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Abstract 
We propose a surreal spin theory. Our basic mathematical tools are the dya-
dic rational number which is one of the key mathematical notions in surreal 
number theory. We argue that from the perspective of such surreal numbers, 
bosons and fermions, and therefore supersymmetry, are mere particular cases 

of a very much larger dyadic spin structure which include 1
4

-spin (semio-

nics), 
1
8

-spin and in general 
2n

m
-spin, with m odd integer and n a positive 

natural number. Finally, we conjecture that this development could imply the 
existence of a surreal superstring theory. 
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1. Introduction 

In mathematics, from number theory history [1], one learns that, roughly speak-
ing, the starting point was the natural number N and after centuries of thought 
evolution one ends up with the real number R from which one constructs the 
differential and integral calculus. In physics, ironically, one starts with classical 
mechanics which is based on continuous function over the real R and ends up 
with quantum mechanics whose structure leads to change in our physical conti-
nuous observable quantities for discrete values based on the natural numbers N. 
The main lesson learned from these histories is that the underlying mathemati-
cal structure is, indeed, number theory. 

The orbital angular momentum L provides us the clearer example of the im-
portance of the underlying number theory. In fact, in classical mechanics, L is 
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considered in terms of the position and the momentum, both of which are as-
sumed to be continuous functions of time over the real R, while in quantum 
mechanics, in the Bohr model of the hydrogen atom, one has L n=   with   
the Planck fundamental constant and n N∈ . (In order to give emphasis to the 
numerical aspect let us just set units such that 1= .) So, let’s say, one uses L 
over R in planetary systems, but L over N in atomic scale systems. In any case, 
one observes that number theory is the basic mathematical notion, somehow 
hidden in this analysis. 

When one makes a reflection on the above comments at the level of funda-
mental particles one discovers that one needs to add the spin of particles which 
is in some cases, as the photon, a number in N, while in other cases, such as the  

electron ( 1
2

) or the gravitino ( 3
2

), is a number of the type 
2
m  with m odd. It  

turns out that particles with integer spin are called bosons, while particles with 
half integer spin are called fermions. It is worth mentioning that supersymmetry 
combines both types of particles: bosons and fermions. The interesting thing is 
that such numbers, integers and half integers are subsets of the rationals Q which 
in turn are contained in R. Thus, at the level of fundamental particles one seems 
to go backward from N to Q and perhaps later on to R, as we shall see below. So, 
one may ask the question: is it possible to have a mathematical structure that 
describes this numerical evolution of the spin concept at the level of fundamen-
tal particles? Here, we would like to propose the answer: surreal numbers theory. 

2. A Short Comment about Surreal Number Theory and  
Dyadic Rational Spin 

Let us briefly describe what a surreal number means. For this purpose consider 
the set 

{ }|L Rx X X=                          (1) 

and call LX  and RX  the left and right sets of x, respectively. In 1973, Conway 
[2] (see also Ref. [3]) developed the surreal numbers structure   from two 
axioms: 

Axiom 1. Every surreal number corresponds to two sets LX  and RX  of pre-
viously created numbers, such that no member of the left set L Lx X∈  is greater 
or equal to any member Rx  of the right set RX . 

Let us denote by the symbol   the notion of no greater or equal to. So the axiom 
establishes that if x is a surreal number then for each L Lx X∈  and R Rx X∈  one 
has L Rx x . This is denoted by L RX X . 

Axiom 2. One number { }|L Rx X X=  is less than or equal to another num-
ber { }|L Ry Y Y=  if and only if the two conditions LX y  and Rx Y  are sa-
tisfied. 

This can be simplified by saying that x y≤  if and only if LX y  and 

Rx Y . 
Observe that Conway definition relies in an inductive method; before a surreal 

https://doi.org/10.4236/jamp.2022.1012238


J. A. Nieto, J. A. Félix-Algandar 
 

 

DOI: 10.4236/jamp.2022.1012238 3588 Journal of Applied Mathematics and Physics 
 

number x is introduced one needs to know the two sets LX  and RX  of surreal 
numbers. Using Conway algorithm one finds that at the 2l -day one obtains 

2 12 1l + −  numbers, all of which are of form 

,
2n

mx =                            (2) 

where m is an integer and n is a natural number, 0n > . Of course, the numbers 
(2) are dyadic rationals which are dense not only in the rationals Q but also in 
the real R. It is also possible to show that the real numbers R are contained in the 
surreals   (see Ref. [2] [3] for details). Of course, in some sense, the proof re-
lies on the fact that the dyadic numbers (2) are dense in the real R. 

In 1986, Gonshor [4] introduced a different but equivalent definition of sur-
real numbers: 

Definition 1. A surreal number is a function f from initial segment of the or-
dinals into the set { },+ − . 

For instance, if f is the function so that ( )1f = + , ( )2f = + , ( )3f = − , 
( )4f = +  then f is the surreal number ( )+ + − + . In the Gonshor approach, 

one obtains the sequence: 1-day 

( ) ( )1 , 1,− = − + = +                       (3) 

in the 2-day 

( ) ( ) ( ) ( )1 12 , , , 2,
2 2

− = − − − = − + + − = + + + = +          (4) 

and 3-day 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3 13 , , ,
2 4 4

1 3 3, , , 3,
4 4 2

− = − − − − = − − + − = − + − − = − + +

+ − − = + + − + = + + + − = + + + + = +
       (5) 

respectively. Moreover, in Gonshor approach one finds the different numbers 
through the formula [4] 

11
1 0 1

1
,

2 2

p
k
k

k
l

εε
ε +

+
=

= + +∑                      (6) 

where { }1 1, 2,l ∈   and { }0 1 2, , , , ,pε ε ε ε ∈ + −  and 0 1ε ε≠ . As in the case of 
Conway definition, through (6) one gets the dyadic rationals. Just for clarity, let 
us consider the example: 

( ) 1 1 1 1 272 .
2 4 8 16 16

+ + − + − + = − + − + =                (7) 

By defining the order x y<  if ( ) ( )x yα α< , where α  is the first place 
where x and y differ and the convention 0− < < + , it is possible to show that 
the Conway and Gonshor definitions of surreal numbers are equivalent (see Ref. 
[4] for details). 

Let us focus in (6) with 0ε = +  (and therefore with 1 1ε = − ). Thus, (6) becomes 

( )
1

1 1
1

1 .
2 2

p
k
k

k
l

ε +
+ +

=

= − +∑                      (8) 
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It remains to clarify what index p, in the sum symbol, means. In order to cla-
rify this aspect instead of (8) one may write the more complete expression [5]: 

( ) ( )

( )

( )

( )
( )2 1

1 2 1

1 2 1
1 2

1
1

1 2 11
1

I , if 0
1II , if 1, 2
1III , if 1
2 2

l l
k
k

k

l l l

l l ll l

l l l
ε

+
− +

+
+

=

− =

 − − == 

 − + − >


∑

          (9) 

Notice that according to this expression one always has 2 1 0l l− ≥ . 
Similar analysis for 0 =ε −  and 1 =ε +  in (6) lead us to 

( ) ( )

( )

( )

( )
( )2 1

1 2 1

1 2 1
1 2

1
1

1 2 11
1

I , if 0
1II , if 1, 2
1III , if 1
2 2

l l
k
k

k

l l l

l l ll l

l l l
ε

−
− +

+
+

=

− − =

 − + − == 

 − + − − >


∑

        (10) 

Observe that ( ) ( ) ( ) ( )1 2 1 2, ,l l l l− += −  . The first thing that one notes is that 
(I) in (9) and (10) gives the integer numbers ( )Z +

 and ( )Z −
. By completeness  

one set ( ) ( )0,0 0± = . While (II) provides with the dyadic rationals 
2
m  where  

m is an odd element in the rationals ( )Q +
 and ( )Q −

. It turns out that from the 
point of view of the spin concept, (I) gives integer spin numbers Z correspond-
ing to bosons, while (II) establishes the half integer spin numbers corresponding 
to fermions. So, one concludes that (I) and (II) in (9) and (10) determine the 
spin numerical values for bosons and fermions, just the kind of particles consi-
dered in supersymmetry. So our contribution to this spin framework must come 
from (III) in (9) and (10). In order to have a better understanding of what exact-
ly one means by this, we shall consider several examples. 

Assume 1 1l = . In this case (9) becomes 

( ) ( )

( )

( )

( )
2

2

2
2

2
1

21
1

I 1, if 1

1II , if 21, 2

1III , if 2
2 2

l
k
k

k

l

ll

l
ε

+

−
+
+

=

=



== 

 + >

∑

             (11) 

This implies that from (I) and (II) one gets ( ) ( )1,1 1+ = , ( ) ( ) 11,2
2+ =  and 

from (III) one obtains ( ) ( ) 1 31,3 ,
4 4+

 =  
 

 , ( ) ( ) 1 3 5 71,4 , , ,
8 8 8 8+

 =  
 

  and so  

on. Since ( ) ( ) ( ) ( )1 2 1 2, ,l l l l− += −   one also has ( ) ( )1,1 1− = − ,  

( ) ( ) 11,2
2− = −  and ( ) ( ) 1 31,3 ,

4 4−
 = − − 
 

 , ( ) ( ) 1 3 5 71,4 , , ,
8 8 8 8−

 = − − − − 
 

  

and so on. Hence, according to these results in addition to particles with 1-spin 

and 1
2

-spin obtained from (I) and (II) our prediction is that there must exist 
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particles with 1 3,
4 4

 
 
 

-spin and 1 3 5 7, , ,
8 8 8 8

 
 
 

-spin and so on. It is interesting 

that particles with 1
4

-spin have already considered in the literature [6] [7] and 

[8]. But our prediction here is that 1
4

 
 
 

-spin gauge fields must be just part of a 

larger list of new dyadic 
2n

m
-spin particles, with m odd. 

An interesting combination between (11) and (9) (and (10)) is 

( ) ( ) ( )
( )( ) ( )0

1 2 2 1, 1, 1 ,l l l l+ += + −                  (12) 

with ( ) ( )0
2 2 1 1l l l= − −  [5]. This means that the tree ( )

( )( )0
21, l+  (and  

( )
( )( )0
21, l− ) plays the role of a main building block; any other tree ( ) ( )1 2,l l+  

with 1 1l >  can be obtained from (12). Surprisingly, ( )
( )( )0
21, l+  has been stu-

died in the context of Zeno algorithm [9] and Minkowskis question mark func-
tion [10]. In some sense if ( )

( )( )0
21, l−  were added to ( )

( )( )0
21, l+  and (12) 

was used the surreal numbers could be discovered for another routes, different 
than game theory. 

Another interesting aspect of the tree structure ( ) ( )1 2,l l+ , ( ) ( )1 2,l l−  and 

( ) ( )0,0±  is that one can derive in an alternative way how many numbers are 
created in the 2l -day. It is worth to mention that this notion of “day” is used by 
the mathematicians in spire of their development of surreal numbers theory is 
considered only in the mathematical context. First, let us use Gonshor formalism 
to answer this question. In the 0-day one starts with the number 0 and in the 1-day 
the numbers −1 and +1 are created, namely (−) and (+). While in the 2-day 4  

numbers are created, namely ( ) 2+ + = , ( ) 1
2

+ − = , ( ) 2− − = − , ( ) 1
2

− + = − , 

and so on. So one has that the series ( )2 11 2 1 2 4 8 2lt −= + + + + + +  determines  

the total numbers of surreal numbers that at the 2l -day are created. But using 
the identity 2 2 12 2 4 8 16 2 2l l ++ + + + + + =  one discovers that 2 12 1lt += − . 
Now, ( ) ( )1 2,l l±  is two parameter function 1l  and 2l . If one sets 1l  and 
change 2l  one moves vertically producing the corresponding tree, as 

( ) ( )21, l± . While if one sets 2l  and change 1l  one is moving horizontally. In 
this sense 2l  determines the day parameter used by the mathematician. As an  

example set 2 3l = . From (9) one obtains ( ) ( )3,3 3+ = , ( ) ( ) 32,3
2+ = , 

( ) ( ) 1 31,3 ,
4 4+

 =  
 

 , and the corresponding negatives. So, in the 3-day we have 8 

numbers and so one discovers the series 21 2 4 8 2lt = + + + + +  which is what 
one obtains with Gonshor approach. 

3. Surreal Numbers and Rational Dyadic Spin-Field 

Until now we have established a link between surreal number theory and the 
physical concept of spin. A natural question is; how such a numerical scenario 
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can be associated with gauge fields? Consider a plane wave gauge field ( )xαψ . 
One says that ψ  is a gauge field of spin s if satisfies the transformation rule 

e .is' θψ ψ=                          (13) 

In the case of the electromagnetism it is shown that for a wave propagating in 
the z-direction the 4-vector potential ( )A xαµ , in the Lorentz gauge, leads to the 
transformation 

e ,iA ' Aθ
± ±=                          (14) 

with 1 2A A iA± =  . While in the case of gravitational gauge field ( )h h xαµν νµ= , 
again propagating in the z-direction and in the Lorentz gauge, transforms as 

2e ,ih ' hθ± ±=                          (15) 

with 11 12h h ih± =  . Thus, (14) and (15) are used to say that electromagnetism and 
gravitation are gauge fields of 1-spin and 2-spin, respectively. From this rough 
analysis, one sees a patter; if there is just one spacetime index in the gauge field 
Aµ  the corresponding spin is 1, while if there are two indices in the symmetric 

gauge field Aµν  the spin is 2, whereby convenience we define A hµν µν≡ . There-
fore, if one considers a completely symmetric gauge field 

1 2 1l
Aµ µ µ  it is expected 

that the associated spin must be 1l . Just the integer numbers associated with 

( ) ( ),Z Z+ −
 and the neutral element ( )0Z  predicted in the surreal numbers (I) 

given in (9) and (10). 

We would like now to consider the case of 1
2

-spin gauge spinor field. In this 

case one has a complex spinor ( )a xαψ  which of course satisfies de Dirac equa-

tion [11] 

0ˆ 0.b
ab abp mµ

µγ δ ψ + =                      (16) 

Here, as it is known, the γ -matrices satisfy the Clifford algebra 

2 ,µ ν ν µ µνγ γ γ γ η+ = −                      (17) 

with ( )1,1,1,1diagµνη = −  and p̂ iµ µ= − ∂ . 
Comparing aψ  with Aµ  one notes two important differences; aψ  is com-

plex and the index a is spinorial, while Aµ  is real and contains the target 
space-time index µ . The complexity of aψ  can be solved by imposing a Majo-
rana condition ea b i a

bC θψ ψ= , where a
bC  is the charge conjugation matrix. Sim-

ilar observation applies to a field of the form 
1 2 1l

Aµ µ µ  which only contains the 
spacetime index 

11 2 lµ µ µ . So according to the previous discussion although 
both fields aψ  and 

1 2 1l
Aµ µ µ  are continuous function over the real their asso-

ciated spin structure is discrete. What if one now combines indices in the form 
aAµ ? For aAµ  one imposes, of course, the Majorana condition. The question 

emerges what is it the spin associated with the gauge field aAµ ? It is not  

difficult to guess that aAµ  is a field of 3
2

-spin (gravitino field). If we now con-

sider a Majorana gauge field of the form 
1 2 1l

aAµ µ µ  one must find that this cor-
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responds to a 12 1
2

l −
-spin field. But one has 1

1
2 1 1

2 2
l l−

= − , just as the surreal 

numbers in (II) in (9) and (10). Summarizing the 1l -spin (integer spin) struc-

ture of 
1 2 1l

Aµ µ µ  corresponds to (I) in (9) and (10), and 
1 2 1l

aAµ µ µ  with 

1
1
2

l − 
 

-spin (half integer spin) structure corresponds to (II) in (9) and (10). So,  

one can say that (I) and (II) correspond what in the literature is called “higher 
spin theories” (see Ref. [12] and references therein). Again the question emerges 
what could be the gauge field associated with (III) in (9) and (10)? 

In order to answer the above question let us again observe the indices in the 
gauge fields 

1 2 1l
Aµ µ µ  and 

1 2 1l

aAµ µ µ . One notes that, only because one intro-
duces an appropriate spinor index a, the numerical nature of the spin changes  

drastically from integer 1l  to half integer 1
1
2

l − 
 

. Observe also that the num-

ber 1
1
2

l − 
 

 enter (in the two first numbers) also in (III). So one should expect 

that in order to include lets say terms like 1
4

± -spin one must introduce a new  

type of index in the gauge field 
1 2 1l

aAµ µ µ . In fact, one finds that a gauge field of 
the form 

1 2 1l

aAAµ µ µ

±



 makes the job. But immediately the question arises: What 
could be the field equation that 

1 2 1l

aAAµ µ µ

±



 must satisfy? One can explore first 
aAA

+
 which we simply write as aAA . In the case of aA  the field equation is, of 

course, the Dirac Equation (16). It turns out that this equation is so important in 
quantum mechanics and supersymmetry that it seems difficult to modify in or-
der to make some room for the field aAA . Fortunately, we have a possible pro-
posal and this goes with the name of Elko field equation [13] [14]. 

First, recall that Dirac equation (16) can be considered as the “square root” of 
the Klein-Gordon equation. Surprisingly, in 2005 Ahluwalia and Grumiller [13] 
[14] proved that such a “square root” is not unique. In fact, assuming more gen-
eral helicity eigenvalues they proved that an alternative and different field equa-
tion 

0ˆ 0B B b
ab A ab A Bp imµ

µγ δ δ ε ψ + =                    (18) 

emerges which can also be reduced to the Klein-Gordon equation. They call 
their formalism Elko theory [13] [14]. Here, the indices ,µ ν , etc. run from 0 to 
3, the indices ,A B  run from 1 to 2 and the spinorial indices ,a b  run from 1 
to 4, with ABε  is the totally antisymmetric ε -symbol, with 12 211ε ε= = − . One 
of the interesting aspects of the Elko fields is that they provide one of the most 
interesting candidates for dark matter [15]. 

In contrast to the usual Dirac equation, (18) requires 8-component complex 
spinor field a

Aψ  rather than 4-component aψ  which is the case in equation (3). 
This is solved by imposing in a

Aψ  the kind of Majorana condition. Furthermore, 
the quantities B

Aδ  and B
Aε  in (1) establish that a

Aψ  is not eigen-spinor of the 
p̂µ
µγ  operator as aψ  in the Dirac equation (16). 
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It turns out that (18) can be generalized to the form [16] 

1 1
11 10

1 ˆ 0,
! !

l l
ll l

B B B B a
ab ab B BA A A A

ip m
l l

µ
µγ δ δ ε ψ + =  

 

 

            (19) 

where 1
1

l
l

B B
A Aδ 



 is the generalized Kronecker delta which is related to 1
1

l
l

B B
A Aε 



 by 

1 1 1
1 1 1

1 .
!

l l l
l l l

B B B B C C
A A C C A Al

δ ε ε=  

  

                    (20) 

It seems that l -rank totally antisymmetric tensor spinor fields of the form 

( )
1 laA A

xµψ ± ±


, is what one is looking for. An interesting feature of our formalism 
arises when one requires that the field 

1 laA Aψ


 satisfies the Grassmann-Plücker 
relations 

1 1[ ] 0,
l l

a a
A A B Bψ ψ =
 

                      (21) 

for each value of the index a in 
1 l

a
A Aψ


. Here, the bracket [ ]1l lA B B  means 
totally antisymmetric. Thus, one finds that due to (21) the field 

1 l

a
A Aψ


 is de-
composable and therefore can be written as 

1 1
1 1 1 1

,l l
l l l l

a ia ia a
A A a a i i A Aψ ε ψ ψ= Ω
  

                  (22) 

where the only non-vanishing terms of 
1 l

a
a aΩ


 are  
1 2 3 4
1 1 2 2 3 3 4 4 1Ω = Ω = Ω = Ω =
   

. The Majorana condition for 
1 l

a
A Aψ


 looks like 

1 1
e .

l l

a b i a
b A A A AC θψ ψ=

 

                     (23) 

One recognizes in (22) a kind of generalization of the Plücker coordinates for 
ai
Aψ . Hence, (22) determines one-to-one correspondence between the fields 

1 l

a
A Aψ


 and ai
Aψ . Using (23) one can make identification ai ai

A AAψ = . Thus, it 
seems that ai

AA  is the gauge field that one is looking for in order to make sense  

of 
2n

m
-spin gauge field, but further work is required. 

Just for completeness consider a complex state 2N
Cψ ∈  expressed as (see 

Ref. [17] and references therein) 

1 2
1 2

1

ˆ ˆ ˆ 1 2
ˆ ˆ ˆ, , , 0

ˆ ˆ ˆ .
N

N

NA A A
A A A

Q A A Aψ
=

= ∑




               (24) 

This is a N-qubit sate, where 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ

N NA A A A A A= ⊗ ⊗ ⊗   corres-
pond to a standard basis. In a particular subclass of N-qubit entanglement, the 
Hilbert space can be broken into the form 2N L lC C C= ⊗ , with 2N nL −=  and 

2nl = . Such a partition allows a geometric interpretation in terms of the com-
plex Grassmannian variety ( ),Gr L l  of l  plains in LC  via the Plücker embed-
ding. The idea is to associate the first N n−  and the last n indices of 

1 2ˆ ˆ ˆNA A AQ


 
with a L l×  matrix i

Av . This can be interpreted as the coordinates of the Grass-
mannian ( ),Gr L l  of l -plains in LC . Using the matrix i

Av  one can define the 
Plücker coordinates 

1
1 1 1

,l
l l l

ii
A A i i A Aε= v v
 

                     (25) 

which one can associate with (25) by making the identification i ai
A Aψ→v . Just 
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as in qubit theory the transformation v Sv→ , with ( ),S GL l C∈ , the Plücker 
coordinates transform as ( )Det S→   (see Ref. [17] for details) one discov-
ers that under ai i aj

A j ASψ ψ→  the field 
1 l

a
A Aψ


 transform as  
( )

1 1l l

a a
A A A ADet Sψ ψ→
 

. This shows that according to our previous discussion 

that the Plücker coordinates may be the key concept for surreal numbers 

framework and therefore in 
2n

m
-spin gauge field theory. It turns out that the  

Plücker coordinates are also a key concept in one of the possible definitions of 
realizable oriented matroids [18] (see also Refs. [19]-[26] and references there-
in). 

Surprisingly, the rebits (the real part of the complex qubits) can be connected 
surreal numbers and therefore one can also associate the Plücker coordinates of 

1 l

a
A Aψ


 with the surreal numbers. As we mentioned using Conway algorithm 
one finds that at the “ 2j -day” one obtains 2 12 1j + −  numbers all of which are of  

form 
2n

mx = , where m and n are integers numbers. Of course, these numbers  

are dyadic rationals which we already know that are dense in the real R. The 
mathematicians call ω -day when the surreal numbers lead to the real R. It is 
not difficult to prove that in the ω -day the tree ( ) ( )21, l±  leads to the interval 

( ) ( )21 1, 1l±− ≤ ≤  over the real R. In this context, one finds that in the ω -day 
one must associate a continuous spin over the real R. These types of continuous 
spins are of course very well known; particles with such spin are called anyons. 
The surprisingly thing is that the creation of surreal numbers do not finish in the 
ω -day, but can continue let’s say to the ( )1ω + -day, ( )2ω + -day, etc. What 
this means in the framework of physical spin is at present mysterious for us. 

4. Surreal sl(2,r) Correspondence 

It is worth mentioning that in Ref. [22] a connection between oriented matroid 
theory and super p-branes was established. Thus, according to the present de-
velopment, one may expect that eventually a link between super p-branes and 
surreal numbers may appear. Therefore one is tempting to believe that our pro-
posed surreal spin theory may emerge as a key structure in the quest for quantum 
gravity. A strongly evidence for this conjecture may come from the observation  

that 1
4

-spin and 3
4

-spin particles (semionic) have already been considered in a  

kind supergravity theories [7]. The relevant symmetry, in this case, is the 
( )2,SL R  group which has already been connected with superstrings [27] [28]. 

Let us express from the point of view of the surreal number structure the relev-
ance of this group in superstrings. 

Let us first introduce the generators iJ  of the group ( )1,1SU  which is iso-
morphic to ( )2,SL R , ( )1,2SO  or ( )2,Sp R  

1 2 30 0 1 0
, , ,

0 0 0 1
i i

J J J
i i

−     
= = =     −     

           (26) 
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which are of course related to the Pauli matrices in the form 1 21 2,
2 2

i iJ Jσ σ
= =  

and 0 3

2
J

σ
= . Thus, we find that the iJ  satisfies the algebra 

1 2 3 3 1 2 3 2 1, , , , ,J J iJ J J iJ J J iJ     = = = −                (27) 

and also 

1 ,
2

i j j i ijJ J J J η+ =
 

with ( )1, 1, 1ij diagη = − + + . As usual, in order to discuss any representation of 
( )2,SL R  one introduces the raising and lowering operators 

1 2

1 2

,
.

J J iJ
J J iJ

+

−

= +

= −
                        (28) 

Thus, one finds that the Casimir operator 

( ) ( ) ( ) ( )2 2 22 3 1 2 ,J J J J= − + +                  (29) 

becomes 

( ) ( ) ( )22 3 1 .
2

J J J J J J− + + −= − + +                 (30) 

With these algebraic tools, the unitary irreducible representation of ( )2,SL R  
can be obtained. Typically one has discrete and continuos representations, de-
pending of the eigenvalues k of 3J  and the eigenvalues q of the Casimir oper-
ator ( )2J . Here, however we are more interested in considering the exceptional 
representation 

( )31 1 1, , ,
2 2 4

J a a J aa J a a aa+ −= = = +† † † †            (31) 

where one assumes that †a  and a satisfies the typical expressions of the har-
monic oscillator, namely 

† 1 1 ,

1 ,

a n n n

a n n n

= + +

= −
                     (32) 

with 0,1,2,n =  . Observe that 
†.J J− +=                          (33) 

It is not difficult to see that (31) is consistent with (27). From (30), (31) and 
(32) one obtains 

( ) ( )21 1 1
2 4

J J J J n n n n− + + −+ = + +               (34) 

and 

( )3 1 2 1 ,
4

J n n n= +                      (35) 

and therefore we discover that 
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( )2 3 .
16

J n =                         (36) 

This means that the combination 

( ) ( ) ( ) ( ) ( )2 2 2 22† 1 2 1 2 3 3,J J J J J J i J J J J J− + + +  = = + + = + −      (37) 

leads to the formula 

23 0,
16

j j+ − ≥                        (38) 

with 
3 .J n j n=                         (39) 

In the minimum case, the solution of (38) corresponds to 1
4

j =  and 3
4

j = . 

Since 

( )1 1
2

J n n n n− = −                      (40) 

annihilate the vacuum for 0n =  and 1n = , that is 0 0J − =  and 1 0J − =  
the whole solution for n  can be separated in the even part 

3 1 12 ,
2 2

J n n n = + 
 

                    (41) 

corresponding to 1
4

j =  and odd part 

3 1 12 1 .
2 2

J n n n = + + 
 

                   (42) 

for the case 3
4

j = . One can make a contact with surreal numbers if one now 

observes that ( ) ( ) 1 31,3 ,
4 4+

 =  
 

 , ( ) ( ) 1 31,3 ,
4 4−

 = − − 
 

 , obtained from (III) 

in (9) and (10). But from (12) one gets 

( ) ( ) ( ) ( ) ( )1 1,3 1,3 1 .l l+ += + −                   (43) 

This means that 

( ) ( )1 1
1 1,3 1 1 .
2 4

l l± = − + − ±                   (44) 

So, by taking 

1 1,n l= −                           (45) 

one obtains the two eigenvalues (41) and (42) corresponding to 1
4

j =  and 

3
4

j = . 

5. Surreal Superstrings? 

Now we would like to pursue the idea of using the previous surreal ( )2,sl r  
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correspondence in order to develop a kind of surreal superstring theory. Fortu-
nately, there are a number of works, including “Cosets as gauge slices in ( )1,1SU  
strings” by Hwang [27] and “Strings in AdS3 and the SL(2, R) WZW Model; 1, 2, 
3” by J. Maldacena and H. Ooguri [28] among others, that establishes a bridge 
between the group ( )2,SL R  and strings. The starting point in these develop-
ments is to Fourier expand the generators of ( )2,SL R  in the form 

e , e ,a inx a inx
L n R nJ J J J

− +∞ ∞
− −

−∞ −∞

= =∑ ∑                (46) 

with 0, ,a = − +  and 

.x τ σ± = ±                          (47) 

We require that the generators a
nJ  satisfies the algebra 

3 3
,, ,

2n m n m
knJ J δ −  = −                       (48) 

3 , ,n m n mJ J J± ±
+  = ±                        (49) 

3
,, 2n m n m n mJ J J knδ− +

+ −  = − +                    (50) 

and the same for a
nJ . Of course, this algebra corresponds to the Hilbert space of 

the WZW model. It is not difficult to see that the origin of this algebra can be 
traced back to the algebra of the generators of ( )2,SL R , namely the expressions 
(27). For this reason this algebra we shall called (2, )SL R . 

The Virasoro generators are defined by 

( )23 3 3
0 0 0 0 0

1

1 2
2 m m m m m m

m
L J J J J J J J J J J J

k

∞
+ − − + + − − +

− − −
=

 = + − + + − −  
∑     (51) 

and 

3 3
0

1

1 2 ,
2n n m m n m m n m m

m
L J J J J J J

k

∞
+ − − +

≠ − − −
=

 = + − −  
∑            (52) 

which presumably satisfies the Virasoro algebra 

[ ] ( ) ( )3
,, ,

12n m n m n m
cL L n m L n n δ− −= − + −              (53) 

where 

3
2

kc
k

=
−

                          (54) 

is the central charge. 

6. Final Remarks 

From the above development, it becomes evident that the Fourier series of the 
generators (31) leads to straightforward contact with string theory. However, the  

eigenvalues 1
4

j =  and 3
4

j =  which are predicted by (31) become hidden spin 

structures. This is part due that our discussion has been based on a bosonic 
perspective but in fact from the original discussion one knows that semionic 
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particles with spin 1
4

j =  and 3
4

j =  behaves in very peculiar way. In particu-

lar, Zee [6] has studied the idea that the quasi-particles in the superconductors 
may be semions. Similarly, Sorokin and Volkov [8], using twistor-like formula-

tion, obtained supersymmetric equations for semions with spin 1
4

j =  and 

3
4

j = . Finally, Mezincescu and Townsend [7] develop the theory of semionic 

supersymmetric solitons. These works show, among other things, that the par-

ticles with spin 1
4

j =  and 3
4

j =  may be relevant at the supersymmetric level. 

As far as we know, besides the article [26], until now there seems not to be works 

considering 1 3 5 7, , ,
8 8 8 8

 
 
 

-spin or in general dyadic 
2n

m
-spin and therefore it  

turns out that surreal supersymmetry remains as an open problem. But at least 
from the above comments it becomes clear that surreal supersymmetry and sur-
real p-branes must be the relevant route for further work. 

Moreover, the present work may be of special relevant interest to be con-
nected with other related subjects in theoretical physics scenario such as the ones 
described in the Refs [29] and [30] in which it investigated the generation of 
1-spin field and the Pythagoreans figurative numbers, respectively. 
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