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Abstract 
Increased usage of single parameter life-time distributions for reference in 
development of other life-time distributions and data modeling has attracted 
the interest of researchers. Because performance ratings differ from one dis-
tribution to another and there are increased need for distributions that deliv-
ers improved fits, new distributions with a better performance rating capable 
of providing improved fits have evolved in the Literature. One of such distri-
bution is the Iwueze’s distribution. Iwueze’s distribution is proposed as a new 
distribution with Gamma and Exponential baseline distributions. Iwueze’s 
distribution theoretical density, distribution functions and statistical features 
such as its moments, factors of variation, skewness, kurtorsis, reliability func-
tions, stochastic ordering, absolute deviations from average, absolute devia-
tions from mid-point, Bonferroni and Lorenz curves, Bonferroni and Gini 
indexes, entropy and the stress and strength reliability have been developed. 
Iwueze’s distribution curve is not bell-shaped, but rather skewed positively 
and leptokurtic. The risk measurement function is a monotone non-decreasing 
function, while the average residual measurement life-time function is a mo-
notone non-increasing function. The parameter of the Iwueze’s distribution 
was estimated using the likelihood estimation approach. When used for a 
real-life data modeling, the new proposed Iwueze’s distribution delivers im-
proved and superior fits better than the Akshya, Shambhu, Devya, Amaren-
dra, Aradhana, Sujatha, Akash, Rama, Shanker, Suja, Lindley, Ishita, Prakaa-
my, Pranav, Exponential, Ram Awadh and Odoma distributions. Iwueze’s 
distribution is definitely tractable and offers a better distribution than a number 
of well-known distributions for modeling life-time data, with greater supe-
riority of fit performance ratings.  
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1. Introduction 

Life-time distributions are statistical distributions whose density functions can 
be utilized to describe the behavioral structure of life-time data in reliability and 
life data analysis, model the life and failure time to the occurrence of an event of 
interest [1]. Single parameter life-time distributions, in which the probability 
density functions consist of only one scale parameter of reference, are most pop-
ular because of the simplicity and flexibility of the structure of its density func-
tions and mathematical operations, easy interpretations of its physical proper-
ties, and consequently increased usage as a reference in further development of 
other life-time distributions in the existing literature. 

Researchers in the fields of biological sciences, demography, economics, en-
gineering, insurance, and medical sciences have developed and used single pa-
rameter life-time distributions to model the varying behavioral structure of un-
ivariate life-time data [1] [2]. The Lindley [3], Shanker [4], Akash [5], Rama [6], 
Suja [7], Sujatha [8], Amarendra [9], Devya [10], Shambhu [11], Aradhana [12], 
Akshaya [14], Pranav [15], Ishita [16], Ram Awadh [17], Prakaamy [18] and 
Odoma [19] distributions are examples. The aforementioned distributions are 
module compositions of gamma and exponential distributions. Both gamma and 
exponential distributions have disadvantages. First, the gamma distribution’s sur-
vivorship or existence measurement function cannot be described in closed form 
[4] [5]. The aforementioned distributions’ survivorship or existence measure-
ment functions, on the other hand, can be summed in closed form. Second, the 
exponential distribution has a constant risk measurement function that makes it 
unsuitable for modeling data with monotonically non-decreasing risk measure-
ment rates [17] [18] [20] [21] [22].  

It’s worth noting that each of the aforementioned distributions can be used to 
solve problems involving data with monotonically non-decreasing risk mea-
surement rates. When dealing with data with monotonically non-decreasing risk 
measurement rates, however, evidence of goodness or superiority of fit of dis-
tributions fitted to given data is always sought. Because performance ratings dif-
fer from one distribution to the next, an alternate distribution is explored when 
such evidence is lacking. In some cases, the available distributions may not ade-
quately fit the data, which is why researchers are constantly working to modify 
or introduce new distributions that can be used to model some of the most 
commonly encountered complex data. As a result, the Iwueze’s distribution, a 
new single parameter distribution, is proposed. Materials and Methods, mathe-
matical and statistical features of the distribution, parameter estimation and ap-
plicability, Results, Discussion, and Conclusion are all discussed. 

2. Materials and Methods 

The theoretical density function (also known as probability density function; 
denoted p.d.f.) and distribution function (also known as cumulative distribution 
function; denoted c.d.f.) of the new single parameter Iwueze’s life-time distribu-
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tion, simply known as the Iwueze distribution, as well as the mixture combina-
tions cum ratios of corresponding standard or baseline distributions are given as 

( )
5 22

4 3 2 1 e ; , 0, 2 6 12 24
0; otherwise

vv v vf v
θθ θθ θ θ θ θ
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where V = v is the random variable and θ is the scale parameter of the distribu-
tion. 

Remark 1: Iwueze’s theoretical density function, Equation (2.1), is a five- 
module composition of an exponential (θ ) and gamma ( )2,θ , ( )3,θ , ( )4,θ  
and ( )5,θ  baseline distributions such that 
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and ( ),ig v θ  is the ith p.d.f. of the standard or baseline distributions also given 
specifically as; 

( ) ( )
1e ; 0 and for fixed 1,2,3,4,5

,
0, otherwise

i i v

i

v v i
g v i

θθ
θ

− −
> == Γ




      (2.9). 

Henceforth in the paper, ( ),f v θ  and ( ),G v θ  will be simply written as 
( )f v  and ( )G v . We shall say that a random variable V follows Iwueze’s dis-

tribution, simply written ( )~V IW θ , if its behavioral structure could be attri-
buted to Equation (2.1). The graphical plots of the theoretical density and dis-
tribution function (for some selected but different real points of θ ) of an Iwu-
eze’s distribution are shown in Figure 1 and Figure 2. The curves shown in  
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Figure 1. The graphical plots of the theoretical density function (for some selected but 
different real points of θ ) of an Iwueze’s distribution. 
 

 
 

 

Figure 2. The graphical plots of the theoretical distribution function (for some selected 
but different real points of θ ) of an Iwueze’s distribution. 
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Figure 1 are not bell-shaped, skewed positively and an increase in the value of 
θ  causes a considerable increase in the peak of the curve. 

2.1. Generating Moments of Iwueze’s Distribution 

The moment generating function (denoted ( )VM t ) of a continuous random 
variable V with Iwueze’s distribution structure can be calculated as follows: 
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( ) ( )

5 22
4 3 2

0
5

1 2 3
4 3 2

4 5

1 2
4 3

4 3 2

3 4
2

1 e d
2 6 12 24

2 6
2 6 12 24

12 24

1 1 2 1
2 6 12 24

6 1 12 1 24 1

t v
VM t v v v

t t t

t t

t t

t t t

θθ
θ θ θ θ

θ θ θ θ
θ θ θ θ

θ θ

θ θ
θ θθ θ θ θ

θ θ
θ θ θ

∞
− −

− − −

− −

− −

− −

 = + + + + + +

= − + − + −+ + + +
+ − + − 
    = − + −    + + + +    

     + − + − + −    
    

∫

5− 


 

  (2.10) 

Noting the famous binomial series expansion [23] that 
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Equation (2.10) reduces to 
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From Equation (2.12), the ωth generalized derivation of the moments about 
zero or origin) is 
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( )( )( ) ( )( )( )( )

4 3 2

/
4 3 2

2 1 3 1 2
!

2 1 2 3 1 2 3 4
; 1,2,

2 6 12 24ω ω

θ ω θ ω ω θ
ω

ω ω ω θ ω ω ω ω
µ ω

θ θ θ θ θ

 + + + + +
 
+ + + + + + + + +  = =

 + + + + 


(2.13) 

As a result, precise instances about ωth specific moments about the origin for 
1,2,3,4ω =  of Iwueze’s distribution are defined as follows:  
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Its essential moments about the mean, on the other hand, are  
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The factors for evaluating the Iwueze’s distribution variation (VF), dispersion 
(FD), skewness ( 1β ) and kurtorsis ( 2β ) are as follows: 
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Figure 3 depicts a graphical depiction of the values of 2β  at various posi-
tions of θ . Figure 3 shows that 2β  for all varying points of θ , the values of 

2β  are greater than three, indicating that the Iwueze’s distribution is leptokurtic 
in nature. However, the values of 2β  for 0 1.179θ< <  drop, while the values 
of 2β  remain constant for 1.179 1.459θ≤ <  and increase exponentially for 

1.459θ ≥ . As a result, Table 1 shows varying values of θ  and associated dis-
persion structures of Iwueze’s and some single parameter distributions. 
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Figure 3. Graphical depiction of the values of 2β  at various positions of θ . 

 
Table 1. Varying values of θ  and associated dispersion structures (over (denoted A*), 
equi (denoted B*) and under (denoted C*) dispersions) of Iwueze’s and few number of 
single parameter distributions. 

Distribution 
Names 

A* 
2µ σ<  

B* 
2µ σ=  

C* 
2µ σ>  

Iwueze 1.370727266θ <  1.370727266θ =  1.370727266θ >  

Sujatha 1.364271174θ <  1.364271174θ =  1.364271174θ >  

Akash 1.515400063θ <  1.515400063θ =  1.515400063θ >  

Lindley 1.170086487θ <  1.170086487θ =  1.170086487θ >  

Exponential 1θ <  1θ =  1θ >  

2.2. Some Statistical Qualities of Iwueze’s Distribution 

Some statistical properties of Iwueze’s distribution are derived, including the 
survivorship or existence measurement function, risk measurement function, 
and average residual measurement life-time function, stochastic ordering of 
random variate, absolute deviations from average and mid points, bonferroni 
curve, lorenz curve, bonferroni and lorenz indices, entropy, and stress-strength 
reliability. 

2.3. Reliability Indices: Survivorship or Existence Measurement  
Function, Risk Measurement Function and Average Residual  
Measurement Life-Time Function 

The survivorship or existence measurement function (known as survival rate 
function [20] [21] [22]) is specified as ( )( ),s v θ , risk measurement function 
(known as hazard or failure rate function [8] [20] [21] [22] [24]) is specified as 

( )( ),h v θ  and average residual measurement life-time function (also known as 
mean residual life function [8] [21] [24]) is specified as ( )( ),ra v θ  for a random 
variable , 0V V >  with theoretical density function ( )f v  and distribution 
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function ( )G v  are specified as 

( ) ( ), 1s v G vθ = −                         (2.25) 
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( ),s v θ , ( ),h v θ  and ( ),ra v θ  will be simply written as ( ) ( ),s v h v  and 
( )ra v  respectively. Therefore, the mathematical expressions for evaluating the 

Iwueze’s distribution ( ) ( ),s v h v  and ( )ra v  are as follows: 
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( ) ( )
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/
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2 6 12 24ra θ θ θ θ µ
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+ + + +

= =
+ + + +

. Figure 4 and Figure 5 show graphs  

of ( )h v  and ( )ra v  of Iwueze’s distribution for some selected but different 
real points or values of θ  respectively. The graphical plot of ( )h v  clearly shows 
that ( )h v  is monotone non-decreasing function in v and θ , while ( )ra v  is 
monotone non-increasing function in v and θ . 

2.4. Stochastic Ordering of Iwueze’s Random Variables 

The comparative behaviour of continuous variables from Iwueze’s distribution 
can be appropriately examined and\or determined using the stochastic ordering 
of any two selected random variables, say , 0T V > . Then, T V<  in 
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Figure 4. The graphical plots of the risk measurement function ( )( )h v  of Iwueze’s dis-

tribution for some selected but different real points of θ . 
 

1) Stochastic ordering; that is  

storT V≤  if ( ) ( )T VG Gς ς≥  for all ς                (2.31) 

2) Risk Measurement ordering; that is  

RorT V≤  if ( ) ( )T Vh hς ς≥  for all ς                (2.32) 

3) Average residual Measurement life ordering; that is  

arlT V≤  if ( ) ( )T Var arς ς≥  for all ς               (2.33) 

4) Likelihood Ratio ordering; that is  

lorT V≤  if ( )
( )

T

V

f
f

ς
ς

 for all ς                   (2.34) 

These results had been established in the literature for stochastic ordering of 
distributions [9] [25]; 

stor
lor Ror

arl

T V
T V T V

T V
≤

≤ ⇒ ≤ ⇒  ≤
                (2.35) 
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Figure 5. The graphical plots of average residual measurement life-time function ( )ra v  

of Iwueze’s distribution for some selected but different real points of θ . 
 

Theorem 1.0 
Let ( )1~T IW θ  and ( )2~V IW θ . If 1 2θ θ>  then lorT V≤  and by im-

plication RorT V≤ , arlT V≤  and storT V≤ . 
Proof: Let ( )1~T IW θ  and ( )2~V IW θ . We obtain that 

( )
( )

( )
( )

( )1 2

5 4 3 2
1 2 2 2 2

5 4 3 2
2 1 1 1 1

2 6 12 24
e ; 0

2 6 12 24
T

V

f
f

θ θ ς
θ θ θ θ θς

ς
ς θ θ θ θ θ

− −
+ + + +

= >
+ + + +

 

and 

( )
( )

( )
( ) ( )

5 4 3 2
1 2 2 2 2

e e 1 25 4 3 2
2 1 1 1 1

2 6 12 24
log log

2 6 12 24
T

V

f
f

θ θ θ θ θς
θ θ ς

ς θ θ θ θ θ

 + + + +
 = − −
 + + + + 

 

Hence, 

( )
( ) ( )e 1 2

d log
d

T

V

f
f

ς
θ θ

ς ς
= − −  

By implication, ( )
( )e

d log 0
d

T

V

f
f

ς
ς ς

<  if 1 2θ θ> . This result implies that  
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lorT V≤ ⇒ RorT V≤ ⇒ stor

arl

T V
T V
≤

 ≤
. The result indicated clearly that Iwueze  

distribution is ordered in the likelihood ratio and consequently has risk mea-
surement, average residual measurement life and stochastic orderings. 

2.5. Absolute Deviations from Average and Mid-Points 

The absolute deviations about the average and mid-points respectively can be 
used to assess the attitude of variation inherent in a group of observations. The 
absolute deviations about the average point (denoted ( )1 vψ ) and that about the 
mid-point (denoted ( )2 vψ ) is defined by 

( ) ( ) ( )* *
1

0

dv E V v f v vψ µ µ
∞

= − = −∫              (2.36) 

( ) ( ) ( )* *
2

0

dv E V M v M f v vψ
∞

= − = −∫             (2.37) 

The absolute deviation about the average point can be calculated using 

( ) ( )

( ) ( )

( ) ( )

*

*

*

*
1

0

* *

0

* *

0

d

d d

2 2 d

v v f v v

v f v v v f v v

G vf v v

µ

µ

µ

ψ µ

µ µ

µ µ

∞

∞

= −

= − + −

= −

∫

∫ ∫

∫

          (2.38) 

While, the absolute deviation about the mid-point is calculated using 

( ) ( )

( ) ( )
*

*

*
2

0

* *

0

d

d d
m

m

v v M f v v

M v f v v v M f v v

ψ
∞

∞

= −

= − + −

∫

∫ ∫
 

( )
*

*

0

2 d
m

vf v vµ= − ∫                           (2.39) 

( )
*

* 2 d
m

vf v vµ
∞

= − + ∫                          (2.40) 

where ( )* E Vµ =  is the average of the random variable V, *M  is the mid- 

point of the random variable V and ( ) ( )
*

*

0

dG f v v
µ

µ = ∫ . By using p.d.f. (2.1), 

expressions (2.41) through (2.44) were obtained as follows: 

( )

[ ]

*

**

5 *5 4 *4 2 3 *3

3 2 2 *2

4 3 2 *

4 3 2

4 3 2
0

2 5 3 8 20

2 9 24 60
e

4 18 48 120

4 18 48 120
d

2 6 12 24
vf v v

θµ

µ

θ µ θ θ µ θ θ θ µ

θ θ θ θ µ

θ θ θ θ θµ

θ θ θ θ
µ

θ θ θ θ θ

−

  + + + + +  
  + + + +  
  + + + + +  
  + + + + +  = −

 + + + + 
∫  (2.41) 
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( )

[ ]

*

*

5 *5 4 *4 2 3 *3

3 2 2 *2

4 3 2 *

4 3 2
*

4 3 2
0

2 5 3 8 20

2 9 24 60
e

4 18 48 120

4 18 48 120
d

2 6 12 24

m

m

m m m

m

m

vf v v

θ

θ θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ
µ

θ θ θ θ θ

−

  + + + + +  
  + + + +  
  + + + + +  
  + + + + +  = −

 + + + + 
∫  (2.42) 

( )

[ ]

*

*

5 *5 4 *4 2 3 *3

3 2 2 *2

4 3 2 *

4 3 2

4 3 2

2 5 3 8 20

2 9 24 60
e

4 18 48 120

4 18 48 120
d

2 6 12 24

m

m

m m m

m

m

vf v v

θ

θ θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

−

∞

  + + + + +  
  + + + +  
  + + + + +  
  + + + + +  =

 + + + + 
∫   (2.43) 

( )

[ ]
*

**

4 *4 3 *3 2 2 *2

3 2 *

4 3 2

4 3 2
0

2 4 3 6 12

2 6 12 24 e

2 6 12 24
d 1

2 6 12 24
f v v

θµ

µ

θ µ θ θ µ θ θ θ µ

θ θ θ θµ

θ θ θ θ

θ θ θ θ

−

  + + + + +  
  + + + +  
  + + + + +  = −

 + + + + 
∫  (2.44) 

Substituting Equations (2.41) and (2.44) in Equation (2.38), and Equation 
(2.42) in Equation (2.39) or Equation (2.43) in Equation (2.40), we obtain the 
expressions for calculating the absolute deviations about the average and mid- 
points respectively of an Iwueze’s distribution as: 

( )

*

2*2 * 4 *3 *2 * 3

*2 * 2 *

1 4 3 2

1 4 2 3 3 1
2 e

18 2 2 1 48 2 1 120

2 6 12 24
v

θµ
µ µ θ µ µ µ θ

µ µ θ µ θ
ψ

θ θ θ θ θ

−
    + + + + + +    
    + + + + + +    =

 + + + + 
  (2.45) 

( )

*

2* *2 * 5 *4 *3 *2 * 4

*3 *2 * 3 *2 * 2

*

*
2 4 3 2

1 5 8 9 4 1

2 2 10 12 9 2 6 10 8 3 e

24 5 2 120

2 6 12 24

m

m m m m m m m

m m m m m

m
v

θ

θ θ

θ θ

θ
ψ µ

θ θ θ θ θ

−

    + + + + + + +    
    + + + + + + +    
  + + +   = −

 + + + + 
(2.46) 

2.6. Bonferroni Curve, Lorenz Curve, Bonferroni Index and Gini  
Index 

The Bonferroni curve, Lorenz curve, Bonferroni index and Gini index [26] have 
a wide range of applications in economics, medicine, insurance, demography, 
and reliability. The Bonferroni curve is defined as follows [26]: 

( ) ( ) ( ) ( ) ( )*
* * *

0 0

1 1 1d d d d
q

q q

B c vf v v vf v v vf v v vf v v
c c c

µ
µ µ µ

∞ ∞ ∞   
= = − = −   

      
∫ ∫ ∫ ∫

(2.47) 
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or alternatively, Equation (2.47) is written equivalently as 

( ) ( )1
*

0

1 d
p

B c G v v
cµ

−= ∫                      (2.48) 

while, the Lorenz curve [26] is defined as 

( ) ( ) ( ) ( ) ( )*
* * *

0 0

1 1 1d d d d
q

q q

L c vf v v vf v v vf v v vf v vµ
µ µ µ

∞ ∞ ∞   
= = − = −   

      
∫ ∫ ∫ ∫  (2.49) 

or alternatively, Equation (2.49) is written equivalently as 

( ) ( )1
*

0

1 d
p

L c G v v
µ

−= ∫                      (2.50) 

where ( )* E Vµ =  and ( )1q G c−= . However, the Bonferroni index [26] is de-
fined as 

( )
1

0

1 dB B c c= − ∫                        (2.51) 

while the Gini index [26] is  

( )
1

0

1 2 dG L c c= − ∫                       (2.52) 

But using Equation (2.1), we obtain 

( )

[ ]5 5 4 4 2 3 3

3 2 2 2

4 3 2

4 3 2

4 3 2

2 5 3 8 20

2 9 24 60
e

4 18 48 120

4 18 48 120
d

2 6 12 24

q

q

q q q

q

q

vf v v

θ

θ θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

−

∞

  + + + + +  
  + + + +  
  + + + + +  
  + + + + +  =

 + + + + 
∫      (2.53) 

On substituting Equation (2.53) in Equations (2.47) and (2.49), the expres-
sions for calculating the Bonferroni and Lorenz curves respectively of an Iwu-
eze’s distribution are obtained as: 

( )
[ ]

22 5 4 3 2 4

3 2 3 2 2

4 3 2

1 5 8 9 4 1

2 10 12 9 2 6 10 8 3 e

24 5 2 120
1 1

4 18 48 120

q

q q q q q q q

q q q q q

q
B c

c

θ

θ θ

θ θ

θ

θ θ θ θ

−

     + + + + + + +     
     + + + + + + +     
  + + +   = − 

 + + + +  
 
 
 
 
  

 (2.54) 

( )
[ ]

22 5 4 3 2 4

3 2 3 2 2

4 3 2

1 5 8 9 4 1

2 10 12 9 2 6 10 8 3 e

24 5 2 120
1

4 18 48 120

q

q q q q q q q

q q q q q

q
L c

θ

θ θ

θ θ

θ

θ θ θ θ

−

    + + + + + + +    
    + + + + + + +    
 + + +  = −

 + + + + 
  (2.55) 
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In addition, on substituting Equations (2.54) and (2.55) in Equations (2.51) 
and (2.52) respectively, the expression for Bonferroni index of an Iwueze’s dis-
tribution is obtained as 

[ ]

22 5 4 3 2 4

3 2 3 2 2

4 3 2

1 5 8 9 4 1

2 10 12 9 2 6 10 8 3 e

24 5 2 120
1

4 18 48 120

q

q q q q q q q

q q q q q

q
B

θ

θ θ

θ θ

θ

θ θ θ θ

−

    + + + + + + +    
    + + + + + + +    
 
+ + + 
 = −

 + + + + 
   (2.56) 

while, the expression for the Gini index of an Iwueze’s distribution is: 

[ ]

22 5 4 3 2 4

3 2 3 2 2

4 3 2

1 5 8 9 4 1

2 2 10 12 9 2 6 10 8 3 e

24 5 2 120
1

4 18 48 120

q

q q q q q q q

q q q q q

q
G

θ

θ θ

θ θ

θ

θ θ θ θ

−

    + + + + + + +    
    + + + + + + +    
 
+ + + 
 = −

 + + + + 
.  (2.57) 

2.7. Entropy 

Entropy is the most well-known statistical feature and/or quality that accounts 
for the uncertainty in a continuous random variable’s probability distribution. 
The most prominent type of entropy, known as the Renyi entropy [27], is de-
fined for V with. ( )f v  as follows: 

( ) ( )
0

1 log d ; 0 and 1
1RET f v v

∞
ℑ 

ℑ = ℑ > ℑ ≠ −ℑ  
∫          (2.58) 

By substituting Equation (2.1) into Equation (2.58), we obtain the expression 
necessary for obtaining the entropy of Iwueze distribution as 

( )

[ ]

5 22

4 3 2
0

5

4 3 2 00

5

4 3 2 0

1 log 1 e d
1 2 6 12 24

21 log 1 e d
1 2 6 12 24

21 log
1 2 6 12 24

v
RE

ii v

i

i

T v v v

v v v
i

i
v

i k

θ

θ

θ

θ θ θ θ

θ

θ θ θ θ

θ

θ θ θ θ

∞ ℑ ℑ −ℑ
ℑ

∞ℑ ∞
−ℑ

ℑ
=

ℑ ∞

ℑ
=

 
  ℑ = + +  − ℑ  + + + +  

 ℑ  = +   − ℑ  + + + +    

ℑ   
=       − ℑ  + + + +     

∫

∑∫

∑
0 0

e di k v

k
vθ

∞∞
+ −ℑ

=

 
 
 
 

∑ ∫

(2.59) 

But on solving 
0

e di k vv vθ
∞

+ −ℑ∫  and noting the well known gamma relational 

form 
( )

1 1
0

1 !e dhh hη θ
η η

η η
θ θ

∞
−

+ +

Γ +
= =∫ ; 0η >  and η  is an interger, Equation 

(2.59) reduces to 
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( ) ( )
( )

( ) ( )

5

14 3 2 0 0

5 1

4 3 2 10 0

!21 log
1 2 6 12 24

!21 log
1 2 6 12 24

RE I k
i k

i k

I ki k

i ki
T

i k

i ki
i k

θ
θθ θ θ θ

θ

θ θ θ θ

ℑ ∞ ∞

ℑ + +
= =

ℑ− + +∞ ∞

ℑ + += =

 +ℑ    ℑ =     − ℑ ℑ    + + + +  
 +ℑ    =     − ℑ      + + + + ℑ  

∑ ∑

∑ ∑

(2.60) 

2.8. Stress and Strength Reliability 

The stress and strength reliability of an independent strength; say V and stress, 
say B, of random variables from an Iwueze’s distribution with parameters 1θ  
and 2θ  is evaluated and calculated using [28]: 

( ) ( ) ( ) ( )

( )

( ) [ ]
2

1

1 2
0 0

4 3 2 4 4 3 3
2 2 2 2 2 2 2

2 2 2 2 3 25 2
2 2 2 2 2 2 21

4 3 24 3 2
2 2 21 1 1 1

/ d , , d

2 6 12 24 2 2
e

3 2 2 2 3 2 21 e
1

2 62 6 12 24

SS

v

v

R P V B P V B B b b f v G v v

v v

v vv v
θ

θ

θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θθ

θ θ θθ θ θ θ

∞ ∞

−

−

= < = < = =

  + + + + + + +  
     + + + + + + + + +        = −

+ + + + + + 

∫ ∫

( ) ( ) ( )
( ) ( )

[ ]

0 2

4 3 2
2 1 1 2 2 2 1 2 2 3 1 25

1
2 4 1 2 5 1 2

94 3 2 4 3 2
1 1 1 1 2 2 2 2 1 2

d
12 24

, 2 , 6 ,

12 , 24 ,
1

2 6 12 24 2 6 12 24

v

t t t

t t

θ

θ θ θ θ θ θ θ θ θ
θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

∞

  
  
  
  
  + +  
  
    

 + +
 
+ +  = −

   + + + + + + + + +   

∫  (2.61) 

where 

( ) [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

8 7 6 5 4
1 1 2 1 2 1 2 1 2 1 2 1 2

3 2
1 2 1 2 1 2

, 4 20 96 456

1920 7200 20160 40320

t θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

= + + + + + + + + +
+ + + + + + + 

 

(2.62) 

( ) [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

7 6 5 4
2 1 2 1 2 1 2 1 2 1 2 1 2

3 2
1 2 1 2 1 2

, 5 24 114

480 1800 5040 10080

t θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

= + + + + + + + +
+ + + + + + + 

 (2.63) 

( ) [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

2 6 5 4 3
3 1 2 1 2 1 2 1 2 1 2 1 2

2
1 2 1 2

, 4 18 72

264 720 1440

t θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ

= + + + + + + + +
+ + + + + 

 (2.64) 

( ) [ ] [ ] [ ] [ ] [ ]
[ ]

3 5 4 3 2
4 1 2 1 2 1 2 1 2 1 2 1 2

1 2

, 4 14 48

120 240

t θ θ θ θ θ θ θ θ θ θ θ θ

θ θ

= + + + + + + + +
+ + + 

 (2.65) 

( ) [ ] [ ] [ ] [ ] [ ]4 4 3 2
5 1 2 1 2 1 2 1 2 1 2 1 2, 2 6 12 24t θ θ θ θ θ θ θ θ θ θ θ θ = + + + + + + + + + 

(2.66) 

2.9. Iwueze’s Distribution Parameter Estimation Technique 

The method of likelihood estimation is a methodology for estimating parameters 
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θ  from a random sample of size s ( 1 2 3, , , , sV V V V ) that follows an Iwueze’s 
distribution with a theoretical density function in Equation (2.1) and the like-
lihood function ( )*L θ  is given as 

( ) 1
5 2* * 2

4 3 2
1

1 e
2 6 12 24

s
i

i

s s v

i
L L v v

θθθ
θ θ θ θ

=
−

=

∑ 
 = = + +   + + + + 

∏     (2.67) 

The natural logarithm of ( )L θ  is calculated as follows: 

( )

( )

( )

*1 *

24 3 2 2

1 1

24 3 2 2

1

ln

5 ln ln 2 6 12 24 ln 1

5 ln ln 2 6 12 24 ln 1

s s

i
i i
s

i

L L

s s v v v

s s v v s v

θ

θ θ θ θ θ θ

θ θ θ θ θ θ

= =

=

=

 = − + + + + + + + − 

 = − + + + + + + + − 

∑ ∑

∑ 

 (2.68) 

Hence, 

( )3 2*1

4 3 2

4 6 12 12d 5
d 2 6 12 24

sL s sv
θ θ θ

θ θ θ θ θ θ

+ + +
= − −

+ + + +
 ,            (2.69) 

By equating Equation (2.69) to zero, the estimate for θ


 of θ  that max-
imizes Equation (2.68) was calculated using 

( )
( )

3 2

4 3 2

4 6 12 125 0
2 6 12 24

ss sv
θ θ θ

θ θ θ θ θ

+ + +
− − =

+ + + +
 ,           (2.70) 

Equation (2.70) reduces to 

( ) ( ) ( ) ( )5 4 3 22 1 2 3 2 6 2 3 24 2 120 0v v v v vθ θ θ θ θ+ − + − + − + − − =
       (2.71) 

Where the sample average is v . The Quintic Equation (2.71) can be solved 
analytically, numerically and using Mathematical Software such as R, Mathema-
tica etc. Solving the Quintic Equation (2.71) yields five values for θ



 in which 
only one satisfies 0θ >



. 

2.10. Application and Test for Superiority (Goodness) of Fit 

The likelihood estimate for θ  (abbreviated MLE θ


) was employed to fit Iwu-
eze’s, Lindley [3], Shanker [4], Akash [5], Rama [6], Suja [7], Sujatha [8], Ama-
rendra [9], Devya [10], Shambhu [11], Aradhana [12], Akshya [14], Pranav [15], 
Ishita [16], Ram Awadh [17], Prakaamy [18], Odoma [19] and Exponential [20] 
[21] [22] distributions to the real-life data set on relief times (in minutes) of 
twenty (20) patients receiving analgesic treatment. Iwueze’s and the aforemen-
tioned distributions constitute the competing distributions for modeling the 
real-life data. The real life-time data used in the study is shown in Table 2. 
 
Table 2. Relief times (in minutes) of twenty (20) patients receiving an analgesic. 

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 

4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2 

See [1]. 
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Then, the superiority (goodness) of fit for the competing distributions fitted to 
the real-life data set was compared and judged using the values of the superiority 
of fit indices. The probability (denoted p), *12L− , Akaike Information Criterion 
(denoted AIC) [29] [30] [31] [32], AICC (Akaike Information Criterion Cor-
rected [30]), BIC (Bayesian Information Criterion) [30] [31] [32] [33] and Kol-
mogorov-Smirnov (denoted * *K S− ) [31] values were evaluated and utilized as 
the superiority of fit indices for comparison’s in order to judge the superiority 
(or goodness) of the fit of the competing distributions. The computational ex-
pressions for evaluating AIC, AICC, BIC and * *K S−  statistics are: 

*1AIC 2 2L m= − +                      (2.72) 

( )2 1
AICC AIC

1
m m
z m

+
= +

− −
                  (2.73) 

( )^1BIC 2L mLn z= − +                    (2.74) 

( ) ( )0sup z
v

D G v G v= −                   (2.75) 

where the totality of estimated parameters equals one is m, the totality of all ob-
servations is z and ( )ZG v  is the theoretical distribution function. The decision 
will then be made to accept the distribution with the lower Probability (p) and 

* *K S−  values, as well as the least and/or lowest value for ^12L− , AIC, AICC 
and BIC among all considered distributions, as the distribution that provides 
superior fit to the life-time data. 

3. Results  

With gamma and exponential distributions as the baseline distributions, the 
theoretical density of an Iwueze’s distribution has been formulated. Its distribu-
tion function has also been derived. The curve pattern for Iwueze’s distribution 
is depicted in Figure 1 while, that for the distribution function is shown in Fig-
ure2for some selected but different real points of θ . Figure 3 depicts the curve 
pattern for the values of the kurtorsis, denoted 2β , at various positions of θ . 
Table 1 illustrates varying values of θ  and associated dispersion structures of 
Iwueze’s and few number of single parameter distributions. Table 3 shows the 
values of the likelihood estimates (denoted θ



) and superiority of fit indices 
(particularly, ^12L− , AIC, AICC, BIC, and p values) for Iwueze’s and some well 
known single distributions fitted to the real life-time data. Table 3 clearly illu-
strates that among all competing distributions, Iwueze’s has lower p and * *K S−  
values, as well as the least and/or lowest value for, AIC, AICC, and BIC. As a re-
sult, Iwueze’s distribution delivers improved and superior fits to the real life- 
time data.  

4. Discussion 

Iwueze’s distribution has been proposed as a new single parameter distribution 
for defining the behavioral structure of univariate life-time data, with monoton-
ically non-decreasing Risk measurement and non-increasing average residual  
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Table 3. Likelihood Estimates of θ  (denoted MLE θ


) and superiority of fit indices. 

Distribution 
Names MLE θ



 *12L−  AIC AICC BIC * *K S−  p-values 

IWUEZE 1.801254 51.89 53.89 54.11 54.88 0.28 0.0050 

AKSHYA 1.441686 53.01 55.01 55.23 56.01 0.46 0.0000 

SHAMBHU 2.21539 53.89 55.89 56.11 56.89 0.50 0.0000 

DEVYA 1.841946 54.50 56.50 56.73 57.50 0.55 0.0000 

AMARENDRA 1.480769 55.63 57.63 57.85 58.63 0.47 0.0003 

ARADHANA 1.12319 56.37 58.37 58.59 59.37 0.44 0.0008 

SUJATHA 1.136745 57.49 59.49 59.71 60.49 0.44 0.0007 

AKASH 1.15692 59.52 61.52 61.74 62.52 0.44 0.0007 

RAMA 1.52133 59.70 61.7 61.92 62.70 0.47 0.0003 

SHANKER 0.8039 59.78 61.78 62.00 62.78 0.44 0.0008 

SUJA 1.895379 60.40 62.40 62.62 63.40 0.49 0.0001 

LINDLEY 0.81612 60.49 62.49 62.71 63.49 0.45 0.0012 

ISHITA 1.094847 60.16 62.16 62.38 63.16 0.33 0.0049 

PRAKAAMY 2.2735 61.43 63.43 63.65 64.43 0.52 0.0290 

PRANAV 1.401401 62.38 64.38 64.60 65.38 0.49 0.0049 

EXPONENTIAL 0.52632 65.67 67.67 67.89 68.67 0.47 0.0002 

RAM AWADH 2.04587 68.52 70.52 70.74 71.52 0.51 0.5240 

ODOMA 2.1863030 72.01 74.01 74.23 75.01 0.19 0.0510 

See [13]. 
 
measurement functions. Moments, skewness, kurtosis, and dispersion, reliability 
functions (survivorship or existence measurement, risk measurement, and aver-
age residual measurement life-time functions), stochastic ordering, absolute 
deviations from average, and mid points have all been stated analytically. The 
Iwueze distribution’s Bonferroni curve, Lorenz curve, Bonferroni Index, Gini 
index, Entropy, and stress-strength reliability have all been fully derived. The 
Iwueze’ distribution is positively skewed, not symmetric, as shown by the curve 
pattern in Figure 1, and increasing the value of θ  causes a significant increase 
in the curve’s peak. Similarly, the curve pattern in Figure 3 indicates that values 
of 2β  at various positions of θ  are greater than three. As a result, the Iwueze 
distribution curve in Figure 3 is leptokurtic in nature. Using the maximum like-
lihood estimate methodology, the parameter estimation of Iwueze’s distribution 
was investigated and presented. A real life-time data set was used to demonstrate 
the applicability of Iwueze’s distribution and to determine its superiority of fit 
over various rival distributions (see Table 3 for the listed competing distribu-
tions). Results in Table 3 show that Iwueze’s distribution has the lowest * *K S−  
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and p values, as well as the lowest AIC, AICC, and BIC values, among all com-
peting distributions. The results show that Iwueze’s distribution fits the real-life 
data better. As a result, it is preferred for representing the behavioral structure of 
the real life-time data set over all other considered distributions. 

5. Conclusion 

Iwueze’s distribution is a new single life-time distribution that can be used to 
describe the behavioral structure of life-time data. Iwueze’s distribution is a bet-
ter model for describing the behavioral structure of life-time data, because it has 
lower *12L− , AIC, AICC, and BIC values than all selectedrival or competing 
distributions. As a result, Iwueze’s distribution is a crucial distribution for mod-
eling life-time data, because it delivers improved and superior fits to life-time 
data.  
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