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Abstract 
In this paper, we consider the norms related to spectral geometric means and 
geometric means. When A and B are positive and invertible, we have  

1 1# sA B A Bσ− −≤ . Let H be a Hilbert space and ( )B H  be the set of all 

bounded linear operators on H. Let ( )A B H∈ . If  

( )# , ,sA X A X X B Hσ ++= ∀ ∈  then A is a scalar. When A  is a C*- 

algebra and for any ,A B ++∈A , we have that log # log sA B A Bσ= , then 

A  is commutative.  
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1. Introduction 

The concept of means plays an important role in mathematics in general. In ma-
trix theory and operator theory, the study of means represents a very active re-
search field with wide spearing applications in various areas of pure and applied 
mathematics ([1]-[6]). There are many different approaches to matrix or opera-
tor means and the Kubo-Ando theory [7] is the mean we want to consider in this 
paper ([8]-[14]). Means are originally rather algebraic objects and they have 
close connection with the geometric features of the underlying structures. For 
example, the weighted arithmetic means ( )1 t A tB− + , 0 1t≤ ≤  of two elements 
A and B in a Euclidean space form the unique geodesic between A and B. Also 
the weighted geometric means  

( )1 2 1 2 1 2 1 2 , 0 1
t

A A BA A t− − ≤ ≤  

of two given positive definite matrices ,A B  form the unique geodesic in a 

How to cite this paper: Kong, X.R. (2022) 
On Some Properties of the Norm of the 
Spectral Geometric Mean. Journal of Ap-
plied Mathematics and Physics, 10, 3629- 
3634. 
https://doi.org/10.4236/jamp.2022.1012241 
 
Received: November 10, 2022 
Accepted: December 18, 2022 
Published: December 21, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.1012241
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.1012241
http://creativecommons.org/licenses/by/4.0/


X. R. Kong 
 

 

DOI: 10.4236/jamp.2022.1012241 3630 Journal of Applied Mathematics and Physics 
 

Riemannian structure on the positive definite cone of matrices which has many 
applications (see, e.g., Chapter 6 in [1]). 

Throughout this paper, we always assume that A  is an unital C*-algebra 
with unit I. Let  

( ) [ ){ }: selfadjoint, 0,x x xσ+ = ∈ ⊂ ∞A A  

and  

( ) ( ){ }: selfadjoint, 0, .x x xσ++ = ∈ ⊂ ∞A A  

We say A+  and ++A  are positive semidefinite cone and positive definite 
cone of C*-algebra A  respectively. For basic of C*-algebras and von Neu-
mann algebras, we refer to [15]. For a complex Hilbert space H , we let ( )B H  
be the set of all bounded linear operators on H  and ( )B +

H  be the positive 
semidefinite cone of ( )B H . There are several kinds of means defined on the 
positive definite cone ++A  of a C*-algebra A . The arithmetic mean, the  

harmonic mean and the geometric means are defined by 
2

A B+ , ( ) 11 12 A B
−− −+  

and 

1
1 1 1 12
2 2 2 2A A BA A

− − 
  
 

 respectively. These three means are special case of the 

Kubo-Ando means [7].  
Definition 1.1. A binary operation σ  on ( )B +

H  is a Kubo-Ando mean if 
1) I I Iσ = ; 
2) If ,A C B D≤ ≤ , then A C B Dσ σ≤ ; 
3) ( ) ( ) ( )C A B C CAC CBCσ σ≤ ; 
4) If ,n nA A B B↓ ↓  in strong operator topology, then n nA B A Bσ σ↓  in 

strong operator topology (here ↓  means monotone decreasing convergent in 
usual order on ( )B H  and all operators appeared are assumed in ( )B +

H ). 
Suppose A  is a C*-algebra. Let ++A  be the set of all positive invertible 

elements in A . We use 0A >  to denote that A ++∈A . The spectral geome-
tric mean is the operation defined by  

( ) ( )1 11 2 1 2
# # , , ,sA B A B A A B A Bσ − − ++= ∀ ∈A  

where 

1
21 1#A B A B A

A A
 

=  
 

 is the geometric mean of A and B. 

In [8], the authors studied the maps preserving the spectral geometric mean 
and many interesting results are obtained. There are many interesting and im-
portant results related to the norms of means (see [3] [9] [11] [13] and refer-
ences therein). 

In this paper, we give some results on norms related to spectral geometric 
means and geometric means. We first give a norm inequality related to the spec-
tral geometric mean and the geometric mean. We give a condition for an opera-
tor to be a scalar using norm equality between the spectral geometric mean and 
the geometric mean. We also show that a C*-algebra is commutative under cer-
tain conditions. 
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2. Main Results 

Suppose A  is a C*-algebra. For ,A B∈A , , 0A B >  (i.e., A and B are posi-
tive and invertible), 2AB A  is unitary equivalent to 2BA B . Note that since 

sA Bσ  is unitary equivalent to ( )1 #A A B A AB A− = , then we have that  

.sA X AX Aσ =  

Proposition 2.1. Suppose A  is a C*-algebra. For ,A B∈A , , 0A B > , we 
have 1 1# sA B A Bσ− −≤ . 

Proof. If 1
sA B tσ− ≤ , that is, 

1 1B t
A A

≤  and then 21 1B t
A A

≤ , 

this shows that 21 1B t I
A A

≤ . Then 2B t A≤ , that is, 2 2AB A t A≤ . 

This implies that AB A tA≤ , and this is equivalent to  

( )1 # ,A A B A tA− ≤  

that is, 1 #A B tI− ≤ . Therefore, 1 #A B t− ≤ . □ 
Proposition 2.2. Let H be a Hilbert space and ( )B H  be the set of all 

bounded linear operators on H. Let ( )A B H∈ . If  

( )# , ,sA X A X X B Hσ ++= ∀ ∈  

then A is a scalar.  

Proof. For any projection P, since 
1P I P
n

+ → , we have that  

# .A P AP A PAP= =  

In particular, if P is a rank-one projection (written as P x x= ⊗ ), we have 
that  

( )# , ,A P A P Pλ=  

where ( ),A Pλ  is the strength of A along P. This implies that  

( ), , .A P PAP Ax xλ = =  

Above equation is true for all x H∈ . Note that  

( ) 1 2 2 11, ,A P A x A x xλ
− −−−= =  

for all x H∈  with 1x = . Hence 1, , 1Ax x A x x− =  for every unit vector 
x H∈ . Then one can derive that  

2 1, , , .x Ax x A x x x H−= ∀ ∈  

Put Ax  in the above equation, we can see that  

1 22 1 2, , ,Ax A Ax Ax A x A x−=  

that is,  

https://doi.org/10.4236/jamp.2022.1012241


X. R. Kong 
 

 

DOI: 10.4236/jamp.2022.1012241 3632 Journal of Applied Mathematics and Physics 
 

2, ,Ax x A x x x Ax x= =  

for all x H∈ . Then xAx xλ=  for some xλ ∈ . For any ,x y H∈  with  
1x y= = , if x yα=  for some α ∈ , then we have that ( ) ( )xA x xαα λ α=  

and hence x xαλ λ= . If x yα≠  for any α ∈ , it follows from  

22 2x y
x y x yA λ +
+ +   =   

   
 

that  

( ) 2 .x y x yλ λ λ += =  

Therefore, we have that A Iλ=  for some λ ∈ . □ 
Proposition 2.3. Let A  be a C*-algebra. Suppose for any ,A B ++∈A , we 

have that  

log # log .sA B A Bσ=  

Then A  is commutative.  

Proof. Let 
1 1X B
A A

=  and Y A= . It follows that  

log # log log

1log log .
2

A B Y X Y Y Y X Y Y

YXY YXY

= =

= =
 

Put 1 2,Y A X B−= = , this shows that  

2

2 2

1 1 1 1 1log log ,
2

B B
A A A A

=  

that is,  

( ) ( )2 21, , ,
2T Td A B d A B=  

where Td  is the Thompson metric. Then 2A A�  is a non-isometric dilation, 
this forces A  is commutative (see [14], Theorem 18). 

3. Conclusion 

Mean is an important concept in mathematics. There are many interesting re-
sults from studying operator means. In this paper, we give some results on norms 
related to spectral geometric means and geometric means. We first give a norm 
inequality related to the spectral geometric mean and the geometric mean. We 
give a condition for an operator to be a scalar using norm equality between the 
spectral geometric mean and the geometric mean. We also show that a C*-algebra 
is commutative under certain conditions. 
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