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Abstract 
This paper deals with fractional integro-differential equations involving Ha-
damard fractional derivatives and nonlinear boundary conditions in an or-
dered Banach space. The nonlinearity is allowed to be singular with respect to 
time variable. Under some monotonicity conditions and noncompactness 
measure conditions, we use the method of coupled lower and upper L-qua- 
sisolutions associated with the mixed monotone iterative technique to inves-
tigate the existence of extremal L-quasisolutions. A unique solution between 
coupled lower and upper L-quasisolutions is also obtained. An example is 
given to illustrate our theoretical results. The results got in this paper are new 
and enrich the existing related work. 
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1. Introduction 

In this work, we consider the following boundary value problem (BVP for short) 
in a Banach space E  
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α

θ

+ = ∈ < < < ∞
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D
      (1.1) 

where 0 1α< < , H
a
α
+D  denotes left-sided Hadamard fractional derivative of 

How to cite this paper: Su, X.W., Zhang, 
S.Q. and Hui, Y. (2022) Mixed Monotone 
Iterative Technique for Singular Hadamard 
Fractional Integro-Differential Equations in 
Banach Spaces. Journal of Applied Mathe-
matics and Physics, 10, 3843-3863. 
https://doi.org/10.4236/jamp.2022.1012255 
 
Received: November 23, 2022 
Accepted: December 27, 2022 
Published: December 30, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.1012255
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.1012255
http://creativecommons.org/licenses/by/4.0/


X. W. Su et al. 
 

 

DOI: 10.4236/jamp.2022.1012255 3844 Journal of Applied Mathematics and Physics 
 

order α  with the low limit a. The nonlinear term ( ), , ,f t x y z  is an E-value 
continuous function on ( ],a b E E E× × ×  and may be singular at t a= . The 
operator G is given by ( ) ( ) ( ), d

t

a
Gx t k t s x s s= ∫  and ( ) ( ), ,k t s C D +∈  ,  

( ){ }, |D t s a s t b= ∈ × ≤ ≤ ≤  , [ )0,+ = ∞ . The function ( ),g C E E E∈ × .  
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1

lim log
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tx a x t
a

α

+

−

→

  =   
  

  and ( ) ( )
1

lim log
t b

tx b x t
a

α

−

−

→

  =   
  

 ,  

( ) ( )elog log⋅ = ⋅ . θ  denotes the zero element in E. Throughout the article, the 
integrals of the functions with values in E are taken in Bochner’s sense. 

Fractional calculus and fractional differential equations have been studied ex-
tensively during the last decades. An effective technique for discussing the exis-
tence of solutions for initial and boundary value problems of differential equa-
tions is the monotone iterative technique combined with the lower and upper 
solutions method. This method is widely used to investigate Riemann-Liouville 
and Caputo type fractional differential equations, see, for example, [1]-[11] and 
the references therein. In [12], the Hadamard fractional calculus was introduced. 
In the definition of Hadamard fractional derivative, the kernel of the integral con-
tains a logarithmic function of arbitrary exponent which is different from the 
fractional derivatives of Riemann-Liouville and Caputo type. Some recent con-
tributions to the existence of solutions for Hadamard fractional differential equ-
ations via various fixed point theorems can be found in [13]-[18]. For details as 
regards the application of the iterative method in Hadamard fractional differen-
tial equations, see [19] [20] [21] [22] and the references therein. 

In [20], Pei et al. discussed the existence of positive solutions for Hadamard 
fractional integro-differential equation  
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where ( )1,η ∈ ∞ , , , 0i ir β λ >  ( )1,2, ,i m=   are given constants and satisfy 

( ) ( )
( ) ( ) 1

1 log im

i
i

i α βλ α
α η

α β=

+ −Γ
Γ >

Γ +∑ . The authors not only established the existence  

of positive solutions but also sought the positive minimal and maximal solutions 
and got two explicit monotone iterative sequences which converge to the ex-
tremal solutions. 

In [22], by employing the monotone iterative method, the authors investi-
gated the iterative positive solutions of nonlocal Hadamard fractional boundary 
value problem with nonlocal Hadamard integral and discrete boundary condi-
tions  
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where 0β > , 1 2 21 mξ η η η −< < < < < < ∞ , a and b are real constants, and 

iα  is positive real constants. Some explicit monotone iterative sequences were 
established for approximating the extreme positive solutions and the unique 
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positive solution. 
It is worth pointing out that the iteration sequences in [19] [20] [21] [22] are 

constructed from the appropriate initial functions rather than from the lower 
and upper solutions. The literature on the monotone iterative technique and the 
method of lower and upper solutions for Hadamard fractional differential equa-
tions is scarce. In [23], using the method of lower and upper solutions and its 
associated monotone iterative technique, the author investigated the existence of 
extremal solutions of the following system of nonlinear Hadamard fractional 
differential equations with Cauchy initial value conditions  

( ) ( ) ( )( ) ( ) ( ]
( ) ( ) ( )( ) ( ) ( ]

1
0

1
0

, , , , , ,

, , , , , ,

H
a a

H
a a

x t f t x t y t x a x t a b

y t g t x t y t y a y t a b

α α

α α

+ +

+ +

− + ∗

− + ∗

 = = ∈


= = ∈

D J

D J
 

where 0 1α< ≤ , f and g are continuous on [ ],a b × ×  . 0 0,x y∗ ∗ ∈ , 0 0x y∗ ∗≤ . 
H

a
α
+D  and 

a
α
+J  are the left-sided Hadamard fractional derivative and integral 

of order α , respectively. 
To the best of our knowledge, the existence of solutions for fractional BVP 

(1.1) in ordered Banach spaces has not been considered up to now. In this work, 
combining the theory of noncompactness measure with mixed monotone itera-
tive technique and coupled lower and upper L-quasisolutions, we prove the ex-
istence of extremal L-quasisolutions of BVP (1.1). Also, we establish the uni-
queness result of solutions between coupled lower and upper L-quasisolutions. It 
is allowable in our main result that the nonlinear term ( ), , ,f t x x Gx  is non- 
decreasing with respect to one variable x and non-increasing with respect to 
another variable x. Moreover, due to the weighted boundary value condition in 
(1.1), we establish the explicit solution to the weighted Cauchy type problem of 
linear Hadamard fractional differential equations, which is different from Lem-
ma 2.1 in [23] and Theorem 4.5 in [24]. Consequently, the results got in this pa-
per will enrich the existing related work and also can serve as an interesting 
complement to the work in [23] [24]. 

2. Preliminaries 

In this section, we introduce some notations and preliminary facts which are 
used throughout this paper. Let [ ],J a b=  and E be an ordered Banach space 
with the norm ⋅  and the partial order “ ≤ ”, whose positive cone  

{ },P x E x θ= ∈ ≥  is normal with normal constant N. Let ( ),C J E  denotes 
the ordered Banach space of all continuous E-value functions on the interval J 
with the norm ( )maxt Jcx x t∈=  and the partial order “ ≤ ” deduced by the 
positive cone ( ) ( ){ }: , ,cP x x C J E x t θ= ∈ ≥ . cP  is also normal with the same 
normal constant N. Let  

( ) ( ]( ) ( ) ( ),log , : , , , log ,
r

r
tC J E x x C a b E x t C J E
a

    = ∈ ∈   
    

 f o r  0 1r< < .  

Evidently, ( ),log ,rC J E  also is an ordered Banach space with the norm  
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( )
,log

log
r

r

c

c

tx x t
a

  =   
  

 and the partial order “ ≤ ” deduced by the positive 

cone ( ) ( )
,log ,log: , , log

r

r

c r
tP x x C J E x t
a

θ
    = ∈ ≥   

    
. The normal constant of  

,logrcP  also is N. It is easy to verify that ( ) ( ),log , ,rC J E L J E⊂ , where ( ),L J E  
denotes the Banach space of all E-value Bochner integrable functions defined on 
J with the norm ( ) dL J

u u t t= ∫ . 
A function ( )1 ,log ,x C J Eα−∈  is called a solution of BVP (1.1) if it satisfies the 

equation and the boundary value condition in (1.1). 
Now let us recall some fundamental facts of the notion of Kuratowski non-

compactness measure. 
Definition 1. ([25]) Let E be a Banach space and let EΩ  be the family of 

bounded subsets of E. The Kuratowski measure of noncompactness is the map 
[ ]: 0,Eµ Ω → ∞  defined by  

( ) ( ){ }1
inf 0 : , , here .n

i i Ei
B B B diam B Bµ ε ε

=
= > ⊆ ≤ ∈Ω



 

Property 1. ([25]) The Kuratowski measure of noncompactness satisfies some 
useful properties.  

1) ( ) 0B Bµ = ⇔  is compact (B is relatively compact), where B  denotes 
the closure of B.  

2) ( ) ( ) ( ){ }max ,A B A Bµ µ µ∪ = .  
3) ( ) ( ) ( )A B A Bµ µ µ+ ≤ + .  
4) ( ) ( ) ,cB c B cµ µ= ∈ .  
Denote the Kuratowski noncompactness measures of bounded sets in  

( ),log ,rC J E  by 
,logrcµ . Similar to the proof of Lemma 2.1 in [26], we can obtain 

the following useful result. 
Lemma 1. Let ( ),log ,rH C J E⊂  be bounded and equicontinuous. Then  

( ) ( )
,log

max log ,
r

r

c t J

tH H t
a

µ µ
∈

     =           
 

where ( ) ( ){ }| ,H t x t x H t J= ∈ ∈ .  
The following lemma is necessary in the proof of our main results. 
Lemma 2. ([27] [28] [29]) Let E be a Banach space, { } ( ),nH x L J E= ⊂  be a 

countable set with ( ) ( )nx t tρ≤  for a.a. t J∈  and every nx H∈ , where 
( ) ( )t L Jρ ∈ . Then ( )( )H tµ  is Lebesgue integrable on J, and  

( ){ }( ) ( )( )d 2 dnJ J
x t t H t tµ µ≤∫ ∫ .  

Next, we review definitions and some useful properties of Hadamard fraction-
al integrals and derivatives which are used in the following sequels. 

Definition 2. ([12] [24] [30]) Let ( )( ), 0a b a b< < < ∞  be a finite or infinite 
interval of the half-axis +  and 0α > . The left-sided Hadamard fractional 
integral and fractional derivative of order α  are defined respectively by  
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( ) ( ) ( )
1

1 dlog
t

a a

t sx t x s
s s

α
α

α+

−
  =   Γ   

∫I  

and  

( ) ( ) ( )
1

1 d dlog ,
d

nn
tH

a a

t sx t t x s
n t s s

α
α

α+

− −
    =     Γ −     

∫D  

provided that the right-hand sides are pointwise defined on ( ),a b , where 
1n nα− < < .  

Property 2. ([24]) If , 0α β > , then  
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α α
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∑I D  for  

( ) ( ) ( ), ,H
a

x t C a b L a bα
+ ∈ ∩D , where , 1, 2, ,ic i n∈ =  .  

3. Main Results 

Definition 3. Let 0L ≥  and ( )1 ,log, ,v w C J Eα−∈ . We call ,v w  coupled 
lower and upper L-quasisolutions of BVP (1.1) if v and w satisfy  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ]
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D
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and  
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α

θ

+ ≥ + − ∈
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D
   (3.2) 

Remark 1. Only choose “=” in (3.1) and (3.2), we call v and w coupled L- 
quasisolutions of BVP (1.1). In particular, v and w are coupled quasisolutions of 
BVP (1.1) for 0L = . Furthermore, if :v w u= = , then u is a solution of BVP 
(1.1).  

In what follows, we assume that v and w are coupled lower and upper L- 
quasisolutions of BVP (1.1), respectively, and v w≤ . Define the ordered inter-
val in space ( )1 ,log ,C J Eα−   

[ ] ( ) ( ) ( ) ( ) ( ) ( ] ( ) ( ) ( ){ }1 ,log, , : , , , .v w x t C J E v t x t w t t a b v a x a w aα−= ∈ ≤ ≤ ∈ ≤ ≤    

Let λ ∈  be a constant and ( )1 ,log ,h C J Eα−∈ . Consider the weighted linear 
initial value problem in E  

( ) ( ) ( ) ( ]
( )

, , ,

.

H
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a

x t x t h t t a b

x a x

α λ+ − = ∈


= 

D
               (3.3) 
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Lemma 3. For any ( )1 ,log ,h C J Eα−∈ , ax E∈ , the unique solution of (3.3) in 
the space ( )1 ,log ,C J Eα−  has the following form 

( ) ( )

( )

1

,

1

,

log log

dlog log ,

a

t

a

t tx t x E
a a

t t sE h s
s s s
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α α

α α

α α
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−

−

        = Γ               
        +               

∫
        (3.4) 

where ( ),Eα α ⋅  is the Mittag-Leffler function defined by  

( ) ( ), 0

k

k

xE x
kα α α α

∞

=
=

Γ +∑ .  

Proof. According to Theorem 3.32 in [24], we assert that (3.3) has a unique 
solution in the space ( )1 ,log ,C J Eα− . Applying Theorem 4.5 and similar relations 
to Lemma 3.2 on Hadamard fractional integrals in [24], we can prove this lem-
ma. In what follows we use the method of successive approximations to solve 
(3.3). First of all, by Property 3, we derive that (3.3) is equivalent to the following 
integral equation  

( ) ( ) ( )
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1 1
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Now we set  
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∫
           (3.7) 

Using (3.6), (3.7) and taking Property 2 into account we arrive at  
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         (3.8) 

Similarly, using (3.6), (3.7), (3.8) and Property 2 we obtain  
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Continuing this process, we derive the following relation for ( )( )mx t m∈ :  

( ) ( ) ( ) ( ) ( )
1 11 11

1 1

dlog log .
k kk km mt

m a a
k k

t t sx t x h s
k a k s s

α α
λ λα
α α

− −− −+

= =

        = Γ +       Γ Γ       
∑ ∑∫  

Taking the limit as m →∞ , we obtain the explicit solution ( )x t  to the 
integral Equation (3.5):  

( ) ( ) ( ) ( ) ( )
1 11 1

1 1

dlog log ,
k kk kt

a a
k k

t t sx t x h s
k a k s s

α α
λ λα
α α

− −− −∞ ∞

= =

        = Γ +       Γ Γ       
∑ ∑∫  

replacing the index of summation k by 1k −  we have  

( ) ( ) ( )
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1
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=

  = Γ   Γ +   

    +    Γ +    

∑

∑∫
 

and thus, using the expression of the Mittag-Leffler function, we get the explicit 
solution (3.4) to the problem (3.3).  

Remark 2. ([31] [32] [33]) For , 0α β > , the well-known two-parameter 

Mittag-Leffler function ( ) ( ), 0

k

k

xE x
kα β α β

∞

=
=

Γ +∑ , x∈  is continuous on 

 . Moreover, Mittag-Leffler function has the following useful properties:  

1) For 0 1α< ≤ , ( ), 0E xα α > , x∈  and ( ) ( ),
1E xα α α

≤
Γ

, 0x ≤ .  

2) For 0 1α< ≤  and , 0λ λ∈ ≠ ,  

( ) ( ) ( )
1

,2 ,
1 , 0E t t E t tα α α

α α α αλ λ λ
α

− −  
= − ≠  Γ 

.  

3) For all 0t > , ( ),E tαα α λ  is decreasing in t for 0λ <  and increasing in t 
for 0λ > .  

4) For 0 1α< ≤ , , 0β γ >  and λ ∈ ,  

( ) ( ) ( )( )
( )( ) ( )( )

1 1
,

1
,

d

,

t

a
t s s a E s a s

t a E t a

γ β α
α β

β γ α
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λ

γ λ

− −

+ −
+

− − −
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∫
 

Equivalently,  

( ) ( ) ( )( )
( )( ) ( )( )

1 1
,

1
,

d

.

t

a
t s s a E t s s

t a E t a

β γ α
α β

β γ α
α β γ

λ

γ λ

− −

+ −
+

− − −

= Γ − −

∫
 

Remark 3. By Remark 2 and (3.4), if ax θ≥ , ( )h t θ≥ , the solution of (3.3) 
( )x t θ≥ . This comparison result will play a very important role in this paper.  
Further, for any [ ]1 2, ,v wη η ∈ , let  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
1 2 1 2 1 1 1 2, , , ,t f t t t G t M t L t tη ησ η η η η η η= + + −  and consider 

the weighted linear initial value problem  
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( ) ( ) ( ) ( ) ( ]
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D

             (3.9) 

Lemma 3 indicates that (3.9) has exactly one solution ( )x t  given by  

( ) ( )

( ) ( )

1

1 2

1

,

1

, ,

log log

dlog log .
t

a

t tx t r E M
a a

t t sE M s
s s s

α α

η α α

α α

α α η η

α

σ

−

−

        = Γ −              
        + −              

∫
    (3.10) 

For any [ ]1 2, ,v wη η ∈ , define the operator T as  

( )( ) ( )1 2, .T t x tη η =  

Then, obviously, the coupled fixed points of operator T are exactly the 
coupled L-quasisolutions of (1.1) and the fixed points of T are the solutions of 
(1.1). 

We work with the following conditions on the functions f and g in (1.1). 
(H0) ( ) ( )1 ,log, , , ,f t x y z C J Eα−∈  for any ( ), ,x y z E E E∈ × × . 
(H1) There exist constants 0, 0M L> ≥  such that  

( ) ( ) ( ) ( ) ( ]2 2 2 1 1 1 2 1 1 2, , , , , , , , ,f t x y z f t x y z M x x L y y t a b− ≥ − − − − ∈  

where 1 2v x x w≤ ≤ ≤ , 2 1v y y w≤ ≤ ≤  and 1 2Gv z z Gw≤ ≤ ≤ .  
(H2)There exist constants 1 20, 0L L> ≥  such that  

( ) ( ) ( ) ( )2 2 1 1 1 2 1 2 2 1, , ,g x y g x y L x x L y y− ≤ − − −  

where ( ) ( )1 2v a x x w a≤ ≤ ≤  , ( ) ( )1 2v b y y w b≤ ≤ ≤   .  
(H3)There exist constants 1 1 2 2, 0N L N L≥ − ≥ ≥  such that  

( ) ( ) ( ) ( )2 2 1 1 1 2 1 2 2 1, , ,g x y g x y N x x N y y− ≥ − − − −  

where ( ) ( )1 2v a x x w a≤ ≤ ≤  , ( ) ( )1 2v b y y w b≤ ≤ ≤  .  
(H4)There exists a constant 0K ≥  such that  

( ) ( ) ( ) ( )( ){ }( )
( ){ }( ) ( ){ }( ) ( ){ }( )( ) ( ]

, , ,

, , ,

n n n n n n

n n n

f t x y Gx Mx t L x t y t

K x t y t Gx t t a b

µ

µ µ µ

+ + −

≤ + + ∈
 

for any mixed monotone sequence ( ){ } [ ] [ ], , ,n nx y v w v w⊂ × . Moreover,  

( )
( )

1 1 2

1

4
1 1,

2 2
KAL N N KbN

L
α

α α
Γ  + +

+ + < Γ  
 

where ( ) ( ){ },max ,t s DK k t s∈= , 
1

max log , logb bA
a a

α α +     =     
     

.  

(H5)There exist constants 1 2 3, , 0M M M ≥  such that for ( ],t a b∈ ,  

( ) ( ) ( ) ( ) ( )2 2 2 1 1 1 1 2 1 2 1 2 3 2 1, , , , , , ,f t x y z f t x y z M x x M y y M z z− ≤ − + − + −  

where 1 2v x x w≤ ≤ ≤ , 2 1v y y w≤ ≤ ≤  and 1 2Gv z z Gw≤ ≤ ≤ . Moreover,  
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( )
( )

31 1 2
1 2

1

2 1.
2 2

A M KbL N NN M M M L
L

α
α α

 Γ  + +
+ + + + + <  Γ   

 

Now we are in the position to state our main results. 
Theorem 1. Let E be an ordered Banach space, whose positive cone P is nor-

mal. Assume that ( ]: ,f a b E E E E× × × →  is continuous, ( ),g C E E E∈ × , 
,v w  are coupled lower and upper L-quasisolutions of BVP (1.1), respectively. 

The conditions (H0) - (H4) are valid. Then BVP (1.1) has coupled minimal and 
maximal L-quasisolutions [ ], ,v w v w∗ ∗ ∈  with v w∗ ∗≤ . Moreover, there exist 
monotone iterative sequences { } { } ( )1 ,log, ,n nv w C J Eα−⊂  starting from v and w 
which converge to the coupled minimal and maximal L-quasisolutions v∗  and 
w∗  respectively.  

Proof. For clarity, we divide the proof into the following several steps. 
Step 1: First of all, we need to show that the operator  
[ ] [ ] ( )1 ,log: , , ,T v w v w C J Eα−× →  is well defined. Indeed, for any [ ]1 2, ,v wη η ∈ , 

by the condition (H1), we have for ( ],t a b∈   

( ) ( ) ( ) ( ) ( ) ( )
1 2,, , , , , , .f t v w Gv Mv L v w t f t w v Gw Mw L w vη ησ+ + − ≤ ≤ + + −  

By the normality of cone P and (H0), there exists 0L >  such that  

( ) ( )1 2
1 ,log

, c
t L

α
η ησ

−

≤ , that is,  

( ) ( )1 2

1

,log , .t t L t J
a

α

η ησ
−

   ≤ ∈  
  

              (3.11) 

Combining (3.10), (3.11), Property 2 and Remark 2, for any t J∈  we have  

( )( )

( )
( ) ( )
( )

( )
( )

1

1

1

1

1 2

1 1 1

1 2 1

log ,

dlog log log
( )

= log log
2

= log ,
2

t

a

t T t
a

L t t s sr
a s a s

L t tr
a a

tr L
a

α

α α α

η

α α

η

α

η

η η

α

α α
α α

α
α

−

− − −

− −

  
  

  

          ≤ +           Γ           

Γ Γ      +       Γ Γ      

Γ   +   Γ   

∫
 

this implies that the integral in (3.10) exists and belongs to ( )1 ,log ,C J Eα− . 
Step 2: We show that the operator T is equicontinuous. Let [ ]1 2, ,v wη η ∈  

and [ ]1 2, ,t t a b∈  with 1 2t t< . Evidently,  

( )( ) ( )( )
1 1

2 1
1 2 2 1 2 1log , log , 0

t tT t T t
a a

α α

η η η η
− −

   − →   
   

 

if 1t a=  and 1 2 0t t− → . In the following we set 1t a> . In view of the condi-
tion (H2), for any [ ],v wη ∈ , one has  
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( )
( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

( )
( ) ( )( )

2

1 1 1

1

, ,

,

g a b g w a w b La w a w b b
L L L

g w a w b
w a

L

η η
η η− ≤ − − −

≤ −

   

  

 



 

and  

( )
( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

( )
( ) ( )( )

2

1 1 1

1

, ,

,
.

g a b g v a v b La v a b v b
L L L

g v a v b
v a

L

η η
η η− ≥ − + −

≥ −

   

  

 



 

By the normality of the cone P, there exists a constant 0M >  such that  

( )
( ) ( )( )

1

,
.

g a b
r a M

Lη

η η
η= − ≤

 

  

Thus we get  

( )( ) ( )( )

( )

1

1 1
2 1

1 2 2 1 2 1

2 1
, ,

11
2 2 2

,

1
1

log , log ,

log log

log log log

log

t

a

t tT t T t
a a

t tM E M E M
a a

t t tE M
a s s

t
a

α α

α α

α α α α

α αα

α α

α

η η η η

α

− −

−−

−

   −   
   

      ≤ Γ − − −               

            + −                  

 −  
 

∫

( ) ( )

( ) ( )

1 2

2

1 21

1
1 1

, ,

11
2 2 2

, ,

1 2 3

dlog log

dlog log log

: .

t

t

t t sE M s
s s s

t t t sE M s
a s s s

I I I

α α

α α η η

α αα

α α η η

σ

σ

−

−−

        −              

          + −                  
= + +

∫

 (3.12) 

Note that , log tE M
a

α

α α

    −       
 is continuous. The expression 1I  has lim-

it zero as 2 1 0t t− → . Next we estimate the integral 3I . By (3.11) and Remark 2, 
we obtain  

( )

( )

( ) ( )

2

1

2

1

1 11
2 2

3

11 1
2 1 2

1 1
2 1

2 1

dlog log log

dlog log log

log log log log .
1

t

t

t

t

t tL s sI
a s a s

t t tL s
a a s s

t tL t t
a a

α αα

αα α

α α
α

α

α

α

− −−

−− −

− −

        ≤        Γ        

      ≤       Γ       

   = −   Γ +    

∫

∫       (3.13) 

Hence, the expression 3I  has limit zero as 2 1 0t t− → . Observing Remark 2 

and nonincreasing property of the function ( )
1 1

log logt tl t
a s

α α− −
      =       
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for a s t b≤ < ≤ , for the rest term 2I , we can deduce 

( ) ( )

1

1 2

1

11
1 1 1

2 ,

11
2 2 2

, ,

1
1 1

log log log

dlog log log

log log

t

a

t

a

t t tI E M
a s s

t t t sE M s
a s s s

t tL
a s

α αα

α α

α αα

α α η η

α

σ

−−

−−

−

            ≤ −                  
           − −                  

   ≤    
   

∫

∫

2

2

1

1 1
1

,

1 11
2 2 2

,

1
2 2

dlog log

dlog log log log

log log

t

a

t

t

ts sE M
a s s

t t ts sL E M
a s a s s

t tL
a s

α αα

α α

α ααα

α α

α

− −

− −−

−

         −              
             − −                      

    +     
    

∫

∫
1 1

2
,

21 22 23

dlog log

: .

ts sE M
a s s

I I I

α αα

α α

− −         −              
= + +

 

(3.14) 

The relation (3.13) ensures that 23I  has limit zero as 2 1 0t t− → . Using (2) 
and (4) in Remark 2 and by simple calculations, we know that  

( )

( )
( )

1 1

,

2 1

,2

1

,

dlog log log

log log

1log log

t

a

t s t sE M
s a s s

t tE M
a a

t tE M
M a a

α α α

α α

α α

α α

α α

α α

α

α
α

− −

−

−

            −                      
        = Γ −              

  −Γ         = − −        Γ       

∫

,




 

so we have  

( )
( )

( )
( )

( )

1
21 22 ,

2
,

1 2
, ,

1log

1log

log log .

L tI I E M
M a

L tE M
M a

L t tE M E M
M a a

α

α α

α

α α

α α

α α α α

α
α

α
α

α

  −Γ  + = − −     Γ    
  −Γ  − − −     Γ    
    −Γ    = − − −                  

 (3.15) 

Consequently, the relations (3.12), (3.13), (3.14) and (3.15) guarantee that the 
operator T is equicontinuous. 

Step 3: In this part we show that [ ] [ ] [ ]: , , ,T v w v w v w× →  is a continuous 
mixed monotone operator. 

Firstly, from (3.10), (3.11), the continuity of f and g together with the Lebes-
gue dominated convergence theorem, it is easy to know T is continuous. 

Secondly, we prove T is a mixed monotone operator, that is,  
( ) ( )1 2 1 2, ,T Tη η ξ ξ≤  for [ ]1 2 1 2, , , ,v wη η ξ ξ ∈  with 1 1 2 2,η ξ ξ η≤ ≤ . Since by 
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(H2)  

( )
( ) ( )( )

( )
( ) ( )( )

( ) ( )( )

1 1 1 1
1 1

1 1

2
1 1

1

, ,

,

g a b g a b
a a

L L

L b b
L

ξ ξ η η
ξ η

ξ η θ

   
 − − −      

≥ − ≥

 

 









 

we have  

1 1
.r rη ξ≤                          (3.16) 

Moreover, by (H1) we obtain  

( ) ( ) ( ) ( )
( )

1 2 1 1 1 2 1 2 1 1 1 2

1 1

, , , , , ,

,

f t G M L f t G M L

L

ξ ξ ξ ξ ξ ξ η η η η η η

ξ η θ

+ + − − + + −      
≥ − ≥

 

that is,  

( ) ( ) ( ) ( )1 2 1 2, , .t tη η ξ ξσ σ≤                    (3.17) 

As a result, (3.10), (3.16) and (3.17) ensure ( ) ( )1 2 1 2, ,T Tη η ξ ξ≤ . 
Finally, we prove ( ) [ ]1 2, ,T v wη η ∈  for any [ ]1 2, ,v wη η ∈ . Since T is a mixed 

monotone operator, ( ) ( ) ( )1 2, , ,T v w T T w vη η≤ ≤  for any [ ]1 2, ,v wη η ∈ , it is 
sufficient to prove ( ),v T v w≤  and ( ),T w v w≤ . Let ( ) ( ) ( )H

a
p t v t Mv tα

+= +D , 
then by (3.1)  

( ) ( ) ( ) ( ) ( ),, , , ,v wp t f t v w Gv Mv L v w tσ≤ + + − =  

and by Lemma 3,  

( ) ( ) ( )

( )

1

,

1

,

log log

dlog log .
t

a

t tv t v a E M
a a

t t sE M p s
s s s

α α

α α

α α

α α

α
−

−

        = Γ −              
        + −              

∫



 

Thus, for any t J∈ , one gets  

( )

( )
( ) ( )( ) ( )

( ) ( )

( )( )

1

,
1

1 1

, ,

1

log

,
log

dlog log log

log , ,

t

v wa

t v t
a

g v a v b tv a E M
L a

t t t sE M s
a s s s

t T v w t
a

α

α

α α

α α α

α α

α

α

σ

−

− −

−

  
  

  
      ≤ − Γ −            
            + −                      

  =   
  

∫

 



 

that is ( ),v T v w≤ . Similarly, we can derive ( ),T w v w≤ . 
Step 4: Now, we can define two sequences { }nv  and { }nw  in [ ],v w  by the 

iterative scheme ( )1 1,n n nv T v w− −=  and ( )1 1,n n nw T w v− −= , where 0v v=  and 

0w w= . Then from the mixed monotonicity of T, it follows that  
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0 1 2 2 1 0 .n nv v v v w w w w≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤            (3.18) 

Next we verify { }nv  and { }nw  are convergent in J. For convenience, let 
{ }: 1, 2,nV v n= =   and { }: 1, 2,nW w n= =  . Note that  

( ) { }( )1 ,log 1 ,log 0c cV V v
α α

µ µ
− −

= ∪  and ( ) { }( )1 ,log 1 ,log 0c cW W w
α α

µ µ
− −

= ∪  by Prop-
erty 1. Observing that for any [ ]1 2, ,v wη η ∈  with 1 2η η≤ , by (H3),  

( )
( ) ( )( ) ( )

( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 2 1 1
2 1

1 1

1 2
2 1 2 1

1 1

, ,

1 ,

g a b g a b
a a

L L

N Na a b b
L L

η η η η
η η

η η η η

   
− − −      

   
 

≤ + − + − 
 

   

 

   

 

together with (3.16) and the normality of the cone P, we can find  

( )
( ) ( )( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

2 2 1 1
2 1

1 1

1 2
2 1 2 1

1 1

, ,

1 ,

g a b g a b
a a

L L

N NN a a N b b
L L

η η η η
η η

η η η η

   
− − −      

   

 
≤ + − + − 

 

   

 

   

 

hence, for any equicontinuous sequence { } [ ],n v wη ⊂ , we arrive at by Lemma 1  

( )
( ) ( )( ) ( ){ }( ) ( ){ }( )

{ }( )1 ,log

1 2

1 1 1

1 1 2

1

,
1

,

n n
n n n

c n

g a b N Na N a N b
L L L

L N NN
L α

η η
µ η µ η µ η

µ η
−

      − ≤ + +         
+ +

≤

 

  

 

thus, in view of Lemma 1, Lemma 2, Property 1, Property 2, condition (H4) and 
(3.10), it follows that  

( )( )

( )
( ) ( )( )

( ){ }( ) ( ){ }( ) ( ){ }( )

1

1 1
1

1

1 1

,

1 1 1

log

,

2 log log log

d

n n
n

t

a

n n n

t V t
a

g v a v b
v a

L

t t tK E M
a s s

sv s w s Gv s
s

α

α α α

α α

µ

µ

µ µ µ

−

− −
−

− −

− − −

  
  

  
    ≤ −     

            + −                      

 ⋅ + + 

∫

 



 

{ }( )

( ) ( )

( ) ( )

( )

1 ,log

1 ,log

1 ,log

1 1 2
1

1
1 1 1

1 1 1

2 dlog log log

2 dlog log log

4 log

c n

t
ca

t
ca

L N NN v
L

K t t s s V
a s a s

K t t s s W
a s a s

KK t
a

α

α

α

α α α

α α α

µ

µ
α

µ
α

α

−

−

−

−

− − −

− − −

+ +
≤

          + ⋅          Γ           

          + ⋅          Γ           

+
Γ

∫

∫

( )
1 ,log

1 1 1
dlog log d

t s
ca a

t s V
s a s α

α α α
τ τ µ

−

− − −            ⋅           
            

∫ ∫
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( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

1 ,log 1 ,log

1 ,log

1 ,log

1 1 2

1

1 1 1

2
log

2

2
log

2

4 d dlog log log

c c

c

t s
ca a

KL N N tN V V
L a

K t W
a

KKb t t s V
a s a s

α α

α

α

α

α

α α α

α
µ µ

α

α
µ

α

τ τ µ
α τ

− −

−

−

− − −

Γ+ +   ≤ +   Γ   

Γ   +   Γ   

           + ⋅           Γ             
∫ ∫

 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( ){ }

1 ,log

1 ,log 1 ,log 1 ,log

1 ,log 1 ,log

1 1 2

1

1

1 1 2

1

2
log

2

4
log

2 1

4
1 max , .

2 2

c

c c c

c c

KL N N tN V
L a

KKb tV W V
a

KAL N N KbN V W
L

α

α α α

α α

α

α

α
µ

α

α
µ µ µ

α

α
µ µ

α α

−

− − −

− −

+

Γ+ +   = +   Γ   

Γ    ⋅ + +     Γ +   

 Γ  + +
≤ + + ⋅  Γ   

  (3.19) 

Similarly,  

( )( )

( )
( ) ( ) ( ){ }1 ,log 1 ,log

1

1 1 2

1

log

4
1 max , .

2 2 c c

t W t
a

KAL N N KbN V W
L α α

α

µ

α
µ µ

α α − −

−
  
  

  
 Γ  + +

≤ + + ⋅  Γ   

 (3.20) 

Combining (H4), (3.19), (3.20) and Lemma 1 we have  
( ) ( )

1 ,log 1 ,log
0c cV W

α α
µ µ

− −
= = . Then Property 1 guarantees that { }nv  and { }nw  

are relatively compact sets of ( )1 ,log ,C J Eα− , and thus there exist subsequences 
converging to ( )1 ,log, ,v w C J Eα

∗ ∗
−∈ . Furthermore, from monotonicity (3.18) 

we easily obtain that { }nv  and { }nw  are convergent in ( )1 ,log ,C J Eα− , and the 
limits ,v w∗ ∗  satisfy  

0 1 1 0 .n nv v v v v w w w w w∗ ∗= ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ =   

Moreover, ( ) ( ), , ,v T v w w T w v∗ ∗ ∗ ∗ ∗ ∗= = . By the monotonicity of T, it is easy 
to deduce that v∗  and w∗  are the minimal and maximal coupled fixed points 
of T in [ ],v w . Therefore, v∗  and w∗  are the minimal and maximal coupled 
L-quasisolutions of the problem (1.1) in [ ],v w , respectively. We complete the 
proof of this theorem.  

If E is weakly sequentially complete, Theorem 2.2 in [34] asserts that any mo-
notonic and order-bounded sequence in E is precompact. In this situation, the 
conditions (H3) and (H4) which ensure convergence of the monotonic and or-
der-bounded sequences { }nv  and { }nw  in Theorem 1 are superfluous. As a 
result, we obtain the following corollary. 

Corollary 1. Let E be an ordered and weakly sequentially complete Banach 
space, whose positive cone P is normal. Assume that ( ]: ,f a b E E E E× × × →  
is continuous, ( ),g C E E E∈ × , ,v w  are coupled lower and upper L-quasi- 
solutions of BVP (1.1), respectively. The conditions (H0), (H1) and (H2) are 
valid. Then BVP (1.1) has coupled minimal and maximal L-quasisolutions 

[ ], ,v w v w∗ ∗ ∈  with v w∗ ∗≤ . Moreover, there exist monotone iterative  
sequences { } { } ( )1 ,log, ,n nv w C J Eα−⊂  starting from v and w which converge to 
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the coupled minimal and maximal L-quasisolutions v∗  and w∗  respectively.  
Obviously, if the cone P is regular, then monotonic and order-bounded se-

quences { }nv  and { }nw  obtained in Theorem 1 are convergent. Consequently, 
we have the following corollary from Theorem 1. 

Corollary 2. Let E be an ordered Banach space, whose positive cone P is reg-
ular. Assume that ( ]: ,f a b E E E E× × × →  is continuous, ( ),g C E E E∈ × , 

,v w  are coupled lower and upper L-quasisolutions of BVP (1.1), respectively. 
The conditions (H0), (H1) and (H2) are valid. Then BVP (1.1) has coupled mi-
nimal and maximal L-quasisolutions [ ], ,v w v w∗ ∗ ∈  with v w∗ ∗≤ . Moreover, 
there exist monotone iterative sequences { } { } ( )1 ,log, ,n nv w C J Eα−⊂  starting 
from v and w which converge to the coupled minimal and maximal L-quasiso- 
lutions v∗  and w∗  respectively.  

Now, we discuss the existence of solutions to the problem (1.1) in [ ],v w . 
Theorem 2. Let E be an ordered Banach space, whose positive cone P is nor-

mal. Assume that ( ]: ,f a b E E E E× × × →  is continuous, ( ),g C E E E∈ × , 
,v w  are coupled lower and upper L-quasisolutions of BVP (1.1), respectively. 

The conditions (H0) - (H5) are valid. Then BVP (1.1) has a unique solution u in 
[ ],v w , which can be obtained from monotone iterative sequences  
{ } { } ( )1 ,log, ,n nv w C J Eα−⊂  starting from v and w, respectively.  

Proof. From the proof of Theorem 1, we know that the iterative sequences 
{ }nv  and { }nw  starting from v and w are convergent and satisfy (3.18). Next, 
we verify that there exists a unique [ ],u v w∈  such that ( ),u T u u= . For any 

( ],t a b∈ , by (H3) and (H5), we obtain  
( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( )

1 1 1 1
1

1 1 2
1 1 1 1

1 1

1 2
1

, 1 1

3

, ,

log

2

dlog log

log

n n n n n n

n n n n

t
n na

t

a

w t v t T w v t T v w t

L N N tw a v a w b v b
L L a

M M M L

t t sE M w s v s
s s s

tM K
s

α

α α

α α

θ − − − −
−

− − − −

−

− −

≤ − = −

 +   ≤ − + −    
   

+ + + +
        ⋅ − −              

  +   
 

∫

∫

   

( ) ( )( )
1

, 1 1
dlog d .

s
n na

t sE M w v
s s

α α
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Again using the above inequality, we get  
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which implies 
1 ,log

0n n Cw v
α−

− →  as n →∞ . Then there exists [ ],u v w∈  
such that lim limn n n nw v u→∞ →∞= = . So let n →∞  in ( )1 1,n n nw T w v− −= , we 
have ( ),u T u u= , which means that u is a unique solution of problem (1.1) in 
[ ],v w . This completes the proof of Theorem 2.  

If E is weakly sequentially complete, then the condition (H4) is unnecessary in 
Theorem 2. 

Corollary 3. Let E be an ordered and weakly sequentially complete Banach 
space, whose positive cone P is normal. Assume that ( ]: ,f a b E E E E× × × →  
is continuous, ( ),g C E E E∈ × , ,v w  are coupled lower and upper L-quasiso- 
lutions of BVP (1.1), respectively. The conditions (H0) - (H3) and (H5) are valid. 
Then BVP (1.1) has a unique solution u in [ ],v w , which can be obtained from 
monotone iterative sequences { } { } ( )1 ,log, ,n nv w C J Eα−⊂  starting from v and w, 
respectively.  

4. Example 
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and { }: 0, 1, 2,3,nP x E x n= ∈ ≥ =  . Then E is a weakly sequentially complete 
Banach space and P is a normal cone in E. Consider the BVP of infinite system 
in E  
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Evidently, (4.1) can be regarded as a BVP of the form (1.1) in E. In this situa-
tion, ( )1 2, , , ,nx x x x=   , ( )1 2, , , ,ny y y y=   , ( )1 2, , , ,nf f f f=    and 

( )1 2, , , ,ng g g g=   , in which  
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Moreover, set 0L = , one has  
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Hence, ,v w  are coupled lower and upper quasisolutions of BVP (4.1). 

The condition (H1) is satisfied. In fact, let ( ) ( ) ( ) ( )( )1 2, , , ,i i i i
nx x x x=   ,  

( ) ( ) ( ) ( )( )1 2, , , ,i i i i
ny y y y=    and ( ) ( ) ( ) ( )( )1 2, , , ,i i i i

nz z z z=   , 1,2i =  be such that 

( ) ( )1 2v x x w≤ ≤ ≤ , ( ) ( )2 1v y y w≤ ≤ ≤  and ( ) ( )1 2Gv z z Gw≤ ≤ ≤ . It is easy to get 
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for any 0M > . 
Furthermore, for ( ) ( ) ( ) ( )1 21 1v x x w≤ ≤ ≤  , ( ) ( ) ( ) ( )1 2e ev y y w≤ ≤ ≤  , we can 

obtain  
( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 1 1 2 1, , .n n n ng x y g x y x x− ≤ −  

Thus, (H2) is valid with 1 21, 0L L= = . Therefore, Corollary 1 ensures BVP 
(4.1) has coupled minimal and maximal quasisolutions [ ], ,v w v w∗ ∗ ∈  with 
v w∗ ∗≤ . 

5. Conclusion 

This paper explores a nonlinear boundary value problem involving Hadamard 
fractional derivatives and singularity in Banach spaces. Under suitable monoto-
nicity conditions and noncompactness measure conditions, the existence of ex-
tremal L quasisolutions and uniqueness of solutions between coupled lower and 
upper L quasisolutions are derived from mixed monotone iterative technique 
and coupled lower and upper L quasisolutions method. Similarly, applying lower 
and upper solutions method and monotone iterative technique, we can investi-
gate the existence of extremal solutions and uniqueness of solutions between 
lower and upper solutions to the problem (1.1) with the nonlinearity ( ), ,f t x Gx .  
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