, there has little literature on filtering problem for 
discrete-time nonlinear stochastic systems. With above inspirations, we aim to 
propose an event-triggered finite-time filtering scheme for discrete-time nonli-
near stochastic systems with exogenous disturbance. We present the definition 
of SFTS into a class of discrete-time nonlinear stochastic systems. By employing 
the event-triggered strategy, we construct a detection filter such that the result-
ing filter error augmented system is SFTS. Sufficient conditions for SFTS of the 
filter error system is established by constructing the Lyapunov-Krasovskii func-
tional candidate combined with LMIs. The desired event-triggered finite-time 
filter can be constructed by solving a set of LMIs. 

This paper is organized as the following. First, some preliminaries and the 
problem formulation are introduced in Section 2. In Section 3, in terms of event- 
triggered technique, a sufficient condition for SFTS of the filter error system is 
established and a method for designing the corresponding filter is presented. Fi-
nally, some conclusions are drawn in Section 4. 

Notation: Throughout this paper, the notations used are quite standard. We 
use nR  to denote the n-dimensional Euclidean space. 0R >  denotes a sym-
metric positive definite matrix. The symbol * in a matrix denotes a term that is 
defined by symmetry of the matrix. I and 0 denote the identity and zero matrices 
with appropriate dimensions. ( )max Rλ  and ( )min Rλ  denote the maximum 
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and the minimum of the eigenvalues of a real symmetric matrix R. The super-
script T denotes the transpose for vectors or matrices. ( )PΞ  is the mathemati-
cal expectation of P. Matrices, if not explicitly stated, are with compatible di-
mensions. 

2. Problem Formulation and Preliminaries 

We shall consider the following discrete-time nonlinear stochastic system: 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

2

0

1 , ,

, 0 n

x k Ax k f k x k D v k g k x k k

y k Cx k D v k

z k Lx k x x R

ϖ + = + + +
 = +


= = ∈

      (1) 

where ( ) nx k R∈ , ( ) my k R∈ , ( ) pv k R∈ , ( ) qz k R∈ , are state vector, mea-
surement output, external disturbance, and controlled output respectively, ( )kϖ  
is a one-dimensional zero-mean process which satisfies  

( ) ( ) ( ) ( )20, 0, ,k i j i j kω ω ω ω δ Ξ = Ξ = ≠ Ξ =                 (2) 

where Ξ  is the expected value. Here 0δ >  is a known scalar. The matrices 

1 2, , ,A C D D L  are constant matrices with appropriate dimensions. 
Assumption 1 The nonlinear functions ( )( ),f k x k  and ( )( ),g k x k  satisfy 

the following quadratic inequalities: 

( )( ) ( )( ) ( ) ( )
2 22

1,,f f k x k x k x kk x k ε− ≤ −   

( )( ) ( )( ) ( ) ( )
2 22

2,,g g k x k x k x kk x k ε− ≤ −   

for all ( ) ( ), nx k x k R∈ , where 1 2, 0ε ε >  are constants related to the function 
( )( ),f k x k , ( )( ),g k x k . 

Assume that { }k k N
t

∈  denotes the triggered instants and there is no time-delay 
in sampler and actuator, 0 1 2 1k kt t t t t +< < < < < , 1k kt k t +≤ < . ( )kx t  is the 
current sampled system state, 1kt +  is the next sampled instant, which can be 
determined by the event-trigger, and ( )0 0x t x=  is chosen as the initial sampled 
state.  

In this paper, the event-triggering schemes are described by 

( ) ( ) ( ) ( ){ }T T
1 inf | 0k k y k y kt k t e Qe y k Qy kη+ = ≥ − > ,         (3) 

where ( ) ( ) ( )ky ke y k y t= − , η  is a constant and TQ = Π Π  is a symmetric and 
positive definite matrix with appropriate dimension to be determined. 

We now consider the following filter: 

( ) ( ) ( )
( ) ( )

ˆ ˆ1

ˆˆ
f f k

f

x k A x k B y t

z k L x k

 + = +


=
                 (4) 

where ( )ˆ nx k R∈  is the filter state, and matrices , ,f f fA B L  are filter parame-
ters with compatible dimensions to be determined.  

Define ( ) ( ) ( )T Tˆx xk x k k =   , ( ) ( ) ( )ˆk z kz z k= − . Then the filtering er-
ror system is 
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( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )

1 , ,f y kx k Ax k F k x k Dv k B Ke G k x k k

z k Lx k

ϖ + = + + − +


=
   (5) 

where  

0

f f

A
A

B C A
 

=  
 

, ( )( ) ( )( ),
,

0

f k x k
F k x k

 
=  
  

, ( )( ) ( )( ),
,

0

g k x k
G k x k

 
=  
  

,  

1

2

0
0f

D
D

B D
 

=  
 

, 
0

f
f

B
B
 

=  
 

, fL L L = −  , ( )
( )

0
y k

y k

e
e

 
=  
  

,  

( ) ( )
0

v k
v k

 
=  
 

, [ ]0K I= . 

Before providing the main results, we summarize several needed definitions 
and lemmas from the literature. 

Definition 2.1 The filtering error system (5) with event-triggered scheme (3) 
and ( ) 0v k =  is said to be stochastic finite-time stable (SFTS) with respect to 
( )1 2, , ,c c P N , where 1 20,0P c c> < < , if the following relation holds: 

( ) ( ) ( ) ( )T T
1 20 0x Px c x k Px k c Ξ < ⇒ Ξ  <  for all 1,2, ,k N∈  . 

Definition 2.2 For 0γ > , suppose the event-triggered residual system in (5) 
is stochastic finite-time stable (SFTS) with respect to ( )1 2, , ,c c P N , then system 
(5) is said to have a weighted H∞ attenuation level γ for all nonzero ( ) [ )2 0,v k l∈ ∞ , 
if the following inequality holds: 

( ) ( ){ } ( ) ( )
0 0

T 2 T
k k k kz k z k v k v kγ∞ ∞

= =
Ξ <∑ ∑               (6) 

Lemma 2.1 ([25]). Let n nR ×Ω∈  be a symmetric matrix, and let nx R∈ , 
then the following inequality holds  

( ) ( )T T T
min maxx x x x x xλ λΩ ≤ Ω ≤ Ω .                 (7) 

Lemma 2.2 (Schur complement [26] [27]) Given a symmetric matrix  

11 12

21 22

φ φ
φ

φ φ
 

=  
 

, the following three conditions are equivalent to each other: 

1) 0φ < ; 
2) 11 0φ < , and T 1

22 12 11 12 0φ φ φ φ−− < ; 
3) 22 0φ < , and 1 T

11 12 22 12 0φ φ φ φ−− < . 

3. Main Results 

In this section, we focus on stochastic finite-time stable (SFTS) with respect to 
( )1 2, , ,c c P N  of the event-triggered residual system in (5), and propose suffi-
cient conditions of system performance analysis. 

Theorem 3.1 For given constants , , 0γ η δ >  and 1µ > , suppose that there 

exist symmetric positive definite matrices 
1 1
2 2R P P= Ω  such that the following 

LMIs hold 

0Θ <                              (8) 
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where  

11 12 13 14 15 16

22 23
2

1
2

1

* 0 0 0
* * 0 0 0

* * * 0 0
* * * * 0
* * * * *

I

I
I

γ

η

−

Θ Θ Θ Θ Θ Θ 
 Θ Θ 
 −
 Θ =
 − 
 −
 

−Ω 

 

( )
( )

0
max 1

2
min

N k c
c

µ λ
λ

− Ω
≤

Ω
,  

T T T T T
11 1 1 1 1 2 2A RA A R RA R R RµδΘ = + Ψ +Ψ +Ψ Ψ + Ψ Ψ − ,  

T T
12 1f fA RB K RB KΘ = − −Ψ , T T

13 1A RD RDΘ = +Ψ , 
0

, 1,2
0 0

i
i i

ε 
Ψ = = 

 
, 

T
14 20C D Θ = Π Π  , 

T
15 0 0L Θ =   , 

T1
2

15 0 0 P D
 

Θ =  
 

,  

T T
22 f fK B RB KΘ = , T T

23 fK B RDΘ = − , T0
0 0
Q

Q  
= = Π Π 
 

,  

T T
1Q C C= Π Π , T T

2 2Q C D= Π Π , T T
3 2 2Q D D= Π Π ,  

[ ]0Π = Π , [ ]0C C= , [ ]2 2 0D D= . 

Proof: Consider the following Lyapunov function candidate for system (5): 

( )( ) ( ) ( )TV x k x k Rx k=                      (9) 

Then, based on assumption 1, (8) and Schur complement, it follows that 

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )
( )
( )

T

T

11 12T T

22

1

, ,

, ,

0
*

f y k

f y k

y k
y k

k V x k V x k

Ax k F k x k B Ke G k x k k R Ax k

F k x k B Ke G k x k k x k Rx k

x k
x k e

e

µ

ϖ

ϖ µ

 Γ Ξ + − 

  = + − +  
+ − + −

 Γ Γ  = <    Γ     



   (10) 

where 11 11Γ = Θ , 12 12Γ = Θ , 22 22Γ = Θ . 
Then for [ )1,k kk t t +∀ ∈ , we have 

( )( ) ( )( )Ξ 1V x k V x kµ   Ξ ≤ −    .               (11) 

Proceeding in an iterative fashion, we obtain the following inequality: 

( )( ) ( )( ) ( )( ) ( )0 0 0
0 max 10k k k k N kV x k V x k V x cµ µ µ λ− − −    Ξ < Ξ = Ξ ≤ Ω      (12) 

On the other hand, it can be derived from (9) and lemma 2.1 that  

( )( ) ( ) ( ) ( )T
minV x k x k Px kλ   Ξ ≥ Ω Ξ    .              (13) 

Thus we have that 
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( ) ( ) ( )
( )

0
max 1T

2
min

N k c
x k Px k c

µ λ
λ

− Ω
 Ξ ≤ ≤  Ω

.             (14) 

According to Definition 2.1, the filter error systems (5) with ( ) 0v k =  is 
SFTS. 

Next, we prove the event-based residual system in (5) satisfies H∞ perfor-
mance value. 

In view of event condition (3) (8), together with Lemma 2.2, the following in-
equality can be deduced: 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

T T

T 2 T

T

1

, ,

, ,

y k y k

f y k

f y k

k V x k V x k y k Qy k e Qe

z k z k v k v k

Ax k F k x k Dv k B Ke G k x k k

R Ax k F k x k Dv k B Ke G k x k k

µ η

γ

ϖ

ϖ

Ξ + − + −
+ − 

 = + + − + 
× + + − + 



 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )
( )

( )

TT
2 2

T T 2 T

11 12 13
T T T

( ) 22 23

33

* 0
* *

y k y k

y k y k

x k Rx k Cx k D v k R Cx k D v k

e Qe z k z k v k v k

T T T x k
x k e v k T T e

T v k

µ η

γ

− + + +      
− + −

      = <           

    (15) 

where 
T T T T T T

11 1 1 1 1 2 2 1T A RA A R RA R R R Q L Lµ ηδ= + Ψ +Ψ +Ψ Ψ + Ψ Ψ − + + ,  

T T
12 1f fA BT R K KB R= − −Ψ , T T

13 1 2A DT QDR R η= +Ψ + ,  

T T
22 f fB B QT K R K= − , 23 23T = Θ , T 2

33 3D DT R IQη γ= + − ,  

0
0 0

Q
Q 

=  
 

, 
T

1
0

0 0
C QC

Q
 

=  
 

, 
T

2
2

0
0 0

C DQ Q 
=  
 

, 
T
2 2

3
0

0 0
D DQ Q 

=  
 

. 

Then we can conclude that (6) holds. It can be concluded that the event-triggered 
residual system in (5) possesses a prescribed H∞ performance index proposed in 
Definition 2.2. Thus the proof is completed. 

The following theorem will set forth our filter design method for the system 
(1). 

Theorem 3.2 For given constants , , 0γ η δ >  and 1µ > , the filtering error 
system (5) with the event-triggering strategy (3) is SFTS with respect to ( )1 2, , ,c c P N  
and the error signal satisfies (6), if there exist positive definite matrix  

11 12

12 22
T

R R
R

R R
 

=  
 

 and matrices 1 2 3, ,G G G  with appropriate dimensions satisfy-

ing: 

0Θ < ,                            (16) 

where 
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11 12 13 14 15 16

22 23
2

1
2

1 1
12 2

* 0 0 0
* * 0 0 0

* * * 0 0
* * * * 0

* * * * *

I

I
I

P R P

γ

η

−

 Θ Θ Θ Θ Θ Θ
 

Θ Θ 
 −
 

Θ =  
− 

 −
 
 

− 

     

 

 ,          (17) 

T T T T T
11 1 1 1 1 2 2R R RA A R RA RA δ µΘ = + Ψ +Ψ +Ψ Ψ + Ψ Ψ −    , 

T T
12 1f fRBA K RB KΘ = − −Ψ   , T T

13 1RA DRDΘ = +Ψ  , 14 14Θ = Θ , 

15 0 0L Θ =  
 , 16 16Θ = Θ , T

22 f fB RB KΘ =   , 

T T
23 1 1

22 2 12 1

0
f

A
K B RDA

R G C R G− −

 
Θ = − =  

 
  , 

1
22 2

0
fB

R G−

 
=  
 

 , [ ]3L L G= − . 

Moreover, the suitable filter parameters , ,f f fA B L  in system (4) can be giv-
en by  

1 1
12 1 22 2 3, ,f f fA R G B R G L G− −= = = .               (18) 

Proof By Theorem 3.1, let 1 1
12 1 22 2 3, ,f f fA R G B R G L G− −= = = , then the condi-

tion (8) is equivalent to (16). 

4. Conclusion 

In this paper, we have introduced the concept of SFTS into a class of discrete- 
time nonlinear stochastic systems with exogenous disturbances. We have ad-
dressed the event-triggered finite-time filter designing problem. A sufficient 
condition is provided to guarantee the SFTS of the filter error system. For the 
presented event-triggering schemes, the criteria for the event-based filter resi-
dual systems with a prescribed performance level γ were established by adopting 
Lyapunov-Krasovski function method. Sufficient conditions for H∞ performance 
analysis and corresponding filter designing technique have been provided in a 
given finite-time interval in terms of LMIs technique, respectively.  
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