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Abstract 

A predator-prey diffusion system with a Bazykin functional response is stu-
died. The existence of equilibrium points, the stability of normal number 
equilibrium points and the existence of Hopf bifurcationes are investigated 
for the proposed system, the existence of positive solutions in the system is 
discussed under Neumann boundary conditions, and the stability of constant 
equilibrium points is focused on under the condition of Hurwitz criterion. 
The results show that there exist positive equilibrium points in the system 
under Neumann boundary conditions, and the normal number equilibrium 
points are stable when specific conditions are satisfied, and the bifurcation 
points of Hopf bifurcationes and their orders are given.  
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1. Introduction 

In nature, there is an interdependent and mutually constraining way of survival 
between different populations: population A thrives on abundant natural re-
sources, while population B feeds on population A, such as fish and sharks, 
American rabbits and bobcats, larch and aphids, etc. In ecology, population A is 
called predator and population B is called predator, and together they form a 
predator-prey system. The predator-prey system has a long and distinguished 
history in applied mathematics as a classical mathematical system for the study 
of predator-prey systems, which is originated from the exploration of chemical 
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reactions [1] and biological interactions [2] and has been widely studied for its 
rich kinetic behavior [3] [4] [5] [6]. 

At present, Holling-type and Beddington-type functional response functions 
have been widely used in the study of predator-prey systems, but Bazykin func-
tional response functions have been less studied. Bazykin functional response 
can describe the unstable force of predator saturation and the stable force of prey 
competition, which is more practical for understanding the role between popu-
lations. Moreover, in the real world, prey and predators are always in motion, 
and to accurately system the dynamic characteristics of prey and predators, the 
spatial spread of populations needs to be considered in the system [7] [8] [9]. 
Therefore, a predator-prey diffusive system with Bazykin functional response 
was constructed in this paper. 

2. System Composition  

We considered a predator-prey diffusion system with a Bazykin functional re-
sponse, as shown in Equation (2.1).  

( )( )
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                  (2.1) 

In the real world, prey and predators are always in motion, and this pheno-
menon can be simulated using self-diffusion. Assume that the two populations 
under consideration remain in motion and each population follows a path, the 
length of which is denoted by x. Considering the above assumptions, the system 
(2.1) can be written in the following form 
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π− = − ∈ >




  

     



  

    

       (2.2) 

where x is the location of the prey or the predator at the time t, and lπ  is the 
domain size, ( )u t  is the number of prey populations at time t, ( )v t  is the 
number of predator populations at time t, 1 2,d d  is the diffusion rate of prey 
and predators, respectively, , , ,a b c d 

   is a positive parameter,  
( ) ( )( ), 1 1 1f u v u vα β= + +   is a Bazykin functional response function, ,α β  is 

two positive constants, and α β>  , it is used to describe the destabilizing force 
of predator saturation and the stabilizing force of prey contention. 

In order to study the pattern formation of (2.2), we consider the system (2.3) 
with the homogeneous Neumann boundary conditions. 

Where 1u u=  , v dv c=   , a a=  , b bc d=  

 , cλ =  , 1 1d d=  , 2 2d d=  ,  
α α=  , c dβ β= 

 , ( ) ( )( ), 1 1 1f u v u vα β= + + . 
The problem (2.3) with homogeneous Neumann boundary conditions and 

non-negative initial values is shown below: 
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where x denotes the location of the predator or prey at time t, lπ  denotes the 
extent of the region, and the Neumann boundary condition indicates that the 
prey and predator move between 0 and lπ . All of the above parameters are 
non-negative. 

3. Preliminary Results 

In this section, the local stability of the positive equilibrium 3E  has been stu-
died in the presence of diffusion and also Hopf bifurcation has been analyzed 
(calculating the Hopf bifurcation points and their order). 

3.1. Existence of Equilibrium Points 

The equilibrium point of system (2.3) is obtained by solving for d d 0u t = , 
d d 0v t = . Assuming that , , ,a b α β  satisfies ( )0 1a bαβ β< − < − , we obtain 
that system (2.3) has one ordinary constant equilibrium point ( )0 0,0E , two 
semi-ordinary constant equilibrium points ( ) ( )( )1 2,0 , 0,1 1E a E β− , and a unique 
normal number equilibrium point ( )* *

3 ,E u v . * *,u v  can be solved from the 
system of Equations (3.1) to yield: 

( )( )
( )( )

* * * * *

* * * *

, 0

1 , 0

u a u bv f u v

v v f u vλ

 − − =


− =

                 (3.1) 

From the system of Equations (3.1), it is obtained that:  

u a b∗ = − , 
( )
( )

* 1
1 1

a b
v

a b
α

β α
+ −

=
− + −  

              (3.2) 

3.2. Stability of the Equilibrium Point E* 

The Jacobi matrix of the system (2.3) at the positive equilibrium point ( )* *,u v  
is:  

A B
J

C D
 

=  
 

                       (3.3) 
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Consider the following problem:  

( )
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k x l
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φ φ
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π

π
                      (3.8) 

the eigenvalue of the problem (3.3) are ( )2 , 0,1, 2,nk n l n= =   and the cor-
responding eigenfunction are 

( )

1 , 0

2 , 1,2,3,
n

n
lx

n
l

φ


=

= 
 =

π

 π


                  (3.9) 

( ){ }1n xφ
∞

 describes the orthogonal basis of ( )2 0,L lπ . 
( )1 2diag ,D d d=  and its corresponding real-valued Sobolev space with Neu-

mann boundary conditions can be defined as 

( ){ }T 2,2, | 0 0,x xU u v W u v x lχ = = ∈ = = = π          (3.10) 

( ) ( )2 20, 0,L l L lπΩ = × π  is the Hibert space whose inner product is 

( )1 2 1 2 1 20
, d

l
U U u u v v x

π
= +∫                 (3.11) 

The Hilbertian parametrization of the associated χ  is denoted as 
2.2⋅ . De-

fine the following mapping ( ),: 0F χ∞ × →Ω  

( )
( )( )

( )( )
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2

,
,

1 ,
xx
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F U

d v v vf u v
λ

λ

 + − −
 =
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           (3.12) 

where ( )T,U u v= . Then for any ( )T,u v χ∈ , ( )T,U u v=  is the solution of 
(2.3) ( ), 0F Uλ⇔ = . 

The Frechet derivative of ( ),F Uλ  with respect to U is:  

( ) ( ) ( )
( )( )

( )

* *
1 2

22

1

2

2

diag , ,

1 1
2

1
1

L d d J u v
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c l c

nc d
c l

λ

β
α

λα λ β
β

= ∆ ∆ +

 − −  − − − − 
  =  

  − − −   −   

     (3.13) 

The characteristic equation of ( )L λ  is ( )( ) ( ), ,L u v u vλ η= , and η  is the 
eigenvalue, we derive:  
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( ) ( )

22

1

2
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1 1
2 0,

1 0,
1

0 0,x x
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β

    − −  − − − − = ∈           
     − − + = ∈    −      
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 π=

π
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Letting 
0 0

,n n n n
n n

u a v bφ φ
∞ ∞

= =

= =∑ ∑ , the characteristic equation becomes of the 

following form. 

( ) ( )( )*
1 2

0
diag , 0n

n n n
n n

a
d k d k J E

b
φ

∞

=

 
− − + = 

 
∑           (3.15) 

Letting ( ) ( )*
1 2diag , 0, 0,1,2,n nd k d k E n− − + = =J  , we obtain 

( ) ( )2 0n nT Dη λ η λ− + =                  (3.16) 

( ) ( ) ( )
2

1 22 1n
b nT b a c d d
c l

λ λ β  = − − − − − +  
 

          (3.17) 

( ) ( )( )

( ) ( )

2

2

2 2

1 1 2

1 2

1

n
b nD c a b b a d
c l

n nc d d d
l l

λ λ β

λ β

   = − − − − −   
   

   + − + +   
   

        (3.18) 

The linearized system at equilibrium point ( )* *
3 ,E u v  is  

( )* *,tU D U J u v U= ∆ + . Let 2J  be the Jacobian matrix of the system (2.3) at 
equilibrium point 3E . Then 

( ) ( )
( )( )

( )

22

1
2 * *

2 2

2

1 1
2

,

1
1

b c cb nb a d
c l cJ n l D J u v

nc d
c l

β
α

λα λ β
β

 − −  − − − − 
  = − + =  

  − − −   −   

(3.19) 

Letting ( )1c a bα= + − , from ( )0 1a bαβ β< − < −  we get 1 1c β< < . 
The eigenvalues of the matrix (3.19) are the solutions of the characteristic eq-

uations given by Equation (3.16) (3.17) (3.18). 
Theorem 1. When ( ) 0nT λ < , ( )* *

3 ,E u v  is locally asymptotically stable, and 
when ( ) 0nT λ < , ( )* *

3 ,E u v  is unstable. 

3.3. Existence of Hopf Bifurcations 

A Hopf bifurcation occurs when and only when ( ) ( )0, 0n nT Dλ λ= > , clearly 
( )0 0D λ >  and ( )lim 0nn

D λ
→+∞

> . The bifurcation parameter λ  must be a solu-
tion of λ  in Equation (3.20) 

( ) ( )
2

1 22 1 0b nb a c d d
c l

λ β  − − − − − + = 
 

           (3.20) 

The equivalent of 

( )nλ λ=                          (3.21) 

( )
( )

2

1 22

1

b nb a d d
c ln

c
λ

β

 − − − +  
 =

−
              (3.22) 

Theorem 2.  
Letting 
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( ) ( )( ){ }2
1 1 2/ 2 1N n b a b c c d d n lλ β= ∈Ν − − − − − +     (3.23) 

The system (2.3) occurs Hopf bifurcationing at ( )nλ λ=  and 1n N>  (where 
( )nλ  see (3.22)), and ( )nλ  has the following estimate: 

( ) ( ) ( ) ( ) ( )10 1 1n n Nλ λ λ λ λ> > > > + > >         (3.24) 

Proof: Hopf bifurcationing occurs when and only when ( )0 0T λ = , equiva-
lently: 

( ) ( )
2

0 1 2
nT d d
l

λ  = +  
 

                  (3.25) 

( ) ( )0 1 0T cλ β′ = − − <                   (3.26) 

( ) ( )0lim 2 1 0bT b a c
cλ

λ λ β
→+∞

= − − − − <            (3.27) 

According to (3.26) and (3.27), ( )0T λ  is strictly decreasing with respect to 
λ . Equation (3.25) has a solution when and only when the positive integers n 
satisfy:  

( ) ( )
2

1 2 2 1n bd d b a c
l c

λ β + > − − − − 
 

            (3.28) 

Equivalent to 1n N> . 
Equation ( )( )2

1 2d d n l+  is strictly decreasing with respect to λ , which 
leads to the estimate in (3.23). 

Now we take ( ) ( ) ( )iξ λ η λ ω λ= ±  as the solution of the characteristic equa-
tion, where:  

( )( ) 0nη λ = , ( )( ) ( )( )n D nω λ λ=            (3.29) 

( )( ) ( )1
2

c
n

β
η λ

− −
′ =                   (3.30) 

Under condition (3.30), the bifurcation point and its order are given by the 
following theorem. 

Theorem 3. If there exists *
1N N≥ , a critical value *0 , ,

N
j j  such that 

*0 1 10
N

j j j N= > > > > , there are the following estimates:  

( ) ( ) ( ) ( ) ( )*0 1 1
N

n n jλ λ λ λ λ> > > > + > >        (3.31) 

4. Conclusion 

The article considers a predator-prey diffusion system with Bazykin functional 
response under chi-square Neumann boundary conditions. Firstly, the existence 
of equilibrium points of the system is proved, and four equilibrium points 

0 1 2 3, , ,E E E E  of the system are obtained. Secondly, the local stability of ( )* *
3 ,E u v  

and the existence of Hopf bifurcations under specific conditions are proved by 
analyzing the characteristic equations of the equilibrium point ( )* *

3 ,E u v . 
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