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Abstract 
The purpose of this paper is to analyze and visualize the exact invariant solu-
tion of the nonlinear simplified version of the shallow water equations which 
are being used to simulate equatorial atmospheric waves of planetary scales. 
The method of obtaining the exact solution is based on the Lie group inva-
riance principle. It is shown that the obtained invariant solution has a Fibo-
nacci spiral-like form and has two parameters k and 0t . We have defined a 
new model hypermarameter 0k t t t∆ = − , where t is time. The question of 
particular interest is: can we tune the hypermarameter in order to match the 
exact solution to the actual Fibonacci spiral? It was discovered that the physi-
cally relevant part of the solution matches exactly the Fibonacci spiral.  
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1. Introduction 

The Fibonacci sequence of numbers nF  is defined using the recursive relation 

1 2n n nF F F− −= +  with the seed values 0 1 1F F= = . It is known as probably the 
most common relationship that occurs in the smallest, to the largest objects in 
nature. It can be seen in the arrangement of sunflower seeds, shells of snails, in 
the pattern found on the wings of dragonflies, in the arrangement of hexagons in 
the honeycomb of bees, as well as in the shape of the Milky Way or other galax-
ies (see Figure 1). In biology, for example, the packaging of seeds or branching is 
only a glimpse of underlying heavy usage of Fibonacci sequence in whole mor-
phogenetic process, starting with DNA itself. It is used in shape itself when ne-
cessary but not used when not, e.g. our limbs don’t grow in Fibonacci rule way. 
But it’s hidden somewhere in the shape of our body, bones etc. As a part of  
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Figure 1. Fibonacci spirals observed in nature. These images were posted in Art/Science, 
Paul’s Journal, Workshops. Available at:  
https://tumamocsketchbook.com/category/journal. 
 
chemical activity, segmented spiral waves were also found in reaction-diffusion 
systems ([1] [2]). The segmented spirals are complex dynamical structures with 
several levels of organization, characterized, for example by the wavelength be-
tween successive spiral turns and the turning wavelength between segments. The 
appearance and complexity of segmented spirals are suggestive of phenomena in 
living systems. 

While the aesthetics and symmetry of Fibonacci spiral patterns has often at-
tracted scientists, a mathematical or physical explanation for their common oc-
currence in nature is yet to be discovered ([3]). 

Spiral like gravity waves can also exist in the atmosphere. For example, as has 
been discussed in [4], recent observational studies confirm the existence of spiral 
gravity waves radiating horizontally outward from tropical cyclones. These waves 
are wrapped into spirals by the tangential wind of the cyclone and are described 
as spiral gravity waves. 

In this paper, we would like to investigate if there is some correlation between 
atmospheric equatorial waves and the Fibonacci spiral. Equatorial waves are a 
key part of the tropical climate system and play a vital role in the planet’s weath-
er and climate by transferring heat towards the poles, and cold air towards the 
equator. Usually such waves are associated with large-scale perturbations of the 
atmospheric motion extending coherently around a full longitude circle [5] [6] 
[7] [8] [9]. For example, Jupiter’s North Equatorial Belt (NEB) is one of the 
broadest and darkest belts on the planet. It is almost always a scene of notable 
weather formations and activity, as shown in Figure 2. Bounded by the retro-
grade jet at 17˚N on its northern edge, and the very fast prograde jet at 7˚N on 
its southern edge, the visibly dark belt does not always respect these limits. There  
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Figure 2. Hi-res image of the planet showing typical comparable large-scale wave struc-
ture in the southern equatorial zone called the South Equatorial Disturbance (SED) and 
the North Equatorial Belt (NEB), as well as small superfast spots on the SEBn jet, and rifts 
in both NEB and SEB. Data Source: Hubble Space Telescope 2007. 
 
is a continuous gradient of wind speed across the NEB, as shown in Figure 2. 
Additionally, planetary waves are considered as an important component of the 
long-term mean upwelling at the tropical tropopause and the planetary wave 
breaking in the extratropical stratosphere ([9] [10]). However, the exact role of 
equatorial planetary waves in tropical upwelling has not been resolved so far. 

It is also believed that planetary waves are responsible for widespread changes 
in the climate system, especially in the ozone variation (see e.g. [11]). The inter-
est in planetary waves increased dramatically increase in the 1980s when the 
Antarctic ozone hole was discovered ([6] [12] [13]). The ozone layer, and in turn 
stratospheric ozone, plays a crucial role in protecting our life on Earth by ab-
sorbing harmful solar ultraviolet radiation ([14] [15]). Moreover, the effects of 
atmospheric waves on variations of the ozone layer are also essential to the con-
trol of the stratospheric temperature via atmospheric radiative heating, as those 
effects make El Nino to be related with the observed rapid decelerations of the 
stratospheric polar vortex ([16]). Also, it was pointed out in [11] [14] [17] [18] 
[19] [20] [21], that El Nino is directly related with the effects of atmospheric 
waves on the polar vortex. It was discussed earlier in [22] that the observed 
breakdowns in the polar vortex are an instability caused by atmospheric waves. 
To improve seasonal weather forecasting it is important to understand and im-
prove the predictions of the dynamics of the atmospheric waves (see also [23]). 

It has been discussed in [7], one method of visualizing the atmospheric waves 
is to measure water vapor affected by Coriolis effects detected by satellites, and 
in order to investigate atmospheric perturbations in a form propagating wave, a 
novel, robust algorithm to extract ring-shape patterns from satellite and model 
data has been developed in [8]. 
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In this research, we shall analyze one particular class of the exact invariant so-
lution associated with the nonlinear shallow water equations representing plane-
tary equatorial waves corresponding to the free boundary problem describing the 
non-stationary motion of an incompressible perfect fluid propagating around a 
solid circle. The solution of interest was obtained by means of Lie symmetries 
first reported in [24]. Acquaintance with group analysis is important for con-
structing and investigating nonlinear mathematical models of natural and engi-
neering problems. Numerous physical phenomena can be investigated using Lie 
symmetries to unearth various group invariant solutions and conservation laws 
that provide significant physical insight into the problem. Moreover, models of 
natural phenomena can often be described directly in group theoretic terms. 
Differential equations, conservation laws, solutions to boundary value problems, 
and so forth can be derived from the group invariance principle. 

We consider the two dimensional motion of an incompressible perfect fluid 
which has a free boundary η  and a solid bottom represented by a circle of ra-
dius R. The fluid is circulating around a solid circle and confined by a free 
boundary. For modeling purposes, we can assume that the motion of the fluid is 
irrotational and the pressure on a free boundary is constant. It is postulated that 
that the fluid depth is small compared to the radius of the circle, as shown sche-
matically in Figure 3. 

We introduce polar coordinates cosx r θ= , siny r θ= , where θ  is a polar 
angle, r is the distance from the origin, and we use the following notation: R is 
the radius of the circle representing the radius of a planet, ( ) ( )0, ,h t h tθ η θ= + , 
where t is time, 0h  is a constant undisturbed level of the equatorial atmospheric 
layer from the center of the planet, and ( ),tη θ  is the unknown level of distur-
bance of a free boundary. Hence, irrotational motion of a perfect fluid is con-
fined in the domain 

( ) ( ){ }, : 0 2 , , ,r R r R h tη θ θ θπΩ = ≤ ≤ ≤ ≤ +  

 

 

Figure 3. Schematic showing an equatorial atmospheric motion. 
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which is bounded by a solid circular boundary r R=  and a perturbed free 
boundary ( ),r R h t θ= + . For the sake of simplicity, the atmospheric flow is 
supposed to be irrotational and pressure on a free boundary ( ),r R h t θ= +  is 
constant. It is postulated that the unperturbed level of atmospheric “depth” 0h  
is small compared to the radius R and the homogeneous gravity field is given by 
the vector g , which is assumed to be a constant and directed to the center of 
the circle. 

The paper is organized as follows: First we reduce the free boundary problem 
to a nonlinear system of shallow water approximation. Next, the invariant solu-
tions of the shallow water system are deduced by constructing the infinite- 
dimensional Lie algebra composed by the operators admitted by the system. In 
particular, it is noted that the system is invariant under the non-uniform scaling 
transformation group. As the next step, we will show that the obtained invariant 
solution has a Fibonacci spiral-like form and has two parameters k and 0t . We 
have defined a new model hypermarameter 0k t t t∆ = − , where t is time. The 
question of particular interest is: can we tune the hypermarameter in order to 
match the exact solution to the actual Fibonacci spiral? 

Main result: It was discovered that the physically relevant part of the solution 
matches exactly the Fibonacci spiral. 

2. Shallow Water Approximation 

In what follows, it is assumed that the fluid motion is potential in the domain of 
the motion which allows to introduce the stream function ( ), ,t rψ θ  via  

1 , .rv v
r rθ

ψ ψ
θ

∂ ∂
= − =

∂ ∂
                      (1) 

Notice that ψ  is a harmonic function in ηΩ , since we assumed that the flow 
is irrotational. Next, we define the average velocity ( ),u tθ  in terms of the 
stream function ψ  as  

( ) ( ) ( )1 1, , , d , , .
R h

R

u t v r t r R h t
h hθθ θ ψ θ

+

= = +∫              (2) 

In order to reduce the number of parameters, we introduce dimensionless va-
riables: 

0 0 0 0 0
0

ˆˆˆ ˆˆ ˆ, , , , , .Rtr R h r h h h t h gh u gh u
gh

θ θ ψ ψ= = + = = = =      (3) 

We next introduce the parameter  

0 .
h
R

ε =                             (4) 

The hypothesis that water is “shallow” is based on the assumption that the 
parameter ε  is “small”. 

In particular the relation between the boundaries of the dimensional and 
nondimensional variables can be summarized in the table below 
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Dimensional variables Relation 
Nondiemnsional 

variables 

Solid boundary: r R=  0 ˆR h r R+ =  ˆ 0r =  

Unperturbed free surface: 0
ˆr R h h= +  0 0

ˆˆR h r R h h+ = +  ˆr̂ h=  

Perturbed free surface: 0 0
ˆr R h h h= + +  ( )0 0

ˆˆ 1R h r R h h+ = + +  ( )ˆˆ 1r h= +  

 

(5) 

Hereafter the symbol “hat” is omitted. 
So, in the nondimensional variables, the free boundary is given by  

( )1 1r hε= + +  and thus the functions ( ),h tθ  and ( ), ,r tψ θ  are two un-
known functions whereas ε  is a given parameter. Although shallow water 
theory is usually related to the case when the water depth is small relative to the 
wavelengths of the waves, we find it more appropriate to choose the radius R as a 
natural physical scale since, in the frame of the present model, we consider 
waves with wavelengths of the order of the radius of a planet. 

Representing the stream function ψ  by the series expansion: ( )nn

n
ψ ε ψ= ∑  

and application of the Lagrange’s method allows one to write the boundary 
problem as the following nondimensional system of nonlinear shallow water 
equations, which are a higher-order analogue of the Su - Gardner Equations 
([25]): 

( )23 2 0,
2t t tu uu h hu uh u h hhθ θ θ θ
ε

+ + + − − + =             (6) 

0,t th uh hu hhθ θ ε+ + + =                       (7) 

where the subscripts denote partial derivatives in which independent variables t 
and θ  denote the time and the polar angle, respectively, the dependent va-
riables are the average velocity u and the level 0h >  of the atmosphere per-
turbed from 0h , whereas 1ε   is a small parameter. 

Due to the fact that ε  is a small parameter, the terms of order ( )0 ε  can be 
considered as a small perturbation to the zeroth order terms (unperturbed mod-
el). Our main concern is a simplified version of the model, in which the pertur-
bations (nonlinear terms at ε ) are ignored and we consider the following un-
perturbed system. As has been shown in [26], and [27], elimination of tu  and 

th  from the terms of the Equations (6) and (7) and ignoring the terms with ε  
leads to the following unperturbed system: 

0,tu uu hθ θ+ + =                        (8) 

0.th uh huθ θ+ + =                        (9) 

It can be checked by direct substitution that one particular exact solution of 
the unperturbed shallow water system (8) and (9) is 

( )0 0, ln 1 ,
2

h uε ε
ε

Γ
π

= = − +                  (10) 
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where const.Γ =  is the intensity of the vortex (source) localized at the center of 
the planet and is related with the rotation rate of the planet (for example, the 
angular velocity of the earth is 4 12 rad day 0.73 10 s− −Ω ≈π= × ) by the equation 

22 RΓ = πΩ . Since the solution (10) corresponds to the constant flow with an 
undisturbed circular free surface, we call it a trivial solution. To a certain extent, 
the above ansatz (10) can be associated with the polar vortex, which represents a 
very powerful whirlpool swirling steadily around the planet’s poles at all times. 

Understanding and predicting break downs and overall dynamic structure of 
the polar vortex is important for improving seasonal forecasting (see also [23]). 
If the undulating path of the west to east atmospheric flow generated by the po-
lar vortex could be predicted, then weather could be predicted too, not just for a 
week or two, but for an entire season [28]. However, as pointed out in [29], until 
now understanding of such a correlation has been based on observations and 
statistical modeling only rather than on the knowledge of its physical foundation. 
Because of the periodic seasonal breakdowns of the polar vortex and the lack of 
continuous data for the input of such interactions, statistical approach generally 
cannot provide the weather patterns accurately enough ([30] [31] [32] [33]). 

Up to the present days, our knowledge of gravity wave sources and properties 
in the polar region is very much limited because collecting the observations is 
generally difficult because of harsh natural environments ([34]). 

3. Nontrivial Similarity Solution 

Detailed presentations of the theory of symmetries and invariant solutions of 
differential equations can be found elsewhere [24] [35]-[41]. For convenience, 
we summarize the basic notation from calculus of Lie group analysis in the Ap-
pendix, which represents a simplified version of the overview of basic concepts 
of Lie symmetry groups. 

A simple inspection shows that the system (8) and (9) admits the infinite- 
dimensional Lie algebra composed by the operators  

( ) ( ) ( )

1 2 3

2 2
4

, 2 , ,

2 6 6 3 4 4 .

X t X h u X t
u h u t

X tu th tu hu u h
t h u

θ θ
θ θ θ

θ
θ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= − + − + + +
∂ ∂ ∂ ∂

     (11) 

In particular, the operator 1X  is admitted due to the invariance of the system 
(8) and (9) under the Galilean transformation group  

1 1, ,ta u u aθ θ= + = +                      (12) 

with an arbitrary parameter 1a . The operator 2X  indicates that the system (8) 
and (9) is invariant under the non-uniform scaling transformation group  

2 2 22e , e , e ,a a ah h u uθ θ= = =                 (13) 

where 2a  is another arbitrary parameter and the operator 4X  is responsible 
for a specific non-scaling symmetry of the one-dimensional shallow water model 
(8) and (9). 
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The term similarity solution refers to invariant solutions based on scaling 
transformations (12). It can be checked by direct substitution that the shallow 
water model (8) and (9) is invariant under the transformation (12). One calcu-
lates the invariant ( ), , ,J t u hθ  of the group 2X  by solving the first-order li-
near partial differential equation 

2 0.X J =                           (14) 

The latter Equation (14) gives three functionally independent invariants cor-
responding to the transformation (12):  

1 2 3 2, , .u hJ t J J
θ θ

= = =  

Accordingly, we look for the invariant solution of the (8) and (9) in the form  

( ) ( )2, .u U t h H tθ θ= =                    (15) 

Direct substitution of the presentation (15) in the system (8) and (9) yields the 
following nonlinear ordinary differential equations: 

2d 2 0,
d
U U H
t
+ + =                       (16) 

d 3 0.
d
H UH
t
+ =                         (17) 

In the case when 0H ≠ , the Equation (17) can be written as the following 
coupled equations  

3 de , ,
d

W WH U
t

−= =                       (18) 

where W satisfies the nonlinear differential equation of the second order, 
22

3
2

d d 2e 0.
dd

WW W
tt

− + + = 
 

                   (19) 

Integration of the Equation (19) yields  
3
2d 2e 1 e ,

d

W
WW k

t
−

= +                      (20) 

where k is a constant and so W is given implicitly by equation 

( )
3 2

0
e d 2 ,
1 e

W

W
W t t

k
= ± −

+
∫                    (21) 

where 0t  is an arbitrary constant. 
In particular, if the function H is known, the function u can be expressed in 

terms of H as 

1 32 1 .u H kHθ −= ± +                      (22) 

The Equation (21) provides an implicit representation of the function ( )W t  
and hence the functions ( )U t  and ( )H t  are (15) due to the Equations (18). 
We calculate the integral and distinguish the following three cases: 
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3.1. Case k = 0 

When 0k =  the Equation (21) has the form  

( ) ( )
3
2

0 0: e 3 .
W

F W t t= = ± −                    (23) 

In this case, the Equations (15) provide us with the solution  

( ) ( )2
00

1 2, ,
39

H U
t tt t

= =
−−

                 (24) 

and thus the exact solution of the system (8) and (9) is given by  

( ) ( )

2

2
0 0

2 ,
3 9

u h
t t t t
θ θ

= = ⋅
− −

                  (25) 

3.2. Case k > 0 

When 0k > , the functions U and H are given by  
3

322e 1 e , e ,
W

W WU k H
− −= ± + =                 (26) 

where 0k >  and W is given implicitly by equation 

( ) ( )2 2
0

1 1 1: e e ln e e 2 .
W W

W WF W t t
k k k+

 
= + − + + = ± −  

 
       (27) 

3.3. Case k < 0 

When 0k < , the functions U and H are given by  
3

322e 1 e , e ,
W

W WU k H
− −= ± + =                  (28) 

where 0k <  and W is given implicitly by equation 

( ) ( )2 2
0

1 1: e e arcsin e 2 .
W W

WF W k t t
k k−

 
= − − − − − = ± −  

 
       (29) 

The function ( )F W−  is defined subject to constraint 

e .Wk −<                             (30) 

For example, the function ( )F W−  is not defined for 0.1k = . 
We will approximate the functions ( )F W±  for large and small values of W 

and also for large and small values of k.  

4. Asymptotic Analysis 

We will analyze the asymptotic behavior of the similarity solution (15) for large 
and small W as well as for large and small values k. 

4.1. Approximation of the Similarity Solution for Large and Small  
W 

We next approximate the function ( )F W+  given by Equation (27) in the limit 
W → ±∞ . We start with ( ) ( ) ( )F W f W g W+ = + , where 
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( ) ( )2 21 1 1e e , ln e e .
W W

W Wf W g W
k k k

 
= + = − + +  

 
       (31) 

First, we consider the limiting behavior of ( )f W : 

( )lim 0
W

f W
→−∞

=                        (32) 

and for 0W  , since ( ) ~ eWf W , we look for ( )lim eW

W
f W

→+∞
− . Using 21 e

W

u
= , 

we find 

( )

2

2 2 30 0

11 1 1 1lim e lim lim .W

W u u

uu u
kf W

u k u u u→+∞ → →

+ −
− = + − =      (33) 

After applying the L’Hopital’s rule 3 times, we get 

( ) 1lim .
2W

f W
k→+∞

=                      (34) 

Next, with the limiting behavior of ( )g W : 

( ) lnlim .
2W

kg W
k→−∞

=                      (35) 

For 0W  , since ( ) 21~ ln 2e
W

g W
k

 
−   

 
, we get 

( ) ln 2lim 0.
2W

Wg W
k k→+∞

+ + =                  (36) 

Using this, we can find two approximations for ( )F W+ : 

( ) ln0 : ,
2

kW F W
k+ ≈                    (37) 

since  

( ) ( ) lnlim 0.
2W

kf W g W
k→−∞

  + − =    
              (38) 

( ) 1 10 : e ln 2 ,
2 2

W WW F W
k+
 ≈ + − − 
 

             (39) 

since  

( ) ( ) 1 1lim e ln 2 0.
2 2

W

W

Wf W g W
k→+∞

   + − + + − =      
      (40) 

This analysis shows that there are two approximations for ( )F W+ , for very 
large W and for very small W. In particular, ( )lim 0

W
F W−→−∞

=  but ( )lim
W

F W−→+∞
 

does not exist since ( )F W−  is subject to the constraint ( )lnW k< − − . 

4.2. Approximation of the Similarity Solution for Large and Small  
k 

We note that the function ( )F W+  represents a better approximation of 
( )0F W  for larger values of k  whereas the function ( )F W−  represents a bet-
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ter approximation of ( )0F W  for smaller values of k , which is demonstrated 
in Figure 4. In particular, the panel (a) shows the curve 0F  and F+  for 

0.1k =  and 10k = . It can be shown that 0lim
k

F F+→∞
= . The panel (b) compares 

the curve 0F  and F−  for 0.04k =  and 0.020k = . It can be shown that 

00
lim
k

F F−→
= , subject to the constraint (30). Finally, the panel (c) is used to com-

pare 0F  with F+  and F−  for 0.02k = . For this reason we call the exact solu-
tion (15) an attractor solution in the sense that 0F  is defined as the smallest 
unit which cannot be itself decomposed into two or more attractors with distinct 
basins of attraction. This restriction is necessary since, in general, a dynamical 
system may have multiple attractors, each with its own basin of attraction. 

5. Nonlinear Analysis 

We start by analyzing the exact attractor solution ( ),h tθ  representing the dev-
iation of the free boundary (see Equation (15)) form the unperturbed boundary 

1r ε= +  for the case 0k =  at different values of time t. As shown in Figure 5, 
the attractor solution is a decreasing function of t for a fixed value of θ  but it is 
an increasing function of θ  for a fixed value of time t. We will also apply the 
numerical technique to compare the attractor solution  

( )

2

2
09

h
t t
θ

=
−

                        (41) 

with the exact solution  

( ) ( )32, e W th tθ θ −=                       (42) 

for both cases when 0k >  and 0k < . The results are shown in Figure 6 and 
Figure 7. 
 

 

Figure 4. Approximation of ( )0F W  by ( )F W+  and ( )F W−  for larger and small 

values of k . We observe that 0lim
k

F F+→∞
= , as illustrated in panel (a) and 00

lim
k

F F−→
= , as 

illustrated in panel (b). Panel (c) is used to compare the curves F+  and F−  with 0F  
for the value of 0.02k = . 
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Figure 5. Attractor solution 
( )

2

2
09

h
t t
θ

=
−

 for the case 0k =  and different values of 

time 1, 2, 5t t t= = =  and 10t = . 
 

 

Figure 6. Comparison of the solution ( ),h tθ  for 0k >  with the attractor solution 
( )

2

2
09

h
t t
θ

=
−

 at 1t =  

and different values of k. Panel (a) shows the attractor solution (dotted red line) and the solution ( ),h tθ  

evaluated at 10k =  (dashed blue line) and ( ),h tθ  evaluated at 1k =  (solid green line) and panel (a) 

compares these solutions for the 10k =  and 1 as well, but evaluated at 2t = . 
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Figure 7. Comparison of the solution ( ),h tθ  for 0k <  with the attractor solution 

( )

2

2
09

h
t t
θ

=
−

 at 1t =  and different values of k. The attractor solution is plotted by the 

red line and the solution ( ),h tθ  evaluated at 0.4k = −  is shown by the blue line whe-

reas ( ),h tθ  evaluated at 0.1k = −  is shown by the green line. 

 
In particular, Figure 6 is used to compare the solution ( ),h tθ  given by (42) 

for 0k >  with the attractor solution given by (41) at 1t =  and different values 
of k. Panel (a) shows the attractor solution (dotted red line) and the solution 
( ),h tθ  given by (41) evaluated at 10k =  (dashed blue line) and 1k =  (solid 

green line). We can observe that the attractor solution represents a better ap-
proximation of the exact solution given by (41) at 10k =  then at 1k = , as ex-
pected from the asymptotic analysis showing that 0lim

k
F F+→∞

= . A similar con-
clusion holds for larger values of time t, as illustrated in Panel (b) of this figure, 
showing the solutions evaluated at 2t = . 

Similarly, Figure 7 is used to compare the nonlinear solution  
( ) ( )3 ,2, e W t kh tθ θ −=  given by (42) for 0k <  with the attractor solution  

( )

2

2
09

h
t t
θ

=
−

 given by (41) at 1t =  and different values of k. In this plot, the  

attractor solution is plotted by the red line and the solution ( ),h tθ  evaluated at 
0.4k = −  is shown by the blue line whereas ( ),h tθ  evaluated at 0.1k = −  is 

shown by the green line. We note that the similarity solution ( ),h tθ  is defined  

for 0k <  and 0
4

t
k

< < −
π , which covers the whole range of ( )F W− . 
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6. Fibonacci Spirals 

We associate the parameter k with the Fibonacci sequence { }nk  defined by 

1 2n n nk k k− −= −  with 0 1k =  and 1 1k = . Here each value nk  corresponds to  

the circular arc 
( )1

,
2 2

mmθ
π+ 

∈  
 

π , where 0,1,2,m = 
 so that 1 1k =  cor-

responds to the circular arc 0,
2

θ  π∈   
 with 0m = . Also 2 1k =  corresponds 

to the circular arc ,
2

θ π π∈   
 with 1m =  and 3 2k =  corresponds to the 

circular arc 
3,
2

θ  ∈  
π



π
 with 2m =  and so on. Next, the parameter 0t  is 

chosen for each value of k such that the endpoints of the arc segments  
( )1

,
2 2

mmθ
π+ 

∈  
 

π  connect continuously with the next circular segment 

( ) ( )1 2
,

2 2
m m

θ
+ + 

∈  


π



π
, for any given value of time t, so that 0 kt t t− = ∆ ,  

where we call k t∆  model hypermarameter and it is tuned for the given predic-
tive model represented by the Fibonacci spiral. We are tuning the hypermara-
meter in order to discover how the parameters nk  and 0t  of the model result 
in the given prediction. 

For example, for 1t = , the values of k t∆  corresponding to the first seven 
terms of Fibonacci sequence { }nk  are approximated by the values shown in 
Table (43). 
 

1k =  1k =  2k =  3k =  5k =  8k =  13k =  

0,
2

θ π ∈   
 ,

2
θ π ∈ π  

 3,
2 2

θ π π ∈   
 3 ,2

2
θ π ∈ π  

 52 ,
2

θ π ∈ π  
 5 ,3

2
θ π ∈ π  

 73 ,
2

θ π ∈ π  
 

1 0t∆ =  1 0t∆ =  2 0.22t∆ = −  3 0.287t∆ = −  5 0.338t∆ = −  8 0.367t∆ = −  13 0.385t∆ = −  

 

(43) 

The values of k t∆  are also shown in Figure 8 and the corresponding few 
circular arcs are shown in Figure 9. We observe that  

1
lim 0.41,kk t→∞ =

∆ = −                      (44) 

which is also seen from the Figure 8. 
In particular, based on the results for the hyperparameter k t∆  as shown in 

Table (43), we visualize our exact solution (15) for ( ) ( )32, e W th tθ θ −=  for 1t =  
in Figure 9 as the sequence of circular arcs plotted at the values of time given by 

kt t+ ∆ . For example, when 2k = , we evaluate our exact solution as a function 
of θ  at the value of time 1 0.22 1.22+ = . Similarly, when 3k = , we evaluate 
our exact solution as a function of θ  at the value of time 1 0.287 1.287+ =  and 
so forth. 
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Figure 8. The values of kt∆  calculated for the first fourteen terms of the Fibonacci sequence. 

 

 

Figure 9. First few circular segments connected with each other for the first few terms of 
the Fibonacci sequence. The smoothness of connected is designed by choosing the cor-
responding values of the hypermarameter kt∆ . 

 

Figure 10 is used to compare the attractor solution 
( )

2

2
09

h
t t
θ

=
−

 with the 

numerical approximation of the perturbation ( ) ( )32, e W th tθ θ −=  for 1k =  and 

8
θ π
=  and 

4
θ π
=  as the function of time t. We note that ( ),h tθ  represents  

the deviation of the free boundary from the unperturbed state 1r ε= + , so the 
feasible domain of h is given by 
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Figure 10. Comparison of the attractor solution with 0k =  with the numerical approximation of the 

perturbation ( ),h tθ  for 1k =  and 
8

θ π
=  and 

4
θ π
= . 

 

{ }: 0 ,h h h εΦ = ≤ ≤                     (45) 

where 1ε <  is a small parameter since it is assumed that the unperturbed level 
of atmospheric “depth” is small compared to the radius of the Earth. As Figure 
10 shows, h is a decreasing function of time t, but it is an increasing function of a 
polar angle θ , which means that our nontrivial solution is valid for only very 
small values of θ . 

Figure 11 is used to compare the free boundary given by ( )1 ,h tη θ= +  and 
the Fibonacci spiral for the first four values of k, namely, for 1,1,2,3k = . Ac-
cording to the values chosen as shown in Table (43), panel (a) shows the seg-
ment of the Fibonacci spiral (green circles) and the free boundary (blue solid 
line) evaluated at the values of 1k = , 1t =  and 0 0t = . Panel (b) compares the 
segment of the Fibonacci spiral and the free boundary evaluated at the values of 

1k = , 1t =  and 0 0t = . Panel (c) compares the segment of the Fibonacci spir-
al and the free boundary evaluated at the values of 2k = , 1.22t =  and 

0 0.22t = − . Finally, panel (d) compares the segment of the Fibonacci spiral and 
the free boundary evaluated at the values of 3k = , 1.287t =  and 0 0.287t = − . 

As it was discussed earlier, the solution for the free boundary perturbation 
( ),h tθ  is only valid in the domain hΦ  defined by (45), i.e. in a very narrow 

band 1h ε≤ < . For example, if 0.15ε = , we can see from Figure 10 that our  

solution is valid for very small values of θ  bounded by 0,
4

θ  π ∈ 
 

. Thus, for 

example, if 
4

θ =
π , the solution is bounded by 0.15h ≤ . So, in this domain,  

the Fibonacci spiral corresponding to 1k =  is a very good approximation of 
the nontrivial solution η , as shown in panel (a) of Figure 11. For larger values 
of k, we observe that the solution η  diverges from the Fibonacci spiral. 
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Figure 11. Comparison of the free boundary ( )1 ,h tη ε θ= +  and the Fibonacci spiral for the first three 

values of k. 

7. Discussions 

In this paper, we have analyzed and visualized the exact invariant solution of the 
nonlinear simplified version of the shallow water Equations (8) and (9)  

0,
0,

t

t

u uu h
h uh hu

θ θ

θ θ

+ + =

+ + =
                     (46) 

which are being used to simulate equatorial atmospheric waves of planetary 
scales. Our model is represented by the Cauchy-Poisson free boundary problem 
on the nonstationary motion of a perfect incompressible fluid circulating around 
a vortex field approximated by a circle of a large radius and the gravity is di-
rected to the center of the circle. The solution for the free boundary perturbation 
( ),h tθ  is only valid in a very narrow band 1h ε≤ < , as also shown schemati-

cally in Figure 12. We have shown that within this band, the Fibonacci spiral 
corresponding to 1k =  is a very good approximation of the nontrivial solution 
η , as shown in Figure 13. However, we observe that the solution η  diverges 
from the Fibonacci spiral for increasing values of k. In other words, the physi-
cally relevant part of the solution matches exactly the Fibonacci spiral. 

We also remark that the higher-order shallow water equations can be derived 
for our free boundary model and the higher-order approximation has the fol-
lowing form:  

0,
2t
h

u uu h h uu θ
θ θ θε  + + − + = 

 
               (47) 
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Figure 12. The model geometry. 
 

 

Figure 13. Comparison of the free boundary given by ( )1 ,h tεη θ= +  and the Fibonacci 

spiral evaluated at the values of 1k = , 1t =  and 0 0t = . 

 

( ) 0.th uh hu h uh huθ θ θ θε+ + − + =                (48) 

It is one of our goals for further studies to study the higher-order approxima-
tions (47) and (48) and see if the Fibonacci spiral can be a better approximation 
of the free boundary model for larger values of k.  

We also note that the model (8) and (9) is invariant under the group of trans-
formations 

( ) ( )1 2, , ,X h u h u
t

ξ ξ
θ

∞ ∂ ∂
= +

∂ ∂
               (49) 

where the functions ( ) ( )1 2, , ,h u h uξ ξ  solve the system of first-order equations  
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2 1 1 2 1 10, 0.h u h u u hu u hξ ξ ξ ξ ξ ξ+ − = − + =             (50) 

If we write the operator (49) as an infinitesimal transformation  

( ) ( )1 2, , , .t t h u h uξ θ θ ξ≈ + ≈ +              (51) 

The Equations (50) show that the infinitesimal transformation (51) changes 
the variables ( ),t θ  by adding to them an arbitrary solution of the system of li-
near differential equations  

0, 0,h u h u h ut ut ht utθ θ+ − = + − =              (52) 

and that the system (52) admits the infinitesimal transformation (51). 
Hence, the operator (49) is admitted both by the nonlinear system (8) and (9) 

and by the linear system (52). This fact predicts a possibility to map the nonli-
near Equations (8) and (9) to the linear system (52) by an appropriate change of 
variables. It is important to note that the linear system is homogeneous, i.e. in-
variant under the uniform dilation  

5 5e , ea at t θ θ= =  

produced by the operator 3X  from (11). 
We conclude that the operator (49) and the operator 3X  from (11) are re-

sponsible for the possibility of mapping of the nonlinear system (8) and (9) to 
the linear homogeneous system (52). Mapping the nonlinear model (8) and (9) 
to a linear system will be studies in the forthcoming paper. 
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Appendix: Outline of Methods from Lie Group Analysis 

Basic concepts from Lie group analysis of differential equations that are used in 
the present paper are assembled here. For further information regarding Lie 
groups and their applications to the theory of differential equations, the reader 
should consult the various classical and modern texts in the field, such as [24] 
[35]-[41].  

Definition of one-parameter groups. Let  

( ), , 1, , ,i iz f z a i N= =                   (A1) 

be a one-parameter family of invertible transformations of points  

( )1, , N Nz z z= ∈   into points ( )1, , N Nz z z= ∈  . Here a is a real para-
meter from a neighborhood of 0a = , and we impose the condition that Trans-
formation (A1) is an identity if and only if 0a = , i.e., 

( ),0 , 1, , .i if z z i N= =                    (A2) 

The set G of transformations (A1) satisfying Condition (A2) is called a (local) 
one-parameter group of transformations in N  if the successive action of two 
transformations is identical to the action of a third transformation from G, i.e., if 
the function ( )1, , Nf f f=   satisfies the following group property: 

( )( ) ( ), , , , 1, , ,i if f z a b f z c i N= =              (A3) 

where  

( ),c a bϕ=                         (A4) 

with a smooth function ( ),a bϕ  defined for sufficiently small a and b. The 
group parameter a in the transformation (A1) can be changed so that the func-
tion (A4) becomes c a b= + . In other words, the group property (A3) can be 
written, upon choosing an appropriate parameter a (called a canonical parame-
ter) in the form  

( )( ) ( ), , , .i if f z a b f z a b= +                 (A5) 

Group Generator. Let G be a group of transformations (A1) satisfying the 
condition (A2) and the group property (A5). Expanding the functions ( ),if z a  
into Taylor series near 0a =  and keeping only the linear terms in a, one ob-
tains the infinitesimal transformation of the group G: 

( ) ,i i iz z a zξ≈ +                       (A6) 

where 

( ) ( )
0

,
, 1, , .

i
i

a

f z a
z i N

a
ξ

=

∂
= =

∂
                 (A7) 

The first-order linear differential operator  

( )i
iX z

z
ξ ∂

=
∂

                         (A8) 

is known as the generator of the group G.  
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Invariants. A function ( )J z  is said to be an invariant of the group G if for 
each point ( )1, , N Nz z z= ∈   is constant along the trajectory determined by 
the totality of transformed points z : ( ) ( )J z J z= . 

The function ( )J z  is an invariant of the group G with Generator (A8) if and 
only if 

( ) ( ) 0.i
i

JX J z
z

ξ ∂
≡ =

∂
                     (A9) 

Hence any one-parameter group has exactly 1N −  functionally independent 
invariants (basis of invariants). One can take them to be the left-hand sides of 

1N −  first integrals ( ) ( )1 1 1 1, , N NJ z C J z C− −= =  of the characteristic equa-
tions for linear partial differential Equation (A9). Then any other invariant is a 
function of ( ) ( )1 1, , NJ z J z− . 

Invariant equations. We say that a system of equations 

( ) 0, 1, ,kF z k s= =                      (A10) 

is invariant with respect to the group G (or admits the group G) if the transfor-
mations (A1) of the group G map any solution of Equations (A10) into a solu-
tion of the same equations, i.e.,  

( ) 0, 1, ,kF z k s= =                      (A11) 

whenever z solves Equations (A10). The group G with the generator (A8) is ad-
mitted by Equations (A10) if and only if 

( ) ( )A10
0, 1, , ,kX F k s= =                   (A12) 

where the symbol |(A10) means evaluated on the solutions of Equations (A10). 
If z is a collection of independent variables ( )1, , nx x x=  , dependent va-

riables ( )1, , mu u u=   and partial derivatives ( ) { } ( ) { }1 2, ,i iju u u uα α= =  , of u 
with respect to x up to certain order, where 

2

, ,i iji i j

u uu u
x x x

α α
α α∂ ∂
= =
∂ ∂ ∂

  

then (A10) is a system of partial differential equations 

( )( )1, , , 0, 1, , .kF x u u k s= =                 (A13) 

Furthermore, if the transformations (A1) are obtained by the transformations 
of the independent and dependent variables 

( ) ( ), , , , ,x f x u a u g x u a= =                 (A14) 

and the extension of (A14) to all derivatives ( )1u , etc. involved in the differential 
Equations (A13), then Equations (A11) define a group G of transformations 
(A14) admitted by the differential Equations (A13). In other words, an admitted 
group does not change the form of the system of differential Equations (A13). 
The generator of the admitted group G is termed an infinitesimal symmetry (or 
simply symmetry) of the differential Equations (A13). Equations (A12) serve for 
obtaining the infinitesimal symmetries and are known as the determining equa-
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tions. These equations are linear and homogeneous and therefore the set L of its 
solutions is a vector space. Integration of determining equations often provides 
several linearly independent infinitesimal symmetries. Moreover, the determin-
ing equations have a specific property that guarantees that the set L is closed 
with respect to the commutator [ ]1 2 1 2 2 1,X X X X X X= − . Due to this property L 
is called a Lie algebra. If the dimension of the vector space L is equal to r, the 
space is denoted by rL  and is called an r-dimensional Lie algebra. An r- 
dimensional Lie algebra rL  generates a group depending on r parameters 
which is called an r-parameter group. 

Invariant solutions. Let the differential Equations (A13) admit a multi- 
parameter group G, and let H be a subgroup of G. A solution 

( ) , 1, ,u h x mα α α= =                    (A15) 

of Equations (A13) is called an H-invariant solution (termed for brevity an inva-
riant solution) if Equations (A15) are invariant with respect to the subgroup H. 
If H is a one-parameter group and has the generator X, then the H-invariant so-
lutions are constructed by calculating a basis of invariants 1 2, ,J J 

. 
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