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Abstract 
Purpose: Brain functional networks (BFNs) has become important approach 
for diagnosis of some neurological or psychological disorders. Before esti-
mating BFN, obtaining blood oxygen level dependent (BOLD) representative 
signals from brain regions of interest (ROIs) is important. In the past dec-
ades, the common method is generally to take a ROI as a node, averaging all 
the voxel time series inside it to extract a representative signal. However, one 
node does not represent the entire information of this ROI, and averaging 
method often leads to signal cancellation and information loss. Inspired by 
this, we propose a novel model extraction method based on an assumption 
that a ROI can be represented by multiple nodes. Methods: In this paper, we 
first extract multiple nodes (the number is user-defined) from the ROI based 
on two traditional methods, including principal component analysis (PCA), 
and K-means (Clustering according to the spatial position of voxels). Then, 
canonical correlation analysis (CCA) was issued to construct BFNs by max-
imizing the correlation between the representative signals corresponding to 
the nodes in any two ROIs. Finally, to further verify the effectiveness of the 
proposed method, the estimated BFNs are applied to identify subjects with 
autism spectrum disorder (ASD) and mild cognitive impairment (MCI) from 
health controls (HCs). Results: Experimental results on two benchmark da-
tabases demonstrate that the proposed method outperforms the baseline me-
thod in the sense of classification performance. Conclusions: We propose a 
novel method for obtaining nodes of ROId based on the hypothesis that a 
ROI can be represented by multiple nodes, that is, to extract the node signals 
of ROIs with K-means or PCA. Then, CCA is used to construct BFNs. 
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1. Introduction 

The brain is a complex network with underlying organizational structures. In 
recent years, brain functional network (BFN) approach based on the correlation 
of spontaneous fluctuations in blood oxygen level dependent (BOLD) signals, 
has opened new insights into the function of the human brain [1]. BOLD-based 
brain functional network (BFN) constructed from functional magnetic reson-
ance imaging (fMRI) data has been applied to understand the brain organiza-
tional patterns and diagnosis of neurological diseases [2] such as autism spec-
trum disorder (ASD) [3] [4] and mild cognitive impairment (MCI) [5] [6]. One 
of the critical questions is how to choose what the nodes represent for con-
structing a high-quality BFN. There is currently no universally accepted defini-
tion of nodes, which is also one of the most important issues in neuroimaging 
data network analysis. 

Mathematically, the brain is depicted as a collection of nodes and edges/links. 
Specifically, each node corresponds to a brain region that should be functionally 
homogeneous in the brain, and each edge depicts a dependency between the 
BOLD signals associated with a pair of ROIs [7]. To date, researchers have de-
veloped many methods to select the brain network node. The first method is to 
treat single neurons as network nodes and synaptic connections as edges [8]. 
However, this microscopic approach is not suitable for studying the entire hu-
man brain, because the imaging method has insufficient resolution. The second 
option is voxel-wise method and the nodes are voxels (small cubes with edges of 
2 - 8 mm) [9]. Currently, researchers have developed many several typical me-
thods for voxel-wise estimation, including independent component analysis (ICA) 
[10], seed-based correlation analysis (SCA) [11], homogeneity (ReHo) [12], and 
fractional amplitude of low-frequency fluctuations (fALFF) [13]. Although the 
voxel-based BFN contains all the information of the whole brain, the calculation 
cost is too high because of the excessive number of voxels. On the other hand, 
voxel-based method lacks explanation like how strong is the functional connec-
tion between a pair of ROIs, thus it is hard to seek potential biomarkers to iden-
tify brain diseases. Finally, the third and most straightforward approach is to 
consider regions of interest (ROIs), using pre-defined clusters of anatomically 
close voxels, as nodes [14]. ROIs are usually defined using an anatomical atlas, 
based on structural MR images [14]. This approach is based on the assumption 
that voxels within ROIs are functionally similar, and each ROI contains 11-1512 
voxels. The signals of ROIs are typically computed by averaging the BOLD sig-
nals of its voxels. Compared with voxel-level methods, this method not only sig-
nificantly reduces the number of nodes, but also better explains the activity of 
connections between ROIs. Even though there are so many advantages to ROI-wise 
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method, it still has three drawbacks that deserve our attention: 
1) One representative signal is not enough to represent all the information 

within a ROI and information may be lost after averaging the voxel signals 
within the anatomical region because ROIs defined based on natoical atlases are 
unlikely to reflect functional boundaries accurately (i.e., a function may be dis-
tributed within several anatomical regions, or an anatomical region may contain 
multiple subareas with different functions [15]); 2) It is sensitive to potential 
noisy voxels in the ROI after averaging the BOLD signals over all voxels that 
make up the node; 3) Robustness may be reduced due to unclear definition of 
anatomical boundaries. Subtle changes in the position of voxels may alter the 
BOLD signals of ROIs after averaging, for example. 

Despite the above widely-used methods, they also have their own drawbacks 
that cannot be ignored. To circumvent the difficulty of these problems, in this 
article, we propose a novel node define approach based on an assumption that a 
ROI can be represented by multiple nodes (the number n of nodes defined by 
user). Specifically, we choose two methods to extract nodes. The first is averag-
ing method that K-means [16] is used to divide the voxels ROIs into uniform n 
groups according to their spatial position coordinates, and then average all the 
voxel signals in each group. And the second is principal component analysis 
(PCA) [17] which directly takes the eigenvectors corresponding to the first n 
largest eigenvalues as the fMRI time series corresponding to the selected n nodes. 
After extracting the time series signals of the nodes by the two methods men-
tioned above, we use CCA to construct BFNs. This is because typical correlation 
analysis (CCA), as a bivariate multivariate tool, can consider two datasets with 
different patterns simultaneously to reveal their underlying hidden associations 
[18]. For details, see Figure 1. 

The main contributions of this work are as follows. First, we use two different 
methods to extract multiple representative time series for each ROI. Second, 
when calculating the correlation between a pair of ROIs, we use CCA to assign 
appropriate weights to the time series with different contributions for each ROI. 
In addition, our method not only allows more flexibility and discretion in de-
termining the number of nodes in the ROI, but also saves computational cost. 

In this article, the baseline approach we chose is to use ROIs as nodes, using 
simple and popular Pearson correlation (PC) [19] to estimate BFNs. To verify 
the effectiveness of the proposed method, the BFNs estimated by our method is 
validated on two datasets, that is, to identify the patients with ASD from health 
controls (HCs) on Autism Brain Imaging Data Exchange (ABIDE) dataset1 and 
to identify the patients with MCI from HCs on Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) dataset2. Experimental results demonstrate that the proposed 
model can significantly improve the classification performance compared with 
the baseline method. 

The rest of this paper is organized as follows. In Section II, we first introduce 
the preprocessed data, review conventional BFN construction methods (i.e., PC), 
and then develop our approach for BFN estimation. In Section III, we conduct  
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Figure 1. A general for constructing BFN by canonical correlation analysis. Where ix  and jx  represent BOLD time series of all 

voxels in i-th ROI and j-th ROI, and p, q are the number of nodes in the i-th and j-th ROIs respectively. 
 

experiments for evaluating the proposed method by ASD/MCI identification. In 
Section IV, we discuss our findings and several aspects that affect the final per-
formance. Besides, several limitations of this work as well as the possible re-
search in the future directly. Finally, we briefly conclude this paper in Section V. 

2. Materials and Methods 

In this section, we describe data preparation (including data acquisition and 
preprocessing), the extracting node methods of ROIs and constructing BFN 
methods (including baseline and proposed methods). To better understand, we 
describe the pipeline of the entire classification task in Figure 2. 

2.1. Data Preparation 

In this section, we verify the validity of our proposed approach on two public 
datasets, i.e., ABIDE and ADNI databases. Demographic information of the 
subjects in ABIDE and ADNI databases is shown in Table 1. 

ABIDE database: 184 subjects (including 79 ASDs and 105 HCs) are involved 
in our experiment for testing our proposed method. Concretely, the rs-fMRI da-
ta of the subjects are available in the largest site (i.e., New York University (NYU)) 
of ABIDE database. Subjects from the dataset were scanned using a clinical rou-
tine 3.0T Tesla Allegra scanner with the following parameters: flip angle = 90˚, 
repetition time (TR)/echo time (TE) = 2000/15 ms, and voxel thickness = 4.0 mm. 
The scanning lasted 7 minutes, which generates 180 volumes for each subject. 
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Figure 2. The main pipeline of disorder identification used in our study, which contains four major modules: 1) data preparation, 
2) node selection and signal extraction, 3) BFN construction, and 4) classification with feature selection. 
 

Table 1. Demographic and clinical information of subjects in the ADNI and ABIDE da-
tasets. 

Datasets Category Gender (Male/Female) Age (Mean ± SD) 

ABIDE 
ASD (N = 79) 68/11 14.51 ± 6.23 

HC (N = 105) 79/26 15.80 ± 3.23 

ADNI 
MCI (N = 68) 39/29 72.82 ± 7.66 

HC (N = 69) 17/52 75.29 ± 5.34 

 
ADNI database: 137 subjects (68 MCIs and 69 HCs) are utilized in this study, 

in which all participants were scanned by 3.0 T Philip scanners. The scanning 
parameters are as follows: TE is 3000 ms, TR is 300 ms, voxel thickness is 3.3 
mm, and imaging matrix is 64 × 64. For each subject, the scanning time was 7 
min, corresponding to 140 volumes. 

The acquired rs-fMRI data on two benchmark databases were preprocessed 
with SPM8 toolbox3 and DPABI [20]. Specifically, the first 5 rs-fMRI volumes of 
each voxel were discarded. The remaining volumes are processed as follows: 1) 
slice timing for the remaining volumes and correcting head motion correction 
(i.e., subjects with head motion larger than 2 mm or 2◦ were excluded); 2) re-
gressing out the nuisance signals (ventricle, white matter, and head-motion) based 
on the Friston 24-parameter model [21]; 3) registering the corrected rs-fMRI 
images to Montreal Neurological Institute (MNI) standard space [22]; 4) spa-
tially smoothing the images by a kernel of 6 mm; 5) temporal filtering (0.01 - 
0.10 Hz). Finally, according to the automated anatomical labeling (AAL) atlas 
[23], the brain was divided into 116 ROIs. 

2.2. Baseline Methods for BFN Construction 

Once the representative time series has been extracted by averaging all the voxel 
signals within the current ROI, the next step is to calculate the connectivity be-
tween every possible pair of ROIs. To estimate BFN, several common approach-
es have been proposed in the past decades, such as PC, partial correlation [24], 
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Granger causality [25], Bayesian network [26], Patel’s conditional dependence 
[27]. 

PC, as the most popular and simplest approach for constructing BFNs [19], 
which is used in this paper as a basic method for constructing BFNs, can be de-
fined as follows mathematically: 

( ) ( )
( ) ( ) ( ) ( )

T

TT

i i j j
ij

i i i i j j j j

x x x x
w

x x x x x x x x

− −
=

− − − −
            (1) 

where , 1, ,t
ix R i d∈ ∈   is the mean time series extracted from i-th brain re-

gion, t is the number of time points in each series, d is the total number of ROIs, 
t

ix R∈  is the mean of ix , and , , 1, ,ijw i j d∈   is the connection weight be-
tween i-th ROI and j-th ROI. Without loss of generality, we redefine. That is, the 
new ix  has been centralized by i ix x−  and normalized by ( ) ( )T

i i i ix x x x− − . 
Thus, we can simplify Equation (1) and have T

ij i jw x x= . Equivalently, we 
can obtain the adjacency matrix of BFN via solving the following regression 
model, 

2
min

ij

n

i ij jw ij
x w x−∑                        (2) 

According to a previous work [28], Equation (2) can be further transformed 
mathematically into the following matrix form: 

2Tmin
FW

W X X−                         (3) 

where ( ) d d
ijW w R ×= ∈  is the correlation matrix of the estimated BFN,  

[ ]1 2, , , d d
dX x x x R ×= ∈  is the data matrix, and . F

 represents the Frobe-
nius-norm of a matrix. 

2.3. The Proposed Method for BFN Construction 

According to the AAL template, the brain is divided into 116 ROIs with varying 
numbers of voxels (for example, the largest ROI contains 1512 voxels, while the 
smallest one contains only 11 voxels). To facilitate comparison, we uniformly 
extract n (We empirically set n = 11 in this work.) nodes in each brain region. As 
mentioned earlier, K-means and PCA are used by us to extract nodes of each 
ROI. Kmeans method is to distinguish a ROI into uniform n nodes according to 
the three-dimensional spatial position coordinates of voxels, and then averages 
the BOLD signals of all voxels in each node as the representative signal of this 
node. And PCA method is to use the voxel signals in current ROI as a matrix, 
and the n eigenvectors corresponding to its first n maximum eigenvalues are the 
time series of n nodes. Next, CCA, as a multivariate statistical method that goes 
beyond techniques that map one-to-one relations (e.g., PC) or manyto-one rela-
tions (e.g., ordinary multiple regression) [18], is used by us to calculate the rela-
tionship between time series corresponding to two sets of nodes from two ROIs. 
In what follows, we present the model and algorithm of CCA in detail. 
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1) Models: CCA can be described by the following optimization model: 

( )
T T

T T T T,
, arg min

i j

i i j j
i j w w

i i i i j j j

w X X w
w w

w X X w w X Xw
=

•
             (4) 

where 1 2, , , , ,i i i i t p
i m pX x x x x R × = ∈    is the time series of the i-th ROI, and 

1i t
mx R ×∈  is the time series of the m-th voxel in the i-th ROI. 1p

iw R ×∈  is the 
weight vector whose dimension p is determined by the number of voxels in the 
i-th ROI. Equally, Equation (4) can be rewritten by the following matrix form in 
mathematic: 

T T

,

T T T

T T

max

s.t. 1

1

i j
i i j jw w

i i i

j j j j

w X X w

w X X w

w X X w

=

=

                       (5) 

2) Algorithms: Accordingly, Equation (5) can be transformed to the follow-
ing formula by Lagrange multiplier method: 

( ) ( ) ( )T T T T T T1 2, 1 1
2 2i j i i j j i i i i j j j jL w w w X X w w X X w w X X wλ λ

= − − − −     (6) 

1λ  and 2λ  in Equation (6) are Lagrange multipliers, and The next step is to 
find the partial derivatives for iw  and jw , respectively. 

T T
1 0i j j i i i

i

L X X w X X w
w

λ∂
= − =

∂
                 (7) 

T T
2 0j i i j j j

j

L X X w X X w
w

λ∂
= − =

∂
                 (8) 

To address this kind of optimization problem, multiply Equation (7) by T
iw  

and Equation (8) by T
jw , respectively 

T T T T
1 1i i j j i i i iw X X w w X X wλ λ= =                   (9) 

T T T T
2 2j j i i j j j jw X X w w X X wλ λ= =                 (10) 

So from Equation (9) and Equation (10) we get that 

( )TT T T T T
1 1 2i i j j j j i iw X X w w X X wλ λ λ= = = =             (11) 

Let 1 2λ λ λ= = , Equation (7) and Equation (8) can be rewritten as 
T T 0i j j i i iX X w X X wλ− =                    (12) 

T T 0j i i j j jX X w X X wλ− =                    (13) 

Equivalently, it can be further simplified to the following form: 

( ) 1T T T 2 T
i j j j j i i i i iX X X X X X w X X wλ

−
=               (14) 

( ) 1T T T 2 T
j i i i i j j j j jX X X X X X w X X wλ

−
=               (15) 

The optimization problem is equivalent to the following eigenvalue problem: 
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T T

T T
i ii j i i

j jj i j j

w wX X X X
w wX X X X

λ
      

=               
         (16) 

3. Experiments and Results 

In this section, we introduce the primary experimental procedure, the experi-
mental setup and the classification results for different methods. 

3.1. Experimental Setup 

After obtaining the FBNs of all subjects, the subsequent task comes to use the 
constructed BFNs to train a classifier for identifying ASDs from HCs. In our ex-
periment, we use the network edge weights as features for ASD identification. As 
described above, the preprocessed data is parceled into 116 brain regions, and so 
we have a high feature dimension of ( )116 116 1 2 6670× − =  from the symme-
tric BFN adjacent matrix. Since the BFN matrix is symmetric, we just use its up-
per triangular elements as input features for classification. Even so, it still causes 
the curse of dimensionality [29], since the number of feature dimension is far 
greater than the sample size (i.e., the number of subjects used in our experi-
ment). To address this problem, numbers of approaches for feature selection 
have been proposed such as t-test, least absolute shrinkage and selection opera-
tor (LASSO) [30], genetic algorithm (GA) [31], and so on. In this paper, we ap-
ply the simplest t-test with two accepted p-values (0.01 and 0.05) for feature se-
lection and choose the linear support vector machine (SVM) classifier (C = 1) to 
conduct the subsequent classification task. The final classification accuracy of 
involved methods is evaluated by 100 validation (5-fold CV). 

3.2. Classification Results 

To evaluate the different BFN estimation methods, five evaluation metrics are 
utilized in this experiment, including accuracy (ACC), specificity (SPE), sensi-
tivity (SEN), F1-score (F1) and AUC (the area under the receiver operating cha-
racteristic (ROC) curve). Specifically, the mathematical definition of these three 
metrics is given as follows: 

TP TNACC
TP FP TN FN

+
=

+ + +
,                  (17) 

TPSEN
TP FN

=
+

,                      (18) 

TNSPE
FP TN

=
+

,                       (19) 

1
2TPF

2TP FN FP
=

+ +
,                     (20) 

where TP, TN, FP and FN represent true positive, true negative, false positive 
and false negative respectively. 
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Figure 3. The classification results (mean ± standard deviation) base on five performance metrics (i.e., ACC, SEN, SPE, AUC 
and F1) by three different methods (i.e., Averaging-PC, Averaging-CCA and PCA-CCA methods) for ASD/MCI identifica-
tion. Where the best results for each set of metrics are represented by bold numbers. 

 
Results of ASD Identification: 
As can be seen from Figure 3(c), Figure 3(d) and Figure 4(c), Figure 4(d), 

the proposed method is superior to the baseline method under five evaluation 
metrics (i.e., ACC, SEN, SPE, AUC and F1). Especially for AveragingCCA me-
thod, it achieves the best performance on ACC, SEN and F1. Therefore, we argue 
that the method proposed in this paper may have practical significance for the 
timely diagnosis of MCI population. 

4. Discussion 

In this section, we first discuss the effect of the number of nodes in each brain 
region in ASD/MCI classification. Then, we investigate the effect of brain par-
cellation on the classification results. Finally, we show the most discriminative 
features selected by proposed methods for exploring their relationship with brain 
disorders. 

4.1. Influence of Number of Node 

Due to the complexity and unknown nature of BFNs, the optimal value n of the 
number of nodes is a practical problem that we need to consider. As we men-
tioned in Section II-C, the smallest ROI defined by AAL atlas contains only 11 
voxels. Thus, to keep the number of voxels within ROIs, the number of nodes n  
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Figure 4. The ROC curves and AUC values achieved by three different methods under two accepted p-values 
(i.e., 0.05, 0.01) in ASD/MCI classification tasks. 

 
should be less than or equal to 11 (i.e., n ≤ 11). In ASD and MCI classification 
tasks, based on 5-fold CV (p = 0.05), the classification accuracy of the Averag-
ing-CCA and PCA-CCA methods with 11 different node number n is reported 
in Figure 5. It can be observed that Averaging-CCA and PCA-CCA in both 
ABIDE and ADNI databases achieve the best performance with n = 11 There-
fore, we believe that BFN is of the best quality when n = 11. 

4.2. Brain Parcellation 

ROI selection is a difficult choice, as the optimal definition may vary for different 
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conditions or pathologies. Voxels within the same ROI tend to have similar 
structures and functions based on pre-defined atlases. Typical atlases include the 
Power [32] (a coordinate-based atlas consisting of 264 ROIs), the Harvard Ox-
ford template [33] (a probabilistic atlas of anatomical structures and contains 
118 ROIs) and the AAL [23] (a structural atlas with 116 ROIs defined from the 
anatomy of a reference subject). To verify the effect of different brain region at-
lases on the final result, in this section, we use the proposed methods (i.e. Ave-
raing-CCA and PCACCA methods) by 100 times 5-fold CV (p-value = 0.05) to 
conduct the ASD and MCI classification tasks. It can be observed from Table 2: 
1) In ASD VS. HC classification task, the AAL atlas can obtain the best classification 

 

 
Figure 5. The classification accuracy based on Averaging-CCA and PCA-CCA methods by 11 kinds of the number of node in each 
ROI. 
 
Table 2. The classification results based on the proposed methods using different atlases for brain parcellation for parcellation for 
ASD/MCI identification. 

Datasets Method Atlas ACC (%) SEN (%) SPE (%) AUC (%) F1 (%) 

ABIDE 

Averaging-CCA 

Power (264) 67.57 73.33 63.64 74.67 64.71 

Harard Oxford (118) 70.27 60.00 77.27 73.56 62.07 

AAL (116) 72.97 81.25 66.67 76.53 72.22 

PCA-CCA 

Power (264) 70.27 66.67 72.73 73.76 64.52 

Harard Oxford (118) 64.86 58.82 70.00 72.24 60.61 

AAL (116) 70.27 68.75 71.43 71.07 66.67 

ADNI 

Averaging-CCA 

Power (264) 85.19 82.35 90.00 92.54 87.50 

Harard Oxford (118) 85.19 85.71 84.62 94.39 85.71 

AAL (116) 88.89 92.09 86.04 93.67 90.91 

PCA-CCA 

Power (264) 81.49 86.67 75.00 93.44 83.87 

Harard Oxford (118) 85.19 92.86 76.92 92.80 86.67 

AAL (116) 84.81 87.08 83.17 93.82 85.71 
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results when using the Averaging-CCA method, but the classification results ob-
tained in Power atlas and AAL atlas are similar when using the PCA-CCA me-
thod. 2) In MCI VS. HC classification task, the AAL atlas can obtain relatively 
good results when using the Averaging-CCA method, and the results of Harvard 
Oxford atlas are better when using the PCA-CCA method. According to these 
results, we found that the performance of each atlas may vary under different 
conditions, so there is no best way to segment the brain. In this article, we chose 
the AAL atlas to predefine ROIs, mainly because of its popularity and simplicity. 

4.3. Discriminative Features 

In this section, to verify which features (i.e., functional connections) contribute 
more to accuracy, we use the estimated BFN edge weights as features for classi-
fication. Based on the proposed Averaging-CCA and PCA-CCA methods, we use 
t-test (p-value = 0.0001) to select the most discriminating features to identify 
ASD and MCI populations, and show the results in Figure 6. Specially, the  

 

 
Figure 6. Most discriminative functional connections estimated by Averaging-CCA. The 
nodes marked by red boxes are the most discriminative ROIs for MCI/ASD identification. 
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thickness of each arc shown in Figure 6 represents the discriminating ability in-
versely proportional to the corresponding p-value (rather than its actual connec-
tivity strength), and for better visualization, the color of each arc is randomly as-
signed. In addition, we mark the selected brain regions with red boxes. For ASD 
identification, 28 discriminating features were selected by two methods. As 
shown in Figure 6(a), the most important identifying features and their corres-
ponding brain regions selected by the Averaging-CCA method include the right 
precentral gyrus, left middle frontal gyrus, bilateral hippocampus, bilateral para-
hippocampal gyrus, right amygdala and bilateral middle temporal. And the left 
parahippocampal gyrus, left middle frontal gyrus, right putamen, left middle 
temporal gyrus and bilateral hippocampus are chosen by the PCA-CCA method 
in Figure 6(b). Many of these have been widely reported in previous studies [34] 
[35] [36] [37] as potential biomarkers for ASD VS. HC classification task. For 
MCI identification task, the Averaging-CCA and PCACCA methods selected 26 
identification features respectively. It can be seen from Figure 6(c), the averag-
ing-CCA method selects brain regions that may help identify MCI include the 
righ parahippocampal gyrus, bilateral hippocampus, right cerebelum 6, bilateral 
amygdala and right caudate. And right hippocampus, right parahippocampal gy-
rus, right caudate, right cerebelum6 and bilateral amygdala are selected in PCACCA 
method in Figure 6(d) These regions are thought to play an important role in 
the default mode network and are closely related to AD or MCI, which is con-
sistent with several previous studies [38] [39] [40] [41]. The results further prove 
the effectiveness of the proposed methods. 

5. Conclusion 

In this paper, the ROI-wise node representation method is used as a baseline 
method to construct BFNs. However, treating a ROI as a single node is not enough 
to represent the complete information about the ROI. This paper proposes a new 
method for obtaining nodes of ROIs based on the hypothesis that a ROI can be 
represented by multiple nodes, that is, to extract the node signals of ROIs with 
K-means or PCA, and then use CCA to construct BFNs. To investigate the valid-
ity of the proposed methods, we performed ASD vs. HC and MCI vs. HC classi-
fication tasks on two benchmark datasets with rs-fMRI data. CCA-based me-
thods achieve high recognition rates in both ASD and MCI classification tasks. 
Especially, the Averaging-CCA method achieved the highest classification effect. 
Experimental results show that our method has a better classification effect than 
the baseline method, which indicates that the multiple node representation of 
ROIs may play an important role in mining the functional connectivity patterns 
of our brains. In the future, we will propose more novel BFN estimation me-
thods for practical problems. 
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