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Abstract 

Let ( ),M g  be a Riemannian manifold and G be a Kaluza-Klein metric on 

its tangent bundle TM. A metric H on TM is said to be symmetrically har-
monic to G if the metrics G and H are harmonic w.r.t. each other; that is the 
identity maps ( ) ( )id : , ,TM G TM H→  and ( ) ( )id : , ,TM H TM G→  are 

both harmonic maps. In this work we study Kaluza-Klein metrics H on TM 
which are symmetrically harmonic to G. In particular, we characterize and 
determine horizontally and vertically conformal Kaluza-Klein metrics H on 
TM, which are symmetrically harmonic to G. 
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1. Introduction 

The geometry of the tangent bundle TM of a Riemannian manifold ( ),M g  
started with the work of S. Sasaki in 1958. The Sasaki metric is naturally defined, 
it has been shown in many papers that a lot of geometric properties (like local 
symmetricity, having constant scalar curvature, being Einstein manifold, etc.) of 
tangent bundle with the Sasaki metric cannot be ensured unless the base mani-
fold is local flat. Recall that when the base manifold is local flat, the tangent bun-
dle with the Sasaki metric is local flat too. This rigidity leads mathematicians to 
search for other metrics like Cheeger-Gromoll metric ([1] [2] [3] [4] [5]). Later, 
Kaluza-Klein metrics are introduced on tangent bundles which generalize both 
Sasaki and Cheeger-Gromoll metrics (see [6] [7] [8] [9] for more information). 

Furthermore, harmonic metrics arised from an interesting application of har-
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monic maps and have been introduced by the authors in [10]. Let  
( ) ( ): , ,M g N hφ →  be an immersion between two Riemannian manifolds ( ),M g  

and ( ),N h . If φ  is a harmonic map, then hφ∗  is a Riemannian metric on M 
such that the identity map ( ) ( ): , ,MId M g M hφ∗→  is a harmonic map [11]. 
Thus for a given Riemannian manifold ( ),M g , it became natural and interest-
ing to seek for pseudo-Riemannian metrics g  on M for which the identity map 

( ) ( ): , ,MId M g M g→  is a harmonic map. Such metrics are said to be har-
monic with respect to the given metric g. The authors in [12], who introduced 
formally the notion, obtained an intrinsic characterization of harmonic metrics 
and used it to extend the definition of harmonicity to symmetric ( )0,2 -tensors. 

Let G be a Kaluza-Klein metric on the tangent bundle TM of a Riemannian 
manifold ( ),M g . We study Kaluza-Klein metrics H on the tangent bundle TM 
such that G and H are harmonic with respect to each other. We then say that the 
metrics G and H are symmetrically harmonic. In the next section, Section 2, we 
give some basics and known results on the Kaluza-Klein metrics, and on har-
monic metrics. In Section 3, we characterize symmetrically harmonic Kalu-
za-Klein metrics on ( ),TM G  and we study the special cases where such metrics 
are moreover horizontally and vertically conformal to G. We determine all these 
metrics for tangent bundles ( ),TM G  on Riemannian surfaces ( ),M g . In the 
case of n-dimensional Riemannian manifold with 3n ≥ , we determine these 
metrics for a subclass of Kaluza-Klein metrics G. 

2. Preliminaries 
2.1. Kaluza-Klein Metrics on Tangent Bunbles 

Let ( ),M g  be a Riemannian manifold and ∇  the Levi-Civita connection of g. 
The tangent space of TM at a point ( ),x u TM∈  splits into the horizontal and 
vertical subspaces with respect to ∇ :  

( ) ( ) ( ), , , .x u x u x uT TM H M V M= ⊕  

A system of local coordinates ( ); , 1, ,iU x i m= �  in M induces on TM a sys-
tem of local coordinates ( )( )1 ; , , 1, ,i

iU x u i mπ − = � . 

Let 1
m i
i

i

X X
x=

∂
=

∂∑  be the local expression in U of a vector field X on M. 

Then, the horizontal lift hX  and the vertical lift vX  of X are given. 
With respect to the induced coordinates, by:  

, ,

h i i j k
jk i

i i j ki

X X u X
x u
∂ ∂

= − Γ
∂ ∂∑ ∑                  (1) 

and 

,v i
i

i
X X

u
∂

=
∂∑                         (2) 

where the i
jkΓ  is Christoffel’s symbols defined by g.  

Next, we introduce some notations which will be used to describe vectors ob-
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tained from lifted vectors by basic operations on TM. Let T be a tensor field of 
type ( )1, s  on M. If 1 2 1, , , s xX X X T M− ∈� , then ( ){ }1 1, , , , sh T X u X −� �  
and ( ){ }1 1, , , , sv T X u X −� � ) are horizontal and vertical vectors respectively at 
the point ( ),x u  which are defined by:  

( ){ }1 1 1 1
|

, , , , , , , ,
h

s s
x

h T X u X u T X X
x

λ

λ
− −

  ∂ =    ∂  
∑� � � �  

( ){ }1 1 1 1
|

, , , , , , , , .
v

s s
x

v T X u X u T X X
x

λ

λ
− −

  ∂ =    ∂  
∑� � � �  

In particular, if T is the identity tensor of type ( )1,1 , then we obtain the geo-

desic flow vector field at ( ),x u , ( )
( )

,
,

h

x u
x u

u
x

λ
λ

λ

ξ
 ∂

=  ∂ 
∑ , and the canonical 

vertical vector at ( ),x u , ( )
( )

,
,

v

x u
x u

u
x

λ
λ

λ

 ∂
=  ∂ 
∑ .  

Also ( ){ }1, , , , , , s th T X u u X −� � �  and ( ){ }1, , , , , , s tv T X u u X −� � �  are 
defined by similar way.  

Let us introduce the notations  

( ){ } ( )1 1, , : , , h
s sh T X X T X X=� �                 (3) 

and  

( ){ } ( )1 1, , : , , .v
s sv T X X T X X=� �                 (4) 

Thus { } hh X X=  and { } vv X X= , for each vector field X on M.  
From the preceding quantities, one can define vector fields on TU in the fol-

lowing way: If i
i

i x

u u
x

 ∂
=  ∂ 
∑  is a given point in TU and 1 1, , sX X −�  are 

vector fields on U, then we denote by  

( ){ } ( ){ }( )1 1 1 1, , , , respectively , , , ,s sh T X u X v T X u X− −� � � �  

the horizontal (respectively vertical) vector field on TU defined by  

( ){ }1 1 1 1, , , , , , , ,
h

s sh T X u X u T X X
x

λ

λ λ
− −

 ∂
=  ∂ 
∑� � � �  

( ){ }1 1 1 1resp. , , , , , , , , .
v

s sv T X u X u T X X
x

λ

λ λ
− −

  ∂ =   ∂  
∑� � � �  

Moreover, for vector fields 1, , s tX X −�  on U, where ( ),s t s t∗∈ >� , the 
vector fields ( ){ }1, , , , , , s th T X u u X −� � �  and ( ){ }1, , , , , , s tv T X u u X −� � �  
on TU, are defined by similar way. 

Definition 2.1 Let ( ),M g  be a Riemannian manifold and dim 2M ≥ . A 
metric G on TM is called a Kaluza-Klein metric induced by the metric g, if there 
exists three functions 0 1,α α  and :β + →  , such that for any x M∈  and 
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all vectors , , xu X Y T M∈  we have:  

( ) ( )( ) ( )1 0, , ,h hG X Y t g X Yα α= +                  (5) 

( ), 0,h vG X Y =  

( ) ( ) ( ) ( ) ( ) ( )1, , , , ;v vG X Y t g X Y t g X u g Y uα β= +  

where ( ),xt g u u= , hX  and vX  are respectively the horizontal lift and the 
vertical lift of the vector xX T M∈  at the point ( ),x u TM∈ . 

For dim 1M = , the same holds with 0β = .  
Notations 2.2  

 ( ) ( ) ( )0 0 ,t t t t tφ α β += − ∀ ∈� ;  
 ( ) ( ) ( )1 1 ,t t t t tφ α β += + ∀ ∈� ;  
 ( )1 1 0α α α α= + ; 
 ( )1 1 0φ φ φ φ= + .  

Proposition 2.3 Let ( ),M g  be a Riemannian manifold. A Kaluza-Klein me-
tric on the tangent bundle TM of ( ),M g  and defined by the functions 0 1,α α  
and β  of Defintion 2.1, is Riemannian if and only if:  

( ) ( )1 10, 0t tα φ> >  and ( )( )1 0 0, .t tα α ++ > ∀ ∈�           (6) 

Next, we are going to present the inverse of a Riemannian Kaluza-Klein me-
tric. 

Let ( ), , 1, ,iU x i m= �  be a local coordinates system of a Riemannian mani-
fold ( ),M g  and ( )( )1 ; , , 1, ,i

iU x u i mπ − = �  its induced coordinates system 
on TM.  

Let G be a Riemannian Kaluza-Klein metric on TM defined by the functions 

0 1,α α  and β  of the Definition 2.1. Let us consider the matrix-valued func-
tions on ( )1 Uπ −  defined by  

( )0 0 , 1 , ,ij i jM g u u i j mα β= − ≤ ≤                  (7) 

( )1 1 , 1 , ;ij i jM g u u i j mα β= + ≤ ≤                  (8) 

where ijg  and iu  are the functions on ( )1 Uπ −  given by ( ),
i jij x xg g π= ∂ ∂� , 

k
i iku g u=  and ; , 1, ,

i
i

x
x

i j m∂
∂ = =

∂
� . 

So 1 0

1

0
0

M M
M

+ 
 
 

 is the matrix-valued functions of 
( )| 1 U

G
π −

 with respect 

to the local frame ( )
1, ,

,
i i

h v
x x i m=

∂ ∂
�

 on ( )1 Uπ − . We shall denote  

1 0

1

0
.

0
M M

G
M

+ 
≡  
 

                      (9) 

If G is a Riemannian Kaluza-Klein metric, its inverse 1G−  has the form  

1 0
,

0
G− Λ 

≡  Ω 
                        (10) 
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where ( )
1 ,

ij

i j m
λ

≤ ≤
Λ =  and ( )

1 ,

ij

i j m
ω

≤ ≤
Ω =  are square matrix-valued functions 

of order m, defined on ( )1 Uπ − . 
Proposition 2.4 [13] If G is a Riemannian Kaluza-Klein metric, the elements 

of the matrix-valued functions in (10) are given on ( )1 Uπ −  by  

( )
( )

1 ,ij ijt
g

t
α

λ
α

=                         (11) 

( )( )
( )

( )
( ) ( )

1 0

1 1

,ij ij i jt t
g u u

t t t
α α β

ω
α α φ
+

= −               (12) 

where ( )
1 ,

ij

i j m
g

≤ ≤
 denotes the inverse of ( )1 ,ij i j m

g g
≤ ≤

≡ , ( ),t g u u=  for any 
p U∈  and for any 

k

k
x pu u T M= ∂ ∈ . Then the blocks of the matrix-valued 

functions in (10) satisfy:  

( ) ( )( )
1 ,

, , ,ij

i j m
p u p uλ

≤ ≤
Λ ≡                  (13) 

( ) ( )( )
1 ,

, , ;ij

i j m
p u p uω

≤ ≤
Ω ≡                  (14) 

for all p U∈ , |1 i p

m i
x piu u T M

=
= ∂ ∈∑ . Furthermore, the Levi-Civita connection 

∇�  of a Riemannian Kaluza-Klein metric is defined by the following Proposition. 
Let ( ),x u TM∈  and ( ),X Y M∈X , we have  

( )( )
( )( ) ( ){ },,

; , ,h
hh

X x xx uX x u
Y Y v B u X Y∇ = ∇ +�            (15) 

( )( )
( )( ) ( ){ },,

; , ,h
vv

X x xx uX x u
Y Y h C u X Y∇ = ∇ +�            (16) 

( )( )
( ){ }

,
; , ,v

h
x xX x u

Y h C u Y X∇ =�                 (17) 

( )( )
( ){ }

,
; , ;v

v
x xX x u

Y v F u Y X∇ =�                 (18) 

where  

( ) ( ) ( ) ( ) ( )1 0

1

1 1; , , , , ,
2 2

B u X Y R X u Y R Y u X g X Y u
α α

φ

′+
= − + −     (19) 

( ) ( ) ( ) ( ) ( )1 01

1 0 1 0

; , , , ,
2

C u X Y R Y u X g Y u X
α αα

α α α α

′+
= − +

+ +
      (20) 

( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1 1

1

1 1

; , , , ,

1 2 , , ;

F u X Y g X u Y g Y u X g X Y u

g X u g Y u u

α α β α
α α φ

α β
β

φ α

′ ′ ′ −
= + +  

 
′ 

′+ − 
 

    (21) 

for all x M∈  and , , xu X Y T M∈ , ∇  is the Levi-Civita connection of g, and R 
is the Riemannian curvature of g.  

2.2. Harmonic Maps, Harmonic Metrics 

Definition 2.5 Let ( ) ( ): , ,M g N hϕ →  be a 2C  map between two Rieman-
nian manifolds ( ),M g  and ( ),N h  with compact support. The energy density 
of ϕ , denoted by ( )e ϕ  is defined by:  
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( )
2

,
2

d
e

ϕ
ϕ =  

where dϕ  is the Hilbert-Schmidt norm of dφ  induced by the metrics g and 
h on ( ) 1T M TNϕ∗ −⊗  that is defined by:  

( )2 .gd tr hϕ ϕ∗=  

In local coordinates, ( )
2

ij

i j
ge h α β

αβϕ ϕ ϕ= ∂ ∂ . The Dirichlet energy of ϕ , over 

M is defined by  

( ) ( ) ,gM
E e dvϕ ϕ= ∫  

where gdv  is the volume measure induced by g. 
The map ϕ  is said to be harmonic, if it is a critical point of the energy func-

tionnal E.  
In the case where the map ϕ  has a noncompact support, the map ϕ  is said 

to be harmonic if its restriction to any compact subset of M is harmonic. 
The Euler-Lagrange equations with respect to the energy functional E ob-

tained by the first variation formula give rise to the following characterization: 
the map ( ) ( ): , ,M g N hϕ →  is harmonic if and only if its tension field ( )τ φ  
vanishes identically, where ( )τ φ  is the contraction w.r.t. g of the second fun-
damental form 

1TN dϕ ϕ
−

∇  of ϕ  defined by 

( ) ( )( )

( ) ( ) ( ) ( )

1 1
,

, , ,

TN TN
X

N M
Xd X

d X Y d Y

d Y d Y X Y TM

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

− −
∇ = ∇

= ∇ − ∇ ∀ ∈Γ
 

with M∇  and N∇  the Levi-Civita connections on ( ),M g  and ( ),N h  re-
spectively. 

In local coordinates ( ) 1

m
i i

x
=

 at x M∈  and ( )
1

n
uα

α =
 at ( )f x N∈ , the Eu-

ler-Lagrange equations are given by the system:  

0 for all 1, , ,ij
g

j i

f ff g n
x x

γ β
α α

γβ α∂ ∂
−∆ + Γ = =

∂ ∂
�  

where g∆  is the Laplace-operator on ( ),M g  and α
γβΓ  the Christoffel sym-

bols of ( ),N h .  
Let ( ),M g  be an m-dimensional Riemannian manifold. It is easy to check 

that the identity map ( ) ( ): , ,MId M g M g→  is harmonic. However if we con-
sider another metric h on M, then the identity map ( ) ( ): , ,MId M g M h→  is 
not any more automatically harmonic. A metric h on M is said to be harmonic 
w.r.t. g if the identity map ( ) ( ): , ,Id M g M h→  is harmonic. 

In a local coordinate system ( ) 1

m
i i

x
=

 on M, the metric h is harmonic w.r.t. g if 
and only if:  

( ) 0 , 1, , ,ij k k
ij ijg k mΓ −Γ = = �  

where k
ijΓ  and k

ijΓ  are the Christoffel symbols w.r.t. g and h respectively. 
Furthermore  

( ) ,
k

ij k k
ij ij xgτ = Γ −Γ ∂                      (22) 
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is called the tension field of the identity map ( ) ( ): , ,MId M g M h→ .  
Equivalently the metric h is harmonic w.r.t. g if and only if  

( ) 2 0,gd tr h hδ+ =  

where d and δ  are the differential and the codifferential operators defined on 
( ),M g  respectively. From this characterization, a symmetric ( )0,2 -tensor T 
on ( ),M g  is said to be harmonic with respect to g if it satisfies equation  

( ) 2 0.gd tr T Tδ+ =  

Some interesting results have been obtained on harmonic symmetric ( )0,2 - 
tensors by some authors like in [14].  

Let us notice that the relation “be harmonic to” between metrics is not a 
symmetric relation; the fact that the metric h is harmonic w.r.t. g does not imply 
that g is harmonic w.r.t. h. 

3. Symmetrically Harmonic Kaluza-Klein Metrics 

Definition 3.1 Let ( ),M g  be a Riemannian manifold, G, G  be two Rie-
mannian Kaluza-Klein metrics on its tangent bundle TM, respectively defined by 
the functions ( )0 1, ,α α β  and ( )0 1, ,α α β  as in Definition 2.1. The metrics G 
and G  are said to be symmetrically harmonic metrics if the metric G  is har-
monic with respect to G, and the metric G is harmonic with respect to G .  

Let ( ),M g  be a Riemannian manifold and G, G  be two Riemannian Kalu-
za-Klein metrics on its tangent bundle TM, respectively defined by the functions 
( )0 1, ,α α β  and ( )0 1, ,α α β  as in Definition 2.1 with 1 1 tφ α β= + , 1 1 tφ α β= + , 

t +∀ ∈� . Then by direct computations, we obtain the tension field τ  of the 
identity map ( ) ( ): , ,TMId TM G TM G→  as follows:  

( ) ( ) ( )

( )

( ) ( )

1 0 1 0 1 1

1 1 1 0 1 1 1 1 1

1 1

1 1 1 1 1

21 1
,

1 1 1 1 1 1 1 1 1

12 ,

,

12 2 , , x

n g u u

n g u u

g u u g u u u

α α α α α α βτ
φ φ α α α α α α φ

β α β α β
φ φ α α φ

α β α ββ β β
φ α φ φ α φ α α φ

 ′ ′+ + ′ ′   = − + + − −     +    
′ ′  − −

+ − −  
  
  ′ ′     ′ ′ + − − − −       
         

( ) ,
v

u

 (23) 

for all x M∈  and for all xu TM∈ ; where dimn M= , 2n ≥ . 
Then we obtain the tension field τ  of the identity map  

( ) ( ): , ,TMId TM G TM G→  as follows:  

( ) ( ) ( )

( )

( ) ( )

1 0 1 0 1 1

1 1 1 0 1 1 1 1 1

1 1

1 1 1 1 1

21 1
,

1 1 1 1 1 1 1 1 1

12 ,

,

12 2 , , x

n g u u

n g u u

g u u g u u u

α α α α α α βτ
φ φ α α α α α α φ

β α β α β
φ φ α α φ

α β α ββ β β
φ α φ φ α φ α α φ

 ′ ′+ + ′ ′   = − + + − −     +    
′ ′  − −

+ − −  
  
  ′ ′     ′ ′ + − − − −       
         

( ) ,
v

u

 (24) 
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for all x M∈  and for all xu T M∈ ; where dimn M= , 2n ≥ . 
It follows that:  
Proposition 3.2 Let ( ),M g  be a n-dimensional Riemannian manifold with 

2n ≥ , G and G  be two Riemannian Kaluza-Klein metrics TM, respectively de-
fined by the functions ( )0 1, ,α α β  and ( )0 1, ,α α β  as in Definition 2.1 with  
dim 2M n= ≥  and ( ) ( ) ( )1 1t t t tφ α β= + , ( ) ( ) ( )1t t t tφ α β= +  for all t +∈ . 

Then the Kaluza-Klein metrics G and G  are symmetrically harmonic if and 
only if 

( ) ( )1 0 1 0 1 1

1 1 0 1 1 1 1 11

1 1

1 1 1 11

21 1

1 1 1 1 1 1 1 1 1

12

12 2 0

n t

n t

t t

α α α α α α β
φ α α α α α α φφ

β α β α β
φ α α φφ

α β α ββ β β
φ α φ φ α φ α α φ

 ′ ′+ + ′ ′   − + + − −    +    
 ′ ′  − −

+ − −     
 ′ ′     ′ ′

+ − − − − =      
       

    (25) 

and  

( ) ( )1 0 1 0 1 1

1 1 1 0 1 1 1 1 1

1 1

1 1 1 1 1

21 1

1 1 1 1 1 1 1 1 1

12

12 2 0

n t

n t

t t

α α α α α α β
φ φ α α α α α α φ

β α β α β
φ φ α α φ

α β α ββ β β
φ α φ φ α φ α α φ

 ′ ′+ + ′ ′   − + + − −    +    
′ ′  − −

+ − −  
  
 ′ ′     ′ ′

+ − − − − =      
       

    (26) 

for all t +∈ , where the functions 0 1 1 0 1 1, , , , , , ,α α β φ α α β φ  and their deriva-
tives are evaluated at t.  

Conformally and Symmetrically Harmonic Kaluza-Klein Metrics 

Definition 3.3 Let ( ),M g  be a Riemannian manifold, G and G  be two 
Kaluza-Klein metrics on the tangent bundle TM. 

The metrics G and G  on TM are said to be respectively horizontally and 
vertically conformal if there exist two positive functions 0l  and 1l  defined on 

+  such that  

( ) ( ) ( )0, , ,h h h hG X Y l t G X Y=                   (27) 

( ) ( ) ( )1, , ;v v v vG X Y l t G X Y=                   (28) 

for all x M∈  and for all , , xu X Y T M∈ , where ( ),t g u u= , hX  and vX  
are respectively the horizontal lift and the vertical lift of the vector xX T M∈  at 
the point ( ),x u TM∈ .  

By direct computations using Proposition 3.2 and Definition 3.3 we have:  
Proposition 3.4 Let ( ),M g  be an n-dimensional Riemannian manifold with 

2n ≥ , G and G  be two Kaluza-Klein metrics on the tangent bundle TM such 
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as G and G  are horizontally and vertically conformal with conformal factors 

0l  and 1l  as in Definition 3.3. 
Then the Kaluza-Klein metrics G and G  are symmetrically harmonic if and 

only if  

( ) ( ) ( )1 0
0 1 0 1

1 0

2 0nl n l n l l
α α
α α

′+
′ ′+ − + − =

+
             (29) 

and 

( ) ( ) ( )1 0
0 1 1 0 1 0 1

1 0

2 0,nl l n l l n l l l
α α
α α

′+
′ ′+ − + − =

+
           (30) 

where ( )1 0α α+  is the positive function such as  

( ) ( )( ) ( )1 0, , ,h hG X Y t g X Yα α= +  

for all x M∈  and for all , , xu X Y T M∈ .  
In the cases of tangent bundles on Riemannian surfaces ( ),M g , we obtain 

the following result: 
Theorem 3.5 Let ( ),M g  be a Riemannian surface, G and G  be two hori-

zontally and vertically conformal Kaluza-Klein metrics TM with conformal fac-
tors 0l  and 1l  as in Definition 3.3. 

Then the metrics G and G  are symmetrically harmonic if and only if 0 0l > , 

1 0l >  and there exists a constant real number 0k  such as  

( ) ( ) ( )
( )( )

0 1 0 10
0

1 0

d
;

t
k s l s s

l
t

α α

α α

′+ +
=

+
∫                  (31) 

where 1 0α α+  is the positive function such as ( ) ( )( ) ( )1 0, ,h hG X Y t g X Yα α= +  
for all x M∈  and for all , , xu X Y T M∈ , with ( ),t g u u=  and hX  is the ho-
rizontal lift of X at ( ),x u .  

Proof: 
Let ( ),M g  be a Riemannian manifold such as dim 2M n= = . Let G and 

G  be two Riemannian Kaluza-Klein metrics induced by g on the tangent bun-
dle TM such as  

( ) ( ) ( )0, , ,h h h hG X Y l t G X Y=  

( ) ( ) ( )1, , ;v v v vG X Y l t G X Y=  

for all x M∈  and for all , , xu X Y T M∈ , where ( ),t g u u= , hX  and vX  
are respectively the horizontal lift and the vertical lift of the vector xX T M∈  at 
the point ( ),x u TM∈ . 

Then G and G  are symmetrically harmonic if and only if Equations (29) and 
(30) hold. Now these equations are equivalent to the linear differential equation 
of first degree with second member  

( ) ( )1 0 1 0
0 0 1

1 0 1 0

.l l l
α α α α
α α α α′

′ ′+ +
+ =

+ +
                 (32) 
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So by solving this differential equation by the method of variation of constants 
by example, we obtain the solutions in (31). This completes the proof. 

  
Remark 3.6  
1) If 1 1l =  and ( )( )0 1 0 0 0k α α= + >  in (31) then 0 1l = , and we obtain 

then the trivial case G G= .  
2) In the cases where G is Sasaki metric or Cheeger-Gromoll metric induced 

by g, we have ( )1 0 0α α ′+ =  in (31), so for any positive function 1l  on +  
and any positive constant real number 0l , the pair ( )0 1,l l  induces a horizon-
tally and vertically conformal Kaluza-Klein metric G  which is symmetrically 
harmonic to G. 

For a special class of Kaluza-Klein metrics we have the following result:  
Theorem 3.7 Let ( ),M g  be a Riemannian manifold with dim 3M ≥ , G be 

a Kaluza-Klein metric induced on TM such that the sum ( )1 0α α+  of Defini-
tion 2.1 is constant positive on +  with ( ) ( ) ( )1 0, ,h hG X Y g X Yα α= + , for all 
x M∈  and for all , , xu X Y T M∈ , with hX  is the horizontal lift of X at 
( ),x u . 

Let G  be a Riemannian Kaluza-Klein on TM and which is horizontally and 
vertically conformal to G with conformal factors 0l  and 1l  as in Definition 
3.3. 

Then the metrics G and G  are symmetrically harmonic if and only if there 
exist two positive constant real numbers 0k  and 1k  such that:  

1) 

( )
2

0 0 0 1
2 14

2 1 2
n nl k k k
n n

 − − = − −   − −  
             (33) 

and 

1 0 0 ,
2

nl l k
n

= − +
−

                      (34) 

with 
( )

2
1 0

20
4 1

nk k
n

 −
< ≤   − 

; 

Or 
2) 

( )
2

0 0 0 1
2 14

2 1 2
n nl k k k
n n

 − − = + −   − −  
               (35) 

and 

1 0 0 ,
2

nl l k
n

= − +
−

                      (36) 

with 
( )

2 2
0 1 02

2 2
4 1

n nk k k
nn

− −  < ≤  − 
.  

Proof:  
Let ( ),M g  be a Riemannian manifold such as dim 3M n= ≥ . Let G be a 
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Riemannian Kaluza-Klein metric induced by g on TM such as it exits a constant 
positive function ( )1 0α α+  on +  and  

( ) ( ) ( )1 0, , ,h hG X Y g X Yα α= +                  (37) 

for all x M∈  and for all , , xu X Y T M∈ , with hX  is the horizontal lift of X at 
( ),x u . Let G  be a Riemannian Kaluza-Klein metric on the tangent bundle TM 
induced by g such as  

( ) ( ) ( )0, , ,h h h hG X Y l t G X Y=  

( ) ( ) ( )1, , ;v v v vG X Y l t G X Y=  

for all x M∈  and for all , , xu X Y T M∈ , where ( ),t g u u= , hX  and vX  
are respectively the horizontal lift and the vertical lift of the vector xX T M∈  at 
the point ( ),x u TM∈ , and 0 1,l l  are positive functions defined on + . 

Then G and G  are symmetrically harmonic if and only if Equations (29) and 
(30) hold. Now ( )1 0 0α α ′+ =  so these equations are equivalent  

( )0 12 0nl n l′ ′+ − =                      (38) 

( )0 1 0 12 0,nl l n l l′ ′+ − =                     (39) 

0 10 and 0.l l> >                       (40) 

Then since 3n ≥ , Equation (38) gives  

1 0 .
2

nl l
n

′ ′= −
−

                       (41) 

So there exists a constant real number 0k  such that  

1 0 0 ,
2

nl l k
n

= − +
−

                     (42) 

and necessarily 0k  is positive since 
2

n
n −

, 0l  and 1l  are positive. Further-

more, by inserting the Formulas (41) and (42) in the differential Equation (39), 
we obtain  

0 0 0 0
12 0.
2

n l l k l
n
− ′ ′− + =
−

                    (43) 

So there exists a constant real number 1k  such  

2
0 0 0 1

1 .
2

n l k l k
n
− − + = − 

                    (44) 

That means, 0l  is a solution of a polynomial equation of degree two  

2
0 1

1 0,
2

n X k X k
n
−  − + = − 

                  (45) 

with 0 0k >  and 1k ∈ .  
Then to determine 0l  and 1l  with respect to Equations (40), (42) and (44) 

we have the following cases:  

1) If 1 0k ≤ , then 2
0 1

14 0
2

nk k
n
− − ≥ − 

, and since 1 0
2

n
n
−

>
−

, Equation (44) 
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has an unique positive solution  

( )
2

0 0 0 1
2 14 .

2 1 2
n nl k k k
n n

 − − = + −   − −  
             (46) 

So by Equation (42), we obtain  

( )

( )

( )

2 2
0 1

1
2

0 0 1

14 1 4
1 2 0.

2 1 12 4
2

nn k k n
nl

n nn k n k k
n

 −  − − +  −  = < − −  − + −   −  

         (47) 

This is absurd. 
So there is no ( )0 1,l l  which satisfies Equations (40), (42) and (44). 

2) If 
( )

2
1 0

2
4 1

nk k
n
−

>
−

 then the polynomial Equation (45) has no solution. So 

there is no ( )0 1,l l  which satisfies Equations (40), (42) and (44).  

3) If 2
1 02

20 nk k
n
−

< ≤  then 
( )

2 2
1 0 02

2 2
4 1

n nk k k
nn

− −
≤ <

−
 (since 0 0k >  and 

3n ≥ ) and the polynomial Equation (45) has the positive solutions (since 0 1,k k  

and 1
2

n
n
−
−

 are positive):  

( )
2

0 0 1
2 14

2 1 2
n na k k k
n n

 − − = − −   − −  
               (48) 

and 

( )
2

0 0 1
2 14 .

2 1 2
n na k k k
n n

∗
 − − = + −   − −  

              (49) 

So if 0l a=  then by (42),  

( ) ( ) 2
1 0 0 1

1 12 4 0,
2 1 2

nl n k n k k
n n

 − = − + − >   − −  
          (50) 

and ( )0 1 0, ,
2

nl l a a k
n

 = − + − 
 satisfies Equations (40), (42) and (44). 

Furthermore, if 0l a∗=  then by (42),  

( )

2
2
0 1

1
2

0 0 1

22 0.
12 4
2

nk k
nl

nn k n k k
n

 
 − +
 −= ≤ −  − + −   −  

             (51) 

So ( )0 1 0, ,
2

nl l a a k
n

∗ ∗ = − + − 
 does not satisfy Equations (40), (42) and 

(44). 
So for this case, we obtain an unique solution ( )0 1,l l  for Equations (40), (42) 

and (44) with 0 1,l l  constant positive functions on + .  

4) If 
( )

2 2
0 1 02

2 2
4 1

n nk k k
nn

− −
< ≤

−
 then the polynomial Equation (45) has the 
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positive solutions a and a∗  respectively in (48) and (49), with by (42) we have  

( ) ( ) 2
0 0 0 1

1 12 4 0
2 2 1 2

n na k n k n k k
n n n

 − − + = − + − >   − − −  
 

( )

2
2
0 1

0
2

0 0 1

22 0.
2 12 4

2

nk kn na k
n nn k n k k

n

∗

 
 − +
 −− + = > − −  − + −   −  

 

So each ( )0 1 0 0, , ; ,
2 2

n nl l a a k a a k
n n

∗ ∗    ∈ − + − +    − −    
 satisfies Equations 

(40), (42) and (44) with 0 1,l l  constant positive functions on + .  

Conversely if ( )0 1,l l  is a pair of positive functions satisfying cases 3. or 4. 
then 0l  and 1l  are constant functions and therefore Equations (38), (39) and 
(40) are satisfied. This completes the proof. 


 

Remark 

1) If 
( )

0

2 1
2

n
k

n
−

=
−

 and 1
1
2

nk
n
−

=
−

 in (33) and (34) we obtain the trivial case 

G G= .  
2) Sasaki and Cheeger-Gromoll metrics are examples of Kaluza-Klein metrics 

on tangent bundles satisfying the hypothesis ( )1 0 0α α ′+ =  of Theorem 3.7. 
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