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Abstract 

In this paper, we construct a general model for a pension fund when there are 
time delays in the valuation process. Actually, we use the standard structure 
of the basic reserve equation in order to rebuild a more sophisticated approach 
based on the theory of H∞ control. Our model evaluates the incomplete in-
formation from the delayed fund valuations—due to the oscillatory pattern 
for benefit claims and investment experience of the past years—within the 
context of uncertainty additionally to the randomness which certainly exists. 
So, we construct estimations for the optimal proposed contribution rates based 
on a feedback mechanism which is a robust stabilization controller, using 
typical linear matrix inequalities. Finally, a numerical application is fully in-
vestigated to obtain further insight into the problem.  
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1. Introduction 

The determination of the contribution rate is one of the basic concerns of a Pension 
Fund, on a constant basis when a defined benefit plan is considered. Nowadays, 
the typical deterministic stationary approach has already been swapped by the 
dynamic approach using the standard tools of stochastic control theory. In that 
context, pension funds have been designated by the means of stochastic differen-
tial or difference equations while the choice of the pension contribution has been 
established as an optimization problem under a certain objective function.  
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Of course, there are several issues and modelling technicalities such as: the 
stochastic nature of the parameters, the inherent delays of the available informa-
tion, the uncertainty of the economic environment and many others. A pension 
fund, most probably starting with an initial capital, continuously receives con-
tributions from the active members (workers) while continuously paying bene-
fits (pensions) to retirees (pensioners) and always targets a positive (but not 
huge) balance in any future time.  

Past research papers have investigated similar problems of a pension fund al-
lowing for stochastic variables or delays or other technicalities. In this paper, we 
adapt the basic modelling structure as appears in Zimbidis and Haberman (refer 
to [1]) while we transform the discrete framework into a continuous one. Fur-
thermore, we incorporate the new modelling concept of the uncertainty. These 
models may be manipulated using the Newton-like methods. Such methods may 
be found in the H∞-control theory. So, we actually use tools of H∞-control theory 
in order to obtain an analytic solution to our model 

The paper is organized as follows: Section 2 contains a short introductory 
guide to (H infinity) H∞-control and Linear Matrix Inequalities (LMI’s). Section 
3 describes the basic structure and the respective system of delayed differential 
equations for the fund level and the contribution rate. Section 4 presents the 
theoretical solution of the model while providing a detailed numerical applica-
tion. Finally, Section 5 concludes the paper.  

2. H∞-Control and Linear Matrix Inequalities 

Control theory and especially optimal control theory have played an important 
role in many scientific areas and practical problems over the past decades. In the 
last two or three decades, control theory has been fully applied to actuarial 
problems. A new direction of research for control theory in the very last years is 
the H∞-control. Actually, H∞-control is optimal control design when considering 
the worst exogenous input for a closed loop system. So, H∞-control offers an 
ideal framework to investigate problems under uncertain (but somehow bounded) 
parameters and conditions. Below, we provide a short note on the relevant 
theory as regards the H∞-control (refer to [2] for more details) and linear matrix 
inequalities—(LMIs) (refer to [3] for more details) that is the powerful tool for 
solving the respective stability problems. Before going further, we formalize the 
notation for the matrices i.e. Let A represents a matrix, then ( ), , 0A � � ≺ ≺  
denotes that A is symmetric positive definite (symmetric positive semi-definite, 
symmetric negative definite, symmetric negative semi-definite). 

2.1. H∞-Control (or H Infinity Control) 

We assume an uncertain linear stochastic delayed and controlled differential 
system,  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( ) ( )

d d

d , 0

d

d

x t A t x t A t x t t B t u t B t t

E t x t E t x t t E t W t t

υ

υ

τ υ

τ υ

= + − + +

+ + − + ≥
      (1) 
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( ) ( ) ( )( ) ( ) , 0dz t Cx t C x t t Du t tτ= + − + ≥                (2) 

( ) ( ) [ ], ,0z t t tφ µ= ∈ −                     (3) 

where  
( ) nx t ∈�  is the state variable.  
( ) mu t ∈�  is the controlled input variable.  
( ) ptυ ∈�  is the disturbance input variable (zero or positive valued & square 

integrable). 
( ) qz t ∈�  is the controlled output variable. 

( )tτ  is time-varying bounded delay time satisfying the following conditions 

( ) ( )d0 , 1
d

t t h
t

τ µ τ≤ ≤ ≤ < . 

( )tφ  is any given initial data in the n� -valued family F0 measurable sto-

chastic process ζ(s) with ( ) 2

0
sup

s
E s

µ
ζ

− ≤ ≤
< ∞ , where E[…] stands for the expec-

tation operator with respect to the given probability measure P. 
Ω = {Ω(t); t ≥ 0} is a scalar Brownian motion defined on a complete probabil-

ity space (Ω, F, P) with a natural filtration {Ft}t≥0.  
Bυ, Ευ C, Cd, D are known constant matrices 
A(t), Ad(t), B(t), E(t), Ed(t) are matrix-valued functions with time-varying un-

certainties as 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,

,
d d d

d d d

A A A B

E E E

A t A t t A t B t B t

E t E t t E t

= + ∆ = + ∆ = + ∆

= + ∆ = + ∆
 

where , , ,dA A B E  and dE  are known real constant matrices. 
While ( ) ( ) ( ) ( ), , ,dA t A t B t E t∆ ∆ ∆ ∆  and ( )dE t∆  are unknown matrices re- 

presenting time-varying parameters uncertainties. These uncertainties are norm- 
bounded and may be described as follows  

( ) ( ) ( ) ( ) ( ) ( )[ ]d d a ad b e edA t A t B t E t E t HF t N N N N N∆ ∆ ∆ ∆ ∆ =    

where , , , ,a ad b eH N N N N  and edN  are known real constant matrices and F(t) 
is an unknown matrix function with Lebesgue measurable elements, satisfying 
the condition 

( ) ( )F t F tτ Ι⋅ ≺  

where ( )F tτ  stands for the transpose matrix of ( )F t . 
Furthermore, we provide the formal definitions for robust stability and robust 

performance for the system (1)-(3). 
Definition 1, (refer to Boyd et al., [3]): The system (1)-(3) with u(t) = 0, υ(t) = 

0 is said to be robust stochastically stable if there exists a positive constant ρ such 
that 

( ) ( ) ( ) 2

00

lim d sup
T

T s
E x t x t t E sτ

µ
ρ ζ

→∞ − ≤ ≤

 
⋅ < 

 
∫             (4) 
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for all admissible uncertainties ( ) ( ) ( ), ,dA t A t E t∆ ∆ ∆  and ( )dE t∆ . 
Definition 2, (refer to Boyd et al., [3]): Given a scalar γ > 0, the unforced sto-

chastic system (1)-(3) with u(t) = 0 is said to be robust stochastically stable with 
disturbance attenuation γ if it is robust stochastically stable in the sense of defi-
nition 1 and under zero initial conditions, 

( ) ( ) ( ) ( )2

0 0

d dE z t z t t W t W t tτ τγ
∞ ∞ 

⋅ < ⋅ ⋅ 
 
∫ ∫                  (5) 

Below, we provide two basic theorems that present the solutions to the robust 
stabilization problem for system (1)-(3). The first theorem corresponds to the 
special case of a zero disturbance input variable, υ(t) = 0. The second theorem 
solves the general format of the problem. So, we have the following theorems 1 
and 2:  

Theorem 1, (refer to Chen et al., [2]): Consider the system (1)-(3) with υ(t) = 
0. Then for given scalars μ > 0, h < 1, this system is robust stochastically stabilizable  

for any time-delay τ(t) satisfying ( ) ( )d0 ,
d

t t h
t

τ µ τ≤ ≤ ≤  if for some prescribed  

scalar δ, there exist matrices 1 2 30, , , , , , , 0, 0, 0X Y Z W W W K Q S R� � � �  and 
scalars 1 2 30, 0, 0ε ε ε> > > . Such that the following Linear Matrix Inequalities 
(LMIs) (6) and (7) hold: 

( )
( ) ( )

1 2 11 21

2 3

12 22

11 12 1

21 22 2

0
1 0 0 0

0 1 1 0 0
00 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

d

d

X Z L L
A S Y

S A h S L L
X S

Z Y Q
L L
L L

τ

τ τ

τ τ

τ

τ τ

τ τ

µ
δ µ

δ

µ µ µ

 Ω Ω
 
Ω Ω − − 
 − − − −
 
 
 − 

Φ 
 Φ 

≺        (6) 

1 2

2 3

0
0

0
d

d

W W
W W A Q

Q A Q

τ

τ τ

δ
δ

 
 
 
  

�                      (7) 

(Note: some of the ZEROS in (6) and (7) correspond to blocks of zeros). 
Where 

1 1Z Z Wτ µΩ = + +  

( )2 2dX A A K B Y Z Wτ τ τ τ τδ µΩ = + + + − +  

2
3 1 3d dY Y HH A RA Wτ τ τε δ µΩ = − − + + +  

1 1 2 3, ,
1

diag I I I
h

µε ε ε Φ =  
− 

 

( )2 2 3,
1

diag X HH R HH
h

τ τµε ε Φ = − − 
− 

 

11 1a b e eL XN KN XN XN
h

τ τ τ τµ = + − 
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12 1ad ed edL SN SN SN
h

τ τ τµ =  − 
 

21 1
L XE XE

h
τ τµ =  − 

 

22 1d dL SE SE
h

τ τµ =  − 
 

and the stabilizing control law is described as  

( ) ( )1u t K X x t−= ⋅ ⋅                        (8) 

Theorem 2, (refer to Chen et al., [2]): Consider the system (1)-(3). Then for 
given scalars μ > 0, h < 1, this system is robust stochastically stabilizable with 
disturbance attenuation γ > 0 for any time-delay τ(t) satisfying ( )0 tτ µ≤ ≤ ,  

( )d
d

t h
t
τ ≤  if for some prescribed scalar δ, there exist matrices  

1 2 30, , , , , , , 0, 0, 0X Y Z W W W K Q S R� � � �  and scalars 1 2 30, 0, 0ε ε ε> > >  
such that LMI (7) and the following LMI holds: 

( )
( ) ( )

1 2 11 21

2 3

12 22
2

23

11 12 1

21 22 23 2

0 0
1 0 0 0 0

0 1 1 0 0 0
0 0 0 0 0 0

00 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0

d

d d

d

XC KD L L X Z
A S B Y

S A h S SC L L
B I L

X C DK C S I
L L
L L L
X S

Z Y Q

τ τ τ

τ τ
υ

τ τ

τ
υ

τ τ τ

τ τ

τ τ τ

τ

τ

µ
δ µ

δ
γ

µ µ µ

 Ω Ω +
 

Ω Ω − 
 − − −
 

− 
 + − 

−Φ 
 −Φ 
 −
 

− 

≺  (9) 

(some of the ZEROS in (9) correspond to blocks of zeros). 
Where Ω1, Ω2, Ω3, Φ1, Φ2, L11, L12, L21, L22, are defined in previous theorem 1 

and 23 1
L E E

h
τ τ
υ υ

µ =  − 
. Then, the stabilizing control law is described as  

( ) ( )1u t K X x t−= ⋅ ⋅                        (10) 

2.2. Linear Matrix Inequalities (LMI’s) 

The general format of a typical Linear Matrix Inequality is the following 

( ) 0
1

0
m

i i
i

F x F x F
=

= +∑ �                      (11) 

where ( )1 2 3, , , , m
mx x x x x= ∈� �  is the variable to be determined, while 

, 0,1, 2, ,n n
i iF F i mτ ×= ∈ =� � , additionally, we can state that the LMI above may 

be easily transformed to a set of n inequalities in x. 
The relationship of LMIs and dynamic systems has been early recognized by 

Lyapunov (refer to [4]). He demonstrated that the stability of the basic differen-
tial equation 
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( ) ( )d
d

x t Ax t
t

=  

is obtained when there is a matrix P such that the following conditions hold 

0 and 0P A P PAτ +� ≺  

Now, we may easily transform the conditions above into the standard format 
of a LMI using a matrix of matrices as below 

( ) 0
P

A P PAτ

 
 

− +  
�

0

0
 

Furthermore, Yakubovich (refer to [5]) was the first who formally established 
the importance of the LMI’s in the solution of the control problems. 

The solution for LMI’s has been initially based on the ellipsoid algorithm and 
on the interior-point methods. These two basic approaches have been further 
exploited over the last years and also inspire other similar ones. In this paper, we 
use a quite recent algorithm proposed by Orsi et al. (refer to [6]) and Rami et al. 
(refer to [7]) that is based on the classical alternating projection method. Ac-
tually, they use this algorithm to solve “convex feasibility problems where the 
constraints are given by the intersection of two convex cones in a Hilbert space”. 
Then, as an application, they derive the solution of an LMI problem calculating a 
sequence of matrix eigenvalue-eigenvector decompositions. 

Below, we provide a short description of the relevant algorithm that is fully 
described in the papers mentioned above, aiming to find mx∈�  satisfying a 
strict LMI (11) (or the non-strict version where the symbol “ � ” is replaced by 
“ � ”). Before providing the formal description of the algorithm, we establish two 
special functionals “ ⋅� ” and “ ⋅� ” from Sn the set of real symmetric matrices to  

p�  and vice versa, where 
( )1

2
n n

p
+

= , as below: 

( )

11 12 13 1

12 22 23 2

13 23 33 3

1 2 3

11 12 13 1 22 23 2 33 3, , , , , , , , , , , , ,

n

n

n

n n n nn

n n n nn

s s s s
s s s s

S s s s s

s s s s

S s s s s s s s s s s τ

 
 
 
 =
 
 
 
 

→ =

�
�
�

� � � � �
�

�
� � � �

 

( )11 12 13 1 22 23 2 33 3

11 12 13 1

12 22 23 2

13 23 33 3

1 2 3

, , , , , , , , , , , , ,n n n nn

n

n

n

n n n nn

S s s s s s s s s s s

s s s s
s s s s

S s s s s

s s s s

τ=

 
 
 
 → =
 
 
 
 

�
� � � �

�
�
�

� � � � �
�

 

Algorithm for solving the strict LMI (11) 
Data: A set of m + 1 symmetric matrices , 0,1, 2, ,n n

i iF F i mτ ×= ∈ =� �  
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Initialization: Choose initial conditions and calculate the basic matrix G−1, as 
below 

1): Choose values for the parameters ρ, t such that ρ > 0 and ( )0,2t∈  (e.g. ρ 
= 1 & t = 1.99); 

2): Choose any 0x ∈�  and mx∈� ; 
3): Choose any real symmetric matrix n nS ×∈�  (that is a slack variable);  

4): Define matrix Q as ( ) ( )1
0 1

1ˆ ˆ ˆ: , , , ,
2

p m
m

n n
Q F F F p× + +

 = ∈ = � � ; 

5): Calculate matrix ( )1 ˆ: 1
2

G Q Q diag Iτ= ⋅ + + , 

where I is the n x n identity matrix and 1 p∈�  while ( )1 1,1, ,1 τ= � ; 
6): Calculate the inverse matrix 1G− . 
Then we may start the algorithm described with the following steps: 
Step 1: Calculate and replace 0x  via the formula  

( ) { }0 0 0: 1 max ,x t x t xρ= − ⋅ + ⋅ . 
Step 2: Find an eigenvalue-eigenvector decomposition of S.  
Let S V D V τ= ⋅ ⋅  with ( )1 2, , , nD diag d d d= �  the respective matrix of ei-

genvalues while V the respective matrix of eigenvectors. 
Step 3: Define a new matrix  

{ } { } { }( )1 2max , ,max , , ,max , nD diag d d dρ ρ ρ= � . 
Step 4: Calculate and replace matrix S via the formula ( )( )1S V t D tD V τ= ⋅ − + ⋅ . 
Step 5: Calculate ( )1

0
ˆ: ;a G Q x x S

ττ−  = ⋅ ⋅ −  .  
Step 6: Calculate and replace x0 and x via the formula  

0 0; : ;x x x x Q
τ ττ τ τ α   = − ⋅    . 

Step 7: Define : 0.5T a= − ⋅ � . 
Step 8: Redefine matrix T by duplicating all the elements of the first diagonal.  
Step 9: Replace matrix S via the formula :S S T= − . 
Step 10: If 0 0x >  and the minimum eigenvalue of S is greater than zero then 

the solution is 0x x  otherwise we return to step 1 and continue the algorithm. 

3. The Proposed Model for the Pension Fund 

We consider a typical pension fund with an initial reserve plus 1) incoming con-
tributions determined through a standard contribution rate and a feedback me-
chanism according to past experience of benefits paid and 2) outcoming benefits 
paid, which are driven by a drifted Brownian motion. The reserve is invested in a 
safe asset with a variable yet uncertain force of interest. Then, the reserve of the 
company obeys the following stochastic differential equation. 

dR(t) = [Reserve at time (t + dt)] − [Reserve at time (t)] = [Investment income 
earned in (t, t + dt)] + [Contributions in (t, t + dt)] − [Benefits in (t, t + dt)] * 
(Benefits may also include the element of administration expenses). 

Or using standard notation the reserve obeys the following relationship 

( ) ( ) ( ) ( ) ( ) ( ) ( )d d d d dR t r t R t t p t t m t t t W tσ∗= + − +            (12) 

while the contribution rate is established via the following feedback mechanism 
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( ) ( ) ( )( )p t p t f R t l t∗ = − ⋅ −                    (13) 

where 
( )R t : is the reserve at time t; 
( )r t : is the force of interest at time t; 
( )p t∗ : actual contribution rate at time t;  
( )p t : standard contribution rate at time t;  

f: feedback or profit sharing factor; 
( )l t : time delay for the valuation settlement of the Reserve values at time t;  
( )m t : average benefit rate at time t; 
( )tσ : volatility benefit rate at time t, further assume that ( ) ( )t m tσ λ= ⋅ ; 
( )W t : standard Brownian motion. 

Combining Equations (12) and (13) and after some algebra we finally obtain 
the system 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )d d dR t r t R t f R t l t p t m t t m t W tλ = − ⋅ − + − + −      (14) 

( ) ( ) ( )( )p t p t f R t l t∗ = − ⋅ −                  (15) 

The parameter (f)—the feedback factor—normally lies in the interval of [0, 1]. 
Additionally, supporting Equation (13) we also assume that there is no distribu-
tion of surplus to anyone else (e.g. the tax authorities) except to the members 
(actives or retirees) of the pension fund.  

4. The General Theoretical Solution and Numerical  
Application 

4.1. The Theoretical Solution 

As regards the theoretical solution, it is straight-forward when applying Theo-
rem 2. We must only match the notation and symbols accordingly. So, if we as-
sume the following  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,x t R t u t p t t m t z t p tυ ∗= = = =  

( ) ( )0, 0, 0, 0, 0, 0, 0d ad b e edE t E t C N N N N= = = = = = =  

( ) ( ) ( ) ( )0, 0, 0, 0d dA t B t E t E t∆ = ∆ = ∆ = ∆ =  

( ) ( ) aA t HF t N∆ =  

where , aH N  are known real constant matrices and F(t) is an unknown matrix 
function with Lebesgue measurable elements, satisfying the condition  

( ) ( )F t F tτ Ι⋅ ≺ . The optimal solution is obtained via the application of LMIs 
(9) and (7).  

The detailed numerical solution is calculated in the following subsection. 

4.2. Numerical Application  

Now, we apply the theoretical solution and solve our problem, assuming the fol-
lowing 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,x t R t u t p t t m t z t p tυ ∗= = = =  

( ) ( ) ( ) ( ) ( ) ( ), , 1, 1dA t r t r r t A t f B t B tυ= = + ∆ = − = = −  

( ) ( )0, 0, , 0, , 1d dE t E t E C C f Dυ λ= = = − = = − =  

0, 0, 0, 0ad b e edN N N N= = = =   

Substituting in matrices (9) and (7) and since our problem has only one di-
mension (there is no meaning for the symbol of transpose (.)τ), we obtain, 

( )
( ) ( )

( )

1

2

1

2

3

2
2

2
3

2 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
1

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
1 1

0 0 0 0 0

a

Z W K XN X Z
f S Y

f S h S f S

h
K f S

XN

h
X H

R H
h h

X

αµ µ
δ µ

δ
µγ λ λ

ε
ε

µ ε

λ ε
µ µλ ε

′+
′ − − −

− − − − −

− − − −
−

− −
−

−

−
−

− − +

− − −
− −

g
g g

0

0 0 0 0 0
0 0 0 0 0 0 0 0 0

S
Z Y Qµ µ µ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − 
 − 

≺
 

( )2 2 2
1 3 22 ,Y H f R W X r f K Y Z Wε δ µ δ µ′= − + + + = − + + − +g g  

1 2

2 3

0
0

0

W W
W W f Q

f Q Q
δ

δ

 
 − 
 − 

�  

Furthermore assuming 

( )
, , , ,

1, 0.5, 1, 1, 1, 1
d aA r E C f N

h H F t
υ λ ψ

µ γ δ
= = − = − =

= = = = = =
 

We obtain 

( )

1

1

2

3

2

3

2 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 0.5 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 2 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Z W K X X Z
Y

S f S

K f S
X

X

R

X S
Z Y Q

ψ

λ λ

ψ ε
ε

ε
λ ε

λ ε

′ +
 ′ −
 − −


− − − −
 − −


−
Ξ =

−
−

− − +

− − −

−
−

g
g g

0











 
 
 
 
 
 
 
 
 
 

≺  
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( )2
1 3 22 ,Y f R W X r f K Y Z Wε ′= − + + + = − + + − +g g  

1 2

2 3

0

0

0

W W

W W f Q

f Q Q

 
 

′Ξ = − ≥ 
 

−  

,  

1 2 3 1 2 30, , , , , , , 0, 0, 0, 0, 0, 0X Y Z W W W K Q S R ε ε ε> > > > > > >  

Now, we may transfer our problem assuming m = 13 and n = 15 

( ) ( )1 2 3 13 1 2 3 1 2 3, , , , , , , , , , , , , , , ,mx x x x x K X Y Z Q R S W W W ε ε ε== =�  

while the 14 matrices with dimensions (15 × 15) will derived from the following 
LMI 

0 1 1 2 2 3 3 13 13 0F x F x F x F x F
−Ξ 

= + ⋅ + ⋅ + ⋅ + + ⋅ ′Ξ 
� �

Ο
Ο

 

The solution of the last LMI will also be a solution for our problem. So, we 
have the following 14 matrices. 
 

F0 F1 ( K ) F2 (X) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 2 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

λ λ

λ

λ

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

− −

−

−

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

f r
f r

ψ

ψ

− − −

−

−

−

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F3 (Y) F4 (Z) F5 (Q) 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

−

− −

−

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

− −

−

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

f
f

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 

− 
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F6 (R) F7 (S) F8 (W1) 

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

f−

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

f

f

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0

−

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F9 (W2) F10 (W3) F11 (ε1) 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0

−
−

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

−

0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

−

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F12 (ε2) F13 (ε3)  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

−

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

−

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Furthermore, we assume seven different scenarios as regards the following 

parameters: 
1) The central value for the investment rate r;  
2) The uncertainty level for the investment rate ψ; 
3) The volatility factor λ. 
While for the feedback factor we run through all the potential range from zero 
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to unity using a step of 0.1 (so actually we run all seven scenarios for f = 0%, 
10%, 20%, …, 100%). 
 

Scenarios f = 0% f = 10% f = 20% f = 30% f = 40% 

ψ = 0.04 - r = 0.03 - λ = 3 −52.3% −47.2% −42.7% −38.6% −34.7% 

ψ = 0.04 - r = 0.06 - λ = 3 −54.0% −48.7% −44.0% −39.8% −35.9% 

ψ = 0.08 - r = 0.03 - λ = 3 −52.5% −47.4% −42.8% −38.7% −34.9% 

ψ = 0.08 - r = 0.06 - λ = 3 −54.2% −48.9% −44.2% −40.0% −36.1% 

ψ = 0.04 - r = 0.03 - λ = 5 −52.3% −47.1% −42.6% −38.5% 
No 

convergence 
ψ = 0.04 - r = 0.06 - λ = 5 −54.0% −48.7% −44.0% −39.8% 

ψ = 0.08 - r = 0.06 - λ = 5 −54.2% −48.9% −44.2% −40.0% 

 
Scenarios f = 50% f = 60% f = 70% f = 80% f = 90% f = 100% 

ψ = 0.04 - r = 0.03 - λ = 3 

The algorithm for the solution 
of the respective LMI does not converge 

(using a set of 1000 iterations) 

ψ = 0.04 - r = 0.06 - λ = 3 

ψ = 0.08 - r = 0.03 - λ = 3 

ψ = 0.08 - r = 0.06 - λ = 3 

ψ = 0.04 - r = 0.03 - λ = 5 

ψ = 0.04 - r = 0.06 - λ = 5 

ψ = 0.08 - r = 0.06 - λ = 5 

 
As we observe, there is no viable solution when the feedback delay factor f ex-

ceeds the critical value 50%. Additionally, when the volatility (see the parameter 
λ) or/and the uncertainty level of the investment rate (see the parameter ψ) are 
increased then the viable solutions are restricted even more. Under these scena-
rios (5, 6 and 7) there is no viable solution even for f = 40%. That is directly 
comparable with the results of Zimbidis & Haberman (1993) who found similar 
values for instability level.  

The results are also presented in the following Figure 1. 

5. Conclusions—Further Research 

Closing this paper, we present a short resume. The new modeling concept in-
troduced by this research project is the introduction of uncertainty into a pension 
fund. The framework of uncertainty is further enhanced assuming also some kind 
of delay. The H-infinity control theory is employed as the basic tool in order to 
handle the application. Furthermore, H∞-control leads to Linear Matrix Inequa-
lities (LMIs) since the basic stability condition relies on a system of LMIs. After 
appointing the general solution of the model, we focus on the numerical applica-
tion which is fully investigated by solving the respective LMI using an iterative 
algorithm (up to 1000 iterations). 
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Figure 1. Results for the stabilization control factor under different scenarios. 

 
The numerical results of our application coincide with those of Zimbidis & 

Haberman (1993) supporting that the feedback factor f (f represents the amount 
of delayed information integrated into the system) must be restricted below 50% 
or even lower when considering models with high uncertainty or volatility levels, 
otherwise the system is not robust stochastically stable. It is also interesting to 
note the solution for the trivial case where there is no delay factor (f = 0%). 
Then, the robust stabilization factor 1K X −⋅  is slightly higher than 50% (from 
52% up to 54%). It is also worth noticing (see the last diagram of Figure 1) that 
all the solutions are almost parallel and be arranged within a narrow zone-path 
starting from the interval [52%, 54%] for f = 0% and ending at interval [34%, 
36%] for f = 40%. 
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Finally, further research may be also carried forward in the near future using 
the tools of H-infinity control and Linear Matrix Inequality theory into certain 
problems in pension funds.  
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