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Abstract

This paper deals with fractional integro-differential equations involving Ha-
damard fractional derivatives and nonlinear boundary conditions in an or-
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dered Banach space. The nonlinearity is allowed to be singular with respect to
time variable. Under some monotonicity conditions and noncompactness

measure conditions, we use the method of coupled lower and upper L-qua-
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sisolutions associated with the mixed monotone iterative technique to inves-
tigate the existence of extremal Z-quasisolutions. A unique solution between
coupled lower and upper L-quasisolutions is also obtained. An example is
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given to illustrate our theoretical results. The results got in this paper are new

and enrich the existing related work.
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1. Introduction

In this work, we consider the following boundary value problem (BVP for short)

in a Banach space £
7 Ox(t)= f(tx(t),x(t),Gx(t)),te(ab],0<a<b <o,
9((a).x(b)) =0,

where O<a <1, "V,/Hf denotes left-sided Hadamard fractional derivative of

(1.1)
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order a with the low limit a. The nonlinear term f (t, X, Y, Z) is an E-value
continuous function on (a,b]xExExE and may be singular at t=a. The
operator Gis given by Gx(t)= J:k(t,s)x(s)ds and k(t,s)e C(D,R*) ,

D:{(t,s)eRxR|aSsStSb}, R* =[0,oo). The function g eC(ExE,E).

X(a)=lim__ (Iog GD X(t) and %(b)=lim [Iog GD X(t),

log(-)=log,(-). @ denotes the zero element in E. Throughout the article, the
integrals of the functions with values in £ are taken in Bochner’s sense.

Fractional calculus and fractional differential equations have been studied ex-
tensively during the last decades. An effective technique for discussing the exis-
tence of solutions for initial and boundary value problems of differential equa-
tions is the monotone iterative technique combined with the lower and upper
solutions method. This method is widely used to investigate Riemann-Liouville
and Caputo type fractional differential equations, see, for example, [1]-[11] and
the references therein. In [12], the Hadamard fractional calculus was introduced.
In the definition of Hadamard fractional derivative, the kernel of the integral con-
tains a logarithmic function of arbitrary exponent which is different from the
fractional derivatives of Riemann-Liouville and Caputo type. Some recent con-
tributions to the existence of solutions for Hadamard fractional differential equ-
ations via various fixed point theorems can be found in [13]-[18]. For details as
regards the application of the iterative method in Hadamard fractional differen-
tial equations, see [19] [20] [21] [22] and the references therein.

In [20], Pei et al discussed the existence of positive solutions for Hadamard

fractional integro-differential equation
oeu(t)+ F(tu(t), "7 fu(t), o u(t) =0,1<a <2, te (L),
u(1)=0,"% “Mu(e) = 3" 4"/ Au(n),

where ne(1,), r,f5,4>0 (i=12,---,m) are given constants and satisfy

I(a)> zzlL(a)( log n)awfl . The authors not only established the existence
TC(a+p)

of positive solutions but also sought the positive minimal and maximal solutions
and got two explicit monotone iterative sequences which converge to the ex-
tremal solutions.

In [22], by employing the monotone iterative method, the authors investi-
gated the iterative positive solutions of nonlocal Hadamard fractional boundary
value problem with nonlocal Hadamard integral and discrete boundary condi-

tions
"oax(t)+o(t) f(tx(t))=0,2<q<3 te(Lx),
x(1) =X (1) =0, x () =a" T x (&) +b3 " Fax (1),

where >0, 1<&<n <n,<--<n, , <o, aand b are real constants, and

(04

. is positive real constants. Some explicit monotone iterative sequences were

established for approximating the extreme positive solutions and the unique
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positive solution.

It is worth pointing out that the iteration sequences in [19] [20] [21] [22] are
constructed from the appropriate initial functions rather than from the lower
and upper solutions. The literature on the monotone iterative technique and the
method of lower and upper solutions for Hadamard fractional differential equa-
tions is scarce. In [23], using the method of lower and upper solutions and its
associated monotone iterative technique, the author investigated the existence of
extremal solutions of the following system of nonlinear Hadamard fractional

differential equations with Cauchy initial value conditions
ex(t) = (tx(t),y (1), 2 x(at) =%, te(ab],
eyt =g(tx(t).y(1), 2 y(a)=vs. te(ab],

a

where 0<a <1, fand gare continuouson [a,b]xRxR. X5,y eR, X3 <.
"’,/af‘ and /[ are the left-sided Hadamard fractional derivative and integral
of order « , respectively.

To the best of our knowledge, the existence of solutions for fractional BVP
(1.1) in ordered Banach spaces has not been considered up to now. In this work,
combining the theory of noncompactness measure with mixed monotone itera-
tive technique and coupled lower and upper L-quasisolutions, we prove the ex-
istence of extremal L-quasisolutions of BVP (1.1). Also, we establish the uni-
queness result of solutions between coupled lower and upper Z-quasisolutions. It
is allowable in our main result that the nonlinear term f (t, X, X,GX) is non-
decreasing with respect to one variable x and non-increasing with respect to
another variable x. Moreover, due to the weighted boundary value condition in
(1.1), we establish the explicit solution to the weighted Cauchy type problem of
linear Hadamard fractional differential equations, which is different from Lem-
ma 2.1 in [23] and Theorem 4.5 in [24]. Consequently, the results got in this pa-
per will enrich the existing related work and also can serve as an interesting

complement to the work in [23] [24].

2. Preliminaries

In this section, we introduce some notations and preliminary facts which are
used throughout this paper. Let J = [a, b] and F be an ordered Banach space
with the norm || || and the partial order “<”, whose positive cone

P={xeE, x>0} is normal with normal constant N. Let C(J,E) denotes
the ordered Banach space of all continuous F-value functions on the interval /
|X(t)|| and the partial order “<” deduced by the
positive cone P, = {x :xeC(J,E),x(t)= 6?} . P. is also normal with the same

c

with the norm ||X||C =max,_,

normal constant N. Let
Criog(J.E) = x:XEc((a,b],E),(loggn x(t)eC(J,E); for O<r<1.

Evidently, C,,(J,E) alsois an ordered Banach space with the norm
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Cr Jlog

I

and the partial order “<” deduced by the positive

i) ]

t r
cone P, ={X :X€C, (J,E),(IOQ(—D x(t)> 9}. The normal constant of
r,log , a

P also is V. It is easy to verify that C

Cr log

(J,E)cL(J,E), where L(J,E)
denotes the Banach space of all E-value Bochner integrable functions defined on
Jwith the norm ||u||L = L ||u (t)"dt .

A function xeC,_,,, (J,E) is called a solution of BVP (1.1) if it satisfies the

equation and the boundary value condition in (1.1).

r,log

Now let us recall some fundamental facts of the notion of Kuratowski non-
compactness measure.

Definition 1. ([25]) Let E be a Banach space and let Q. be the family of
bounded subsets of E. The Kuratowski measure of noncompactness is the map
p:Qg —[0,0] defined by

u(B)=inf {g >0:Bc U::lBi,diam(Bi)gg},here BeQ,.

Property 1. ([25]) The Kuratowski measure of noncompactness satisfies some
useful properties.

1) u(B)=0< B is compact (B is relatively compact), where B denotes
the closure of B.

2) u(AuB)=max{u(A), u(B)}.

3) ,u(A+ B) < y(A)+,u(B) .

4) u(cB)=|c|u(B).ceR.

Denote the Kuratowski noncompactness measures of bounded sets in
Criog (J.E) by 4 . Similar to the proof of Lemma 2.1 in [26], we can obtain
the following useful result.

Lemma1.Let HcC, (J,E) bebounded and equicontinuous. Then

#e,, (H)=max {/{('09 GDr H (t)}}v

where H (t)={x(t)|Xe H},t el.

The following lemma is necessary in the proof of our main results.

Lemma 2. ([27] [28] [29]) Let Ebe a Banach space, H ={x,} < L(J,E) bea
countable set with "Xn (t)” <p(t) for aa. te) and every x, €H , where
p(t)eL(J).Then u(H(t)) is Lebesgue integrable on / and
ul{[, % ()t} < 2], u(H (1)dt.

Next, we review definitions and some useful properties of Hadamard fraction-
al integrals and derivatives which are used in the following sequels.

Definition 2. ([12] [24] [30]) Let (a,b)(0<a<b <o) be a finite or infinite
interval of the half-axis R* and « >0. The left-sided Hadamard fractional

integral and fractional derivative of order « are defined respectively by
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gl

"x(t) = ﬁ(t%)n '[;(Iog [%)]H_l X s)%

provided that the right-hand sides are pointwise defined on (a,b), where

and

—~

n-l<a<n.
Property 2. ([24]) If «, 3 >0, then

» ¢ p-1 F(ﬂ) X Bra-1
2o 3] 0=l )
Property 3. ([24]) Let n—1<a <n, then
1) FV/f‘(log(ljj =0, i=1,2,---,n.
a a

2) M s fx(t)=x(t) for xel’(ab)l<p<eo,0<a<b<o.
3) ‘/afH”QfX(t):X(t)+Z:—1Ci(Iog(in for
FL/af’x(t)eC(c’:l,b)mL(a,b),where ¢ eR,i=12,-,n.

3. Main Results

Definition 3. Let L>0 and v,weC_,, (J,E). We call v,w coupled
lower and upper L-quasisolutions of BVP (1.1) if vand wsatisfy

{"V/af‘v(t) < f(tv(t),w(t),Gv(t))+L(v(t)-w(t)) te(ab], 61)
g(v(a),v(b))<e,
and
{*baf‘w(t)z f(tw(t),v(t),Gw(t))+L(w(t)-v(t)),te(ab], 52
g(Ww(a),w(b))=6.

Remark 1. Only choose “=” in (3.1) and (3.2), we call v and w coupled L-
quasisolutions of BVP (1.1). In particular, vand ware coupled quasisolutions of
BVP (1.1) for L=0. Furthermore, if Vv=wW:=U, then u is a solution of BVP
(1.1).

In what follows, we assume that v and w are coupled lower and upper Z-
quasisolutions of BVP (1.1), respectively, and v <w. Define the ordered inter-
valin space C,_, ,, (J,E)

[v,w] = {x(t) eC (J,E):v(t)<x(t)<w(t), te(ab],v(a)<x(a)< v"v(a)}.

1-a,log

Let A€R beaconstantand heC,_, (J,E). Consider the weighted linear
initial value problem in £

" ix(t) - ax(t)=h(t), te(ab],
(3.3)
X(a)=Xx,.
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Lemma 3. Forany heC_, . (J,E), X, € E, the unique solution of (3.3) in
the space C,_, . (J,E) has the following form

CRCCORSCR
LCORACCOINEE

where E,(-) isthe Mittag-Leffler function defined by
Xk
E ., (x)=>" ——.

e )= 2uo T lcara)

Proof. According to Theorem 3.32 in [24], we assert that (3.3) has a unique
solution in the space C,_, ,, (J,E). Applying Theorem 4.5 and similar relations
to Lemma 3.2 on Hadamard fractional integrals in [24], we can prove this lem-
ma. In what follows we use the method of successive approximations to solve
(3.3). First of all, by Property 3, we derive that (3.3) is equivalent to the following

integral equation

X(t) =X, (Iog (%DH * F(/la) ﬁ('og GBM X(s)%

(3.5)

Now we set

X (1) =X, (Iog (éDH (3.6)

()] 0

and

Xo () =% (t)+

o (3.7)
1 t ds
log| — h(s)—.
“rahlels)] o]
Using (3.6), (3.7) and taking Property 2 into account we arrive at
a-1 201
t [(a) (t j
t)=x | log| — 2 log| L
%() xa(og(aD s F(Za)(og a
(3.8)

+ﬁﬁ(log GDH h(s)%.

Similarly, using (3.6), (3.7), (3.8) and Property 2 we obtain

e C R C O - CH
I G B E 0 BT
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Continuing this process, we derive the following relation for x_ (t)(meN):

gl sy o

=gl a
Taking the limit as m— oo, we obtain the explicit solution X(t) to the
integral Equation (3.5):

L = I

replacing the index of summation kby k-1 we have

X(t) = xar(a)iﬁ_k(log GD

k=0 F(ka+a)

+j;[§u+:@(log &Dkamljh(s)%,

and thus, using the expression of the Mittag-Leffler function, we get the explicit
solution (3.4) to the problem (3.3).

Remark 2. ([31] [32] [33]) For «,B >0, the well-known two-parameter
K

0 X . .
Mittag-Leffler function E,,(x)=)" ————, xeR is continuous on

(ke +p)

R . Moreover, Mittag-Leffler function has the following useful properties:

1) For 0<a<1, E, (x)>0, xeR and E,, (x)< x<0.

L
r(a)’

2)For O<a<1 and AeR,A#0,

al_ 17-L4-«a a 1

€. (A7) =2t (Em(ﬂt )_m],tio.

3) Forall t>0, E,, (Zt“) is decreasing in ffor 4 <0 and increasing in ¢
for 1>0.

4)For O<a <1, B,y>0 and 1eR,

J‘;(t—s)y’l(s—a)ﬁ’1 E,.; (l(s—a)“)ds

= (r)(t-a)"" "€, ., (A(t-2)"),
Equivalently,

[i(t=s)"(s—ay "B, ; (2(t-s5)")ds

=T (7)(t-a)"" " E, ., (2(t-2)").

Remark 3. By Remark 2 and (3.4), if X, 26, h(t) =6, the solution of (3.3)
X(t) = @ . This comparison result will play a very important role in this paper.
Further, for any 7,,7, € [v,w] , let

Clnma) (t)="f ('[,771 (t),m,(t),Gm (t))+ M, (t)+ L(771 ('[))—772 (t) and consider
the weighted linear initial value problem
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Lemma 3 indicates that (3.9) has exactly one solution x(t) given by

w-arief)f e[l )
£l )] (2] o

Forany 7,7, €[v,w], define the operator T'as

T (10,1, )(t) = x(t).

(3.9)

(3.10)

Then, obviously, the coupled fixed points of operator T are exactly the

coupled Z-quasisolutions of (1.1) and the fixed points of T are the solutions of

(1.1).

We work with the following conditions on the functions fand gin (1.1).

(Ho) f (t, XY, Z) IS Cl_myIth (J , E) for any (X, 2 Z) cExExE.
(H1) There exist constants M >0,L >0 such that

f(t-leyzvzz)_ f (t’xivaZl)Z_M (Xz_xl)_L(yl_yZ)' te(a,b],

where V<X <X, <w, v<y,<y <w and Gv<z <7, <Gw.
(H2)There exist constants L, >0,L, 20 such that

g(xzv)/2)_9()(113/1)S Ll(XZ_Xl)_LZ(yZ_yl)’

where V(a)<x <x,<W(a), V(b)<y, <y, <w(b) .
(H3)There exist constants N, 2—L,,N, 2L, 20 such that

g(XZ!yz)_g(Xllyl)Z_Nl(XZ_Xl)_NZ(yZ_yl)’

where V(a)<x <x, <W(a), V(b)<y, <y, <w(b).
(H4)There exists a constant K >0 such that

,u({ (£, X, Y01 GX, )+ Mx, (1) + L (%, (t) - Y, (t))})
<K (P (0))+ ae({3a (O} + ({65, (1)})). te (],

for any mixed monotone sequence {(xn, Y, )} < [v,w]x[v,w]. Moreover,

N L +N,+N, +4KAF( )[1+K_b]<1]
L I'(2a) 2a

a a+l
where szax(t's)ED {k(t,s)}, A:max{(loggj ,(Ioggj }
(H5)There exist constants M;,M,,M; >0 such that for te(a,b],
f(t’X21y2’ZZ)_f(t7X11yl7zl)£Ml(XZ_Xl)+M2(y1_y2)+M3(

7,-17,),

where v<Xx <X, <w, v<Vy,<y <w and Gv<z <z, <Gw.Moreover,
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Al <
n| LNt N, Al(e) M, +M, +M +2L+ K0 g
L I'(2a) 2a

Now we are in the position to state our main results.

Theorem 1. Let £be an ordered Banach space, whose positive cone Pis nor-
mal. Assume that f :(a,b]x ExExE —»E is continuous, geC(ExEE),
V,W are coupled lower and upper L-quasisolutions of BVP (1.1), respectively.
The conditions (HO) - (H4) are valid. Then BVP (1.1) has coupled minimal and
maximal L-quasisolutions V*,W* e [V,W] with v <w". Moreover, there exist
monotone iterative sequences {V,},{W,} < Claiog (J,E) starting from vand w
which converge to the coupled minimal and maximal Z-quasisolutions Vv* and
W respectively.

Proof. For clarity, we divide the proof into the following several steps.

Step 1: First of all, we need to show that the operator
T:[V,W]x[V,W] > C,_, 4, (J,E) is well defined. Indeed, for any 7,7, €[v,w],
by the condition (H1), we have for te(a,b]

f(t,v,w,Gv)+Mv+L(v—w)< ) (t)< f(t,w,v,Gw)+Mw+L(w-v).

By the normality of cone Pand (HO0), there exists L >0 such that
Ho-(mvnz) (t)‘ <L, thatis,

C-a log
(Iog GDH o (D] <L ted. (3.11)

Combining (3.10), (3.11), Property 2 and Remark 2, for any teJ we have

o) i

this implies that the integral in (3.10) exists and belongs to C,_, ., (J,E).
Step 2: We show that the operator 7 is equicontinuous. Let 7,7, € [V,W]
and t,,t, e[a,b] with t <t,.Evidently,

a

[Iog%jlaT (nl,nz)(tz)—(log tljlaT (771,772)('(1)” 50

if t=a and |t1 —t2| — 0. In the following we set t, >a. In view of the condi-
tion (H2), forany 7 e [V,W] , one has
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ia)- AIELTE) g AMEED_b 3
a2
and
ey 2T g(q) SO, b))
L 9(a) 9(V(aL)1,v(b))

By the normality of the cone P, there exists a constant M >0 such that

7(a)-2 (ﬁ(aL)l,ﬁ(b))

I = <M.

Thus we get

[log%j_aT(ﬂl,ﬂz)(tz)—('oggjl_aT(ﬁl’ﬂz)(Q)H

Pl ol ol )

=L+, + 1,
oy ] . .
Note that E, | -M]| log 3 is continuous. The expression |, has lim-

it zero as |t2 —t1| — 0. Next we estimate the integral |,. By (3.11) and Remark 2,

] ol o)
i) (] T2 oo

~ E t_z l-a E a-1 B "
_—F(a+1)[loga) [Iogaj (logt, —logt, )" .

we obtain

—

—

Hence, the expression |, has limit zero as |t2 —t1| — 0. Observing Remark 2

l-a a-1
and nonincreasing property of the function |(t):[log(£)j (IOQ(ED
a S
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for a<s<t<b, for therestterm |,, we can deduce

(i (o)) )] o o

(e ) () e ol 2
o ()] o) o)
o ()] () e ol )2

=1, +1,,+ 1,
(3.14)

The relation (3.13) ensures that |, has limit zero as |t2 —t1| — 0. Using (2)
and (4) in Remark 2 and by simple calculations, we know that

CONCEREECOI:
sCCEIREEICEN
() e (e ]

Ly + 1, =#‘Z)E{EM [—M (Iog%)a]—ﬁ}
_‘T\A&[Ea,a [—M (Iogt jj—ﬁ] (3.15)
:#{EW {—M (Iog% QJ— = (—M (Iog%)a H

Consequently, the relations (3.12), (3.13), (3.14) and (3.15) guarantee that the
operator 7'is equicontinuous.

© |

N

Step 3: In this part we show that T :[v, w]x[v,w] —>[v, W] is a continuous
mixed monotone operator.

Firstly, from (3.10), (3.11), the continuity of fand g together with the Lebes-
gue dominated convergence theorem, it is easy to know 7'is continuous.

Secondly, we prove T'is a mixed monotone operator, that is,

T(’71!772)ST(§11§2) for 7711’72:51:526[er] with 7, <&,&, <n, . Since by
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(H2)
[~ (@) 9(&(a), ](b))]_{ﬁ (a)_g(ﬁl(a),ﬁl(b))J
1 L1 1
> 2(E )= ()20
we have
r, <r.. (3.16)

Moreover, by (H1) we obtain

[f(t.8.5,68)+ME+L(4-&) ]~ f (tm.nm,,Gm)+ M+ L(n,—n,)]
>L(&-m)=06,

that is,
0-(771:’72) (t) < 0-(51,52) (t) (317)

As aresult, (3.10), (3.16) and (3.17) ensure T (77,,77,) <T(&,&,)-

Finally, we prove T (771,772) 1= [V,W] for any 7,7, € [V,W]. Since 7'is a mixed
monotone operator, T (V,W) <T (771,772 ) <T (w,v) for any 7,77, € [V,W] , it is
sufficient to prove v<T(v,w) and T(w,v)<w.Let p(t)= W/afv(t) +Mv(t),
then by (3.1)

p(t)< f(t,v,w,Gv)+Mv+L(v-w)= Ovw) (1),

and by Lemma 3,

thatis v<T(v,w). Similarly, we can derive T (w,v)<w.
Step 4: Now, we can define two sequences {v,} and {w,} in [v,w] by the
iterative scheme v, =T (v, ;,W, ;) and W, =T(w,,,V,,), where v, =v and

W, =W . Then from the mixed monotonicity of 7; it follows that
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Vp SV, SV, <Ky << W,

n

<SS, SW S W, (3.18)
Next we verify {v,} and {w,} are convergent in /. For convenience, let

V={v,:n=12-} and W={w, :n=12,--}. Note that

’uolfa,lcg (V): ’uolfa,log (V U{VO}) and ’uolfa,lcg (W) = 'Llol—a,log (W U{WO}) by Prop-

erty 1. Observing that for any 7,77, €[v,w] with 7, <n,,by (H3),

2 Ll A

s(1+%J(ﬁ2(a)—ﬁl(a))+—(ﬁz(b)—ﬁl(b))’

together with (3.16) and the normality of the cone 2, we can find

[n(a)wj[n(a)wm

(1 i a)- (o) 2 0)- )

hence, for any equicontinuous sequence {nn} c [V, W] , we arrive at by Lemma 1

y{{n ()M}J w1 Julln @) (0, )

<N %ﬂqam ({nn})’

thus, in view of Lemma 1, Lemma 2, Property 1, Property 2, condition (H4) and
(3.10), it follows that
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_NL1+N +N

L = Ao,y (V)+2§(FTS)('09 GD Hoy g (V)
Al .0
%fsoogen” O ol 5

N, + N, 2Kr
=N LﬁTjL oo ( ( J
4KKbL (a
' [ﬂol.a,.og (V) + ty 0y (W )} + m['og (gD Hey s V) (3.19)
L+N,+N, 4KAC(a)(  Kb)|
< {N L T ) [1+ o H max{y%m V), (W )}.
Similarly,

(oo )] " wtw)

[ o

Combining (H4), (3.19), (3.20) and Lemma 1 we have
He, oy (V) =t . (W)=0. Then Property 1 guarantees that {v,} and {w,}

(3.20)

are relatively compact sets of C,_, ,,(J,E), and thus there exist subsequences
converging to V',W' €C,_, (J,E). Furthermore, from monotonicity (3.18)
we easily obtain that {Vn} and {Wn} are convergent in C (J , E) , and the

limits V", w" satisfy

1-a,log

V=V, SV < Sy SV KW S S S S W, = W

Moreover, V' =T (v*,W*),W* =T (W*,v ) By the monotonicity of 7; it is easy
to deduce that v* and w" are the minimal and maximal coupled fixed points
of Tin [v,w]. Therefore, v and W' are the minimal and maximal coupled
L-quasisolutions of the problem (1.1) in [V,W] , respectively. We complete the
proof of this theorem.

If Eis weakly sequentially complete, Theorem 2.2 in [34] asserts that any mo-
notonic and order-bounded sequence in E'is precompact. In this situation, the
conditions (H3) and (H4) which ensure convergence of the monotonic and or-
der-bounded sequences {v,} and {w,} in Theorem 1 are superfluous. As a
result, we obtain the following corollary.

Corollary 1. Let E be an ordered and weakly sequentially complete Banach
space, whose positive cone P is normal. Assume that f :(a, b]x ExExE —SE
is continuous, (€ C(E>< E, E) , V,W are coupled lower and upper L-quasi-
solutions of BVP (1.1), respectively. The conditions (HO0), (H1) and (H2) are
valid. Then BVP (1.1) has coupled minimal and maximal Z-quasisolutions
VoW e [V, W] with V* <W". Moreover, there exist monotone iterative
sequences {V,},{w,} =C

1-atog (3, E) starting from vand w which converge to
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the coupled minimal and maximal Z-quasisolutions v’ and W" respectively.

Obviously, if the cone P is regular, then monotonic and order-bounded se-
quences {v,} and {w,} obtained in Theorem 1 are convergent. Consequently,
we have the following corollary from Theorem 1.

Corollary 2. Let £ be an ordered Banach space, whose positive cone P is reg-
ular. Assume that f :(a, b]x ExExE — E is continuous, ¢e C(Ex E, E) ,
V,W are coupled lower and upper L-quasisolutions of BVP (1.1), respectively.
The conditions (HO), (H1) and (H2) are valid. Then BVP (1.1) has coupled mi-
nimal and maximal Z-quasisolutions v",w" e[v, W] with V' <wW". Moreover,
there exist monotone iterative sequences {Vn},{wn} < Cyyiog (J, E) starting
from vand w which converge to the coupled minimal and maximal Z-quasiso-
lutions V' and W' respectively.

Now, we discuss the existence of solutions to the problem (1.1) in [v, W] .

Theorem 2. Let £ be an ordered Banach space, whose positive cone Pis nor-
mal. Assume that f :(a,b]x ExExE —»E is continuous, geC(ExEE),
V,W are coupled lower and upper L-quasisolutions of BVP (1.1), respectively.
The conditions (HO) - (H5) are valid. Then BVP (1.1) has a unique solution uz in
[v, W] , which can be obtained from monotone iterative sequences
{Vo} {W,} ©C\_, 10 (3, E) starting from vand w; respectively.

Proof. From the proof of Theorem 1, we know that the iterative sequences
{v,} and {w,} starting from vand ware convergent and satisfy (3.18). Next,
we verify that there exists a unique ue [V,W] such that u=T (u,u). For any
te(a,b], by (H3) and (H5), we obtain

f<w, (t)—vn (t) =T (Wn,anfl)(t)_T (vn—ll Wn—l)(t)

{HLM (W”l(a)_v"1(a))+%(wnAb)—m&@ﬂ@‘)g(i))m

+(M;+M, +M +2L)

'L:[Iog [%Dal = (—M [Iog &Da ](Wnl (s)-V, (5))‘15_5
+M,K I;(Iog @DI B (—M (Iog Gna][j:(wn_l(T)_vn_l(r))d,} % .

From the normality of the cone 2, it follows that

(oo )] 0w

<N L+N,+N
L

2 "Wn—l _Vn—1|

- J{Iog &Dl N(M,+M,+M +2L)
6 R (T
(ol 2] s [ ] - ()

{J:(uog =) dr]%nw“ .

Clg Jlog
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<N L+N +N, n Al“(06)(M1+M2 +M +2L)+MM3bK}

’ "Wn’l - Vn71| Cl—q log
Nl Bt |\|l_1+ N, . ?lgz(a))(Ml+M2 +M+2L+ M;Kbﬂ'"Wm_VnJol g

a a -« ,l0g

Therefore,

sl 20 S S ot e 2

-« l0g a a
’ ||Wn*1 - V”’1| Clalog

Again using the above inequality, we get
e = v

n

Cl-a log

Al" — n
£{N[L1+N1+N2+ (a)[M1+M2+M +2L+M23Kbﬂ} [w-v|
(04

Cl—a log ’

L I'(2a)
which implies |w, —v, ||c1_mg —0 as n—>oo . Then there exists Ue[v,w]
such that lim _ w, =lim v =u.Solet n—>w in W, =T(w,_,V, ), we
have u=T (u,u), which means that u is a unique solution of problem (1.1) in
[v,w]. This completes the proof of Theorem 2.

If Eis weakly sequentially complete, then the condition (H4) is unnecessary in
Theorem 2.

Corollary 3. Let E be an ordered and weakly sequentially complete Banach
space, whose positive cone P is normal. Assume that f :(a, b]>< ExExE —E
is continuous, g € C(E xE, E) , V,W are coupled lower and upper L-quasiso-
lutions of BVP (1.1), respectively. The conditions (HO) - (H3) and (H5) are valid.
Then BVP (1.1) has a unique solution u in [V,W] , which can be obtained from
monotone iterative sequences {V,},{W,} =C,_, ,, (J,E) starting from vand w;

respectively.

4. Example

Let E=I? ={x:x=(x1,x2,---,xn,---)|Z‘::l|xn|z <00} with the norm

1

2 2

b =( S
n=1

and P={xeE:x, >0,n=123-}. Then Eis a weakly sequentially complete
Banach space and Pis a normal cone in E. Consider the BVP of infinite system
in E

1 arctan(x,., (t)) ¢ 1
HT/fZXn(t):—ZE-'_an(t)-}_W
50n(log(t))2 S0ne
1 (tt (4.1)
o 1gxn(s)ds,te(l,e],

3, (1)—%7(” (1)%, (e)=0.
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Evidently, (4.1) can be regarded as a BVP of the form (1.1) in E. In this situa-
tion, X:(leXZI"'anr"')> y:(ylrygn"'ayn,"’), f=(fl7f2,---7fn’...) and
9=(0,,0,,9,, ) in which

it
(b y,en) =20 0) L L gy (s)ds,
17100 " 5one! .
50n(log(t))>2

where k(t,s)= 2, and

1
gn(X,y):Xn __Xnyn'
2
It is clear feC((l,e]xExExE,E) and f(t,x,y,z)eC1| ([1,e],E) for
og

any X,y,zeE, geC(ExE,E).Let

w=|1+(log(t)) 2 ; 1+(|Oi( )2 ',..,1+(|0§l(t))7E Jv(ooo)

then V,WeC%IOg ([L.e].E), v(t)<w(t),te(Le], 7(1)<W(l) and

9, (7(2).9(2)) =0, 3, (#(1) W(e)) = -~ =0,
Moreover, set L =0, one has
f (0 (). Gv(1) + L(v() (1) = 20
and

(10000 L)1)
L ,1- e 1+(Iog(t)) 1t [1+(Iog(s))7% s
100n(|og(t))1 100 n 50n 40n -1 S
< n e e +i+elog(t)+e(log(t))%
lOOn(Iog(t))% 100n 100n(|og(t))% S0n - 40n 20n
o1 2+m+95e_ 1 W2 (o).

1100 1 (1
n(loa(1): n(loa(t) 3
Hence, V,W are coupled lower and upper quasisolutions of BVP (4.1).
The condition (H1) is satisfied. In fact, let X" (X1 X : Xr({) o ) ,
yi z(yli,yzi’...’yr(:),...) and Z() (Z:E),Z(), ,ZIS), '), i:1,2 be such that

vax® <x@<w, vey® <y® <w and Gv<z <z® <Gw.Itis easy to get

f (6, y@,22) =, (19, 29)

1 (@ (1) 3 M (@ (1) — x®
>ﬁ( (t)—xt (t))z M(xn (t)=x¢ (t))
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forany M >0.
Furthermore, for V(1)< XY <x? < W(l), V(e)< yW < y® < W(e), we can
obtain

0, (X%, y®) g, (x¥,y®) < X2 -5,

Thus, (H2) is valid with L =1L, =0. Therefore, Corollary 1 ensures BVP
(4.1) has coupled minimal and maximal quasisolutions Vv*,w" e[v, W] with
vViSw.

5. Conclusion

This paper explores a nonlinear boundary value problem involving Hadamard
fractional derivatives and singularity in Banach spaces. Under suitable monoto-
nicity conditions and noncompactness measure conditions, the existence of ex-
tremal L quasisolutions and uniqueness of solutions between coupled lower and
upper L quasisolutions are derived from mixed monotone iterative technique
and coupled lower and upper L quasisolutions method. Similarly, applying lower
and upper solutions method and monotone iterative technique, we can investi-
gate the existence of extremal solutions and uniqueness of solutions between

lower and upper solutions to the problem (1.1) with the nonlinearity f (t,x,Gx).
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