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Abstract 
In this paper, the ansatze method is implemented to study the exact solutions for 
the modified Benjamin-Bona-Mahony equation (mBBM). The singular-shaped 
traveling wave solution, the Bell-shape is traveling wave solution, the kink- 
shaped traveling wave solution and the periodic traveling wave solution is 
obtained. With the assist of computational software MATLAB, the graphical 
exemplifications of solutions are illustrated of the two-dimension (2D) and 
three-dimension (3D) plots. 
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1. Introduction 

Nonlinear evolution equations are extensively used as models to describe intri-
cate physical phenomena in diverse fields of the sciences, peculiarly in fluid me-
chanics, solid state physics, plasma physics, and chemical physics [1]. Further-
more, the study of exact solutions of nonlinear evolution equations plays a sig-
nificant part in soliton theory. In the past, many available methods have been 
established to obtain exact solutions of nonlinear evolution equations, for in-
stance the Hirota’s bilinear transformation method [2] [3], the tanh-function 
method [4] [5], the Exp-function method [6]-[13], the ( )G G′ -expansion me-
thod [14]-[21], discrete Galerkin approximations method [22], the Jacobi elliptic 
function method [23], the homogeneous balance method [24], the modified 
simple equation method [25] [26] and so on. 

The Benjamin-Bona-Mahony (BBM) equation  

 0n
t x x xxtu u u u u+ + + =                          (1) 
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is the most famous model in physical applications. This equation model long 
waves in a nonlinear dispersive system. The solution of the BBM equation exhi-
bits definite soliton-like behavior that is not explainable by any known theory 
[27]. The BBM equation is used in the analysis of the surface waves of long wa-
velength in liquids, hydromagnetic waves in cold plasma, acoustic-gravity waves 
in compressible fluids and acoustic waves in anharmonic crystals. Where n = 2 
in (1), the BBM equation is called the modified Benjamin-Bona-Mahony equa-
tion (mBBM) [28]. In the article, we apply the ansatze method to study the exact 
traveling wave solutions of the following mBBM equation [29].  

 2 0,t x x xxtu u au u bu+ + + =                       (2) 

Here a and b are nonzero constants, ( ),u x t  is an unknown function, with re-
spect to the spatial variable x and temporal variable t. 

Kamruzzaman Khan and M.Ali Akbar [30] apply the ( )( )ξ−Φ -expansion 
method to find the exact solitary wave solutions of mBBM equation, including 
hyperbolic function solutions, trigonometric function solutions and rational so-
lutions. Kamruzzaman Khan, M. Ali Akbar and Md. Nur Alam [29] applies the 
MSE method to find the traveling wave solutions of mBBM equation. A K Gupta, 
J Hazarika [31] investigate the exact solutions by using Kudryashov method, 
Furthermore, we use four-term approximate solution of OHAM and compare it 
with the solution of the Kudryashov method. 

The article is prepared as follows: In Section 2, we discuss the exact traveling 
wave solutions of modified Benjamin-Bona-Mahoney equation, In Section 3, we 
provide the dynamic behaviors of the traveling wave solutions of mBBM equa-
tion, and the short conclusions are given in Section 4. 

2. Solutions of the Modified Benjamin-Bona-Mahoney  
Equation  

Using the Following Traveling Wave Transformation  

 ( ) ( ) ( ), ,u x t u u x tξ ω= = +                      (3) 

Equation (2) can be reduced into the following ordinary differential equation 
(ODE).  

 ( ) 21 0.u au u b uω ω′ ′ ′′′+ + + =                     (4) 

Integrating (4) once with respect to ξ , and choosing constant of integration as 
zero, we can obtain the following ODE.  

 ( ) 311 0.
3

u au bω ω′′+ + + =                      (5) 

2.1. The Hyperbolic Function Solution  

Suppose that the solutions of Equation (5) have the following form.  

 ( ) ( )1
0

1
sinh sinh cosh .

m
i

i i
i

u B A Aξ α α α−

=

= + +∑             (6) 
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Balancing the highest nonlinear terms 3u  and the highest derivative term 
u′′  in Equation (5), we obtain 3m = m + 2, which gives m = 1. 

By (6) we can write as  

 ( ) 1 1 0sinh cosh .u B A Aξ α α= + +                  (7) 

where 0A , 1A  and 1B  are undetermined constants. Let be the ansatze  

 d sinh .
d
α α
ξ
=                           (8) 

By Substituting (7), (8) into Equation (5), this yields the polynomial of  
( )sinh cosh 0,1,2,3i i iα α = , setting the coefficients of each power  
( )sinh cosh 0,1,2,3i i iα α =  to zero, we can obtain the following algebraic equa-

tions with respect to 0A , 1A , 1B  and ω . 

( )

( )

( )

3 2
0 0 0 1

2 2
1 1 1 0 1 1

2 2
0 1 0 1

3 2
1 1 1 1

2 2
1 1 1 0 1 1

3 2
1 1 1 1

0 1 1

11 0,
3

1 0,

0,
1 2 0,
3

1 2 0,
1 2 0,
3
2 0.

A aA aA A

B aA B aA B b B

aA B aA A

aB aA B b B

A aA B aA A b A

aA aA B b A

aA A B

ω

ω ω

ω

ω ω

ω

 + + + =


+ + + + =


+ =
 + + =

 + − + − =

 + + =


=

                (9) 

Solving the above algebraic Equations (9), we can obtain the following three 
sets of solutions,  

 Case 1. 0 1 1
6 10, 0, , ;

1
bA A B
a b
ω ω− −

= = = ± =
+

             (10) 

Case 2. 0 1 1
6 10, 0, , ;

1 2
bA B A
a b
ω ω− −

= = = ± =
−

            (11) 

Case 3. 
( ) ( )

0 1 1

1 1 2 20, , , .
2

b b
A A B

a a b
ω ω ω ω

ω
− + − + − −

= = ± = ± =
−

 (12) 

By applying the method of separating into variables to solve Equation (8), 
with choosing constant of integration to zero, we obtain:  

 sinh csch ,cosh coth .α ξ α ξ= − = −                  (13) 

Using (10), (13), (3) and (7), we have:  

 ( )1,2
6 csch ,bu
a
ωξ ξ−

=                      (14) 

where 
1

1
x t

b
ξ = −

+
, 1u  takes “+”, 2u  takes “−”. 

Using (11), (13), (3) and (7), we have:  
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 ( )3,4
6 coth ,bu
a
ωξ ξ−

=                     (15) 

where 
1

1 2
x t

b
ξ = −

−
, 3u  takes “+”, 4u  takes “−”. 

Using (12), (13), (3) and (7), we have:  

 ( ) ( ) ( )
5,6,7,8

1 2 1
csch coth ,

b b
u

a a
ω ω ω ω

ξ ξ ξ
+ − − + −

=         (16) 

where 
2

2
x t

b
ξ = −

−
, 5u  takes “+, +”, 6u  takes “−, −”, 7u  takes “+, −”, 8u  

takes “−, +”. 
By the above analysis, we can obtain the solutions of Equation (2), as fol-

lows: 
Proposition 1. 
1) If ( )1 0ab b+ > , Equation (2) have the following hyperbolic function solu-

tions 

( ) ( )1,2
6, csch ,
1 1

b tu x t x
a b b

 = − + + 
  

2) If ( )2 1 0ab b − < , Equation (2) have the following hyperbolic function so-
lutions 

( ) ( )3,4
6, coth ,

1 2 1 2
b tu x t x

a b b
 = − − − 

  

3) If ( )2 0ab b − < , Equation (2) have the following hyperbolic function solu-
tions 

( ) ( )5,6,7,8
3 2 2, csch coth .
2 2 2

bu x t x t x t
a b b b

    = + +    − − −    
   

Suppose that the solutions of Equation (5) have the following form.  

 ( ) ( )1
0

1
sin sin cos .

m
i

i i
i

u B A Aξ α α α−

=

= + +∑             (17) 

Balancing the highest nonlinear terms 3u  and the highest derivative terms 
u′′  in Equation (5), we obtain m = 1. 

By (17) we can write as  

 ( ) 1 1 0sin cos ,u B A Aξ α α= + +                  (18) 

where 0A , 1A  and 1B  are undetermined constants. Let be the ansatze  

 d sin .
d
α α
ξ
=                          (19) 

By Substituting (18), (19) into Equation (5), this yields the polynomial of 
( )sinh cosh 0,1,2,3i i iα α = , setting the coefficients of each power  
( )sinh cosh 0,1,2,3i i iα α =  to zero, we can obtain the following algebraic equa-

tions with respect to 0A , 1A , 1B  and ω .  
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( )

( )

( )

3 2
0 0 0 1

2 2
1 1 1 0 1 1

2 2
0 1 0 1

3 2
1 1 1 1

2 2
1 1 1 0 1 1

3 2
1 1 1 1

0 1 1

11 0,
3

1 0,

0,
1 2 0,
3

1 2 0,
1 2 0,
3
2 0.

A aA aA A

B aA B aA B b B

aA B aA A

aB aA B b B

A aA B aA A b A

aA aA B b A

aA A B

ω

ω ω

ω

ω ω

ω

 + + + =


+ + + + =


− =
 − − =

 + + + − =

 − + =


=

               (20) 

Solving the above algebraic Equations (20), we can obtain the following two 
sets of solutions,  

 Case 1. 0 1 1
6 10, 0, ,

1
bA A B
a b
ω ω −

= = = ± =
+

              (21) 

Case 2. 0 1 1
6 10, 0, , .

1 2
bA B A
a b
ω ω− −

= = = ± =
−

           (22) 

By applying the method of separating into variables to Equation (19), with 
choosing constant of integration to zero, we obtain:  

 sin sec ,cos tanh .hα ξ α ξ= = ±                  (23) 

Using (21), (23), (3) and (18), we have:  

 ( )1,2
6 sech ,bu

a
ωξ ξ= ±                    (24) 

where 
1

1
x t

b
ξ = −

+
, 1u  takes “+”, 2u  takes “−”. 

Using (22), (23), (3) and (18), we have:  

 ( )3,4
6 tanh ,bu
a
ωξ ξ−

= ±                  (25) 

where 
1

1 2
x t

b
ξ = −

−
, 3u  takes “+”, 4u  takes “−”. 

By the above analysis, we can obtain the solutions of Equation (2), as fol-
lows: 

Proposition 2. 
1) If ( )1 0ab b+ < , Equation (2) have the following hyperbolic function solu-

tions 

( ) ( )1,2
6, sech ,

1 1
b tu x t x

a b b
−  = − + + 

  

2) If ( )1 2 0ab b− > , Equation (2) have the following hyperbolic function so-
lutions 

( ) ( )3,4
6, tanh .

1 2 1 2
b tu x t x

a b b
 = − − − 
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2.2. The Trigonometric Function Solutions  

For (6) and (7), Let be the ansatze  

 d cosh .
d
α α
ξ
=                           (26) 

By Substituting (7), (26) into Equation (5), this yields the polynomial of  
( )sinh cosh 0,1,2,3i i iα α = , setting the coefficients of each power  
( )sinh cosh 0,1,2,3i i iα α =  to zero, we can obtain the following algebraic equa-

tions with respect to 0A , 1A , 1B  and ω .  

 

( )

( )

( )

3 2
0 0 0 1

2 2
1 1 1 0 1 1

2 2
0 1 0 1

3 2
1 1 1 1

2 2
1 1 1 0 1 1

3 2
1 1 1 1

0 1 1

11 0,
3

1 2 0,

0,
1 2 0,
3

1 0,
1 2 0,
3
2 0.

A aA aA A

B aA B aA B b B

aA B aA A

aB aA B b B

A aA B aA A b A

aA aA B b A

aA A B

ω

ω ω

ω

ω ω

ω

 + + + =


+ + + + =


+ =
 + + =

 + − + − =

 + + =


=

             (27) 

Solving the above algebraic Equations (27), we can obtain the following three 
sets of solutions,  

 Case 1. 0 1 1
6 10, 0, , ;

1 2
bA A B
a b
ω ω− −

= = = ± =
+

            (28) 

Case 2. 0 1 1
6 10, 0, , ;

1
bA B A
a b
ω ω− −

= = = ± =
−

             (29) 

Case 3. 
( ) ( )

0 1 1

1 2 1 20, , , .
2

b b
A A B

a a b
ω ω ω ω

ω
− + − + − −

= = ± = ± =
+

  (30) 

By applying the method of separating into variables to Equation (26), with 
choosing constant of integration to zero, we obtain:  

 sinh cot ,cosh csc .α ξ α ξ= − = −                 (31) 

Using (28), (31), (3) and (7), we have:  

 ( )1,2
6 cot ,bu
a
ωξ ξ−

=                     (32) 

where 
1

1 2
x t

b
ξ = −

+
, 1u  takes “+”, 2u  takes “−”. 

Using (29), (31), (3) and (7), we have:  

 ( )3,4
6 csc ,bu
a
ωξ ξ−

=                    (33) 

where 
1

1
x t

b
ξ = −

−
, 3u  takes “+”, 4u  takes “−”. 

Using (30), (31), (3) and (7), we have:  
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 ( ) ( ) ( )
5,6,7,8

1 2 1
cot csc ,

b b
u

a a
ω ω ω ω

ξ ξ ξ
+ − − + −

=        (34) 

where 
2

2
x t

b
ξ = −

+
, 5u  takes “+, +”, 6u  takes “−, −”, 7u  takes “+, −”, 8u  

takes “−, +”. 
By the above analysis, we can obtain the solutions of Equation (2), as fol-

lows: 
Proposition 3. 
1) If ( )1 2 0ab b+ > , Equation (2) have the following trigonometric function 

solutions  

( ) ( )1,2
6, cot ,

1 2 1 2
b tu x t x

a b b
 = − + + 

  

2) If ( )1 0ab b − < , Equation (2) have the following trigonometric function 
solutions  

( ) ( )3,4
6, csc ,
1 1

b tu x t x
a b b

 = − − − 
  

3) If ( )2 0ab b + > , Equation (2) have the following trigonometric function 
solutions  

( ) ( ) ( )5,6,7,8
5 2 2, cot csc .
2 2 2 2

b bu x t x t x t
a b b a b b

   = − −   + + + +   
   

3. Physical and Graphical Explanation 

The solution (14) is the singular-shape traveling wave solution. Figure 1 shows 
the shape of the exact singular solution 1u  of Equation (2) (only shows  

the shape of solution (14) with wave speed a = 1, b = 1, 1
2

ω = −  into the interval  

5 , 5x t− ≤ ≤ ). By Figure 1, we know that the solution 1u  have a valley and a 
peak; at the same time, the highest points and lowest points are nonsmooth. The 
solution (15) is the singular-shape traveling wave solution. Figure 2 shows the 
shape of the exact singular solution 3u  of Equation (2) (only shows the shape of 
solution (15) with wave speed a = −2, b = 1, 1ω =  into the interval 

20 , 20x t− ≤ ≤ ). By Figure 2, we know that the solution 3u  have a valley and a 
peak and these are not smooth. The solution (16) is the singular-shape traveling 
wave solution. Figure 3 shows the shape of the exact singular solution 5u  of 
Equation (2) (only shows the shape of solution (16) with wave speed a = 2, b = 1, 

2ω = −  into the interval 10 , 10x t− ≤ ≤ ). By Figure 3, we know that the solu-
tion 5u  have a valley and a peak, meantime, the highest points and lowest 
points are nonsmooth, the valleys and peaks are shorter compared to Figure 1. 

The solution (24) is the Bell-shape traveling wave solution. Figure 4 shows the 
shape of the exact Bell-shape isolated solution 1u  of Equation (2) (only shows 
the shape of solution (24)) with wave speed a = −1, b = 1, 1ω =  into 
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Figure 1. The solution ( )1 ,u u x t=  in (14) with a = 1, b = 1, 1
2

ω = − , 5 , 5x t− ≤ ≤ : (a) the 

2D plot for t = 1; (b) the 3D plot. 
 

 
Figure 2. The solution ( )3 ,u u x t=  in (15) with a = −2, b = 1, 1ω = , 20 , 20x t− ≤ ≤ : (a) the 

2D plot for t = 1; (b) the 3D plot. 
 

 
Figure 3. The solution ( )5 ,u u x t=  in (16) with a = 2, b = 1, 2ω = − , 10 , 10x t− ≤ ≤ : (a) the 

2D plot for t = 1; (b) the 3D plot. 
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the interval 5 , 5x t− ≤ ≤ ). By Figure 4, we know that the solution 1u  approach-
es the x-axis infinitely and smooth everywhere. The solution (25) is the kink- 
shape traveling wave solution. Figure 5 shows the shape of the exact Kink-type 
solution 3u  of Equation (2) (only shows the shape of solution (25) with wave 
speed a = −1, b = 1, 1ω =  into the interval 20 , 20x t− ≤ ≤ ). By Figure 5, we 
know that the solution 3u  is continuous and monotonically increasing in the 
minddle. 

The solution (32) is the periodic traveling wave solution. Figure 6 shows the 
shape of the exact singular solution 1u  of Equation (2) (only shows the  

shape of solution (32) with wave speed a = 3, b = 2, 
1
5

ω = −  into the interval  

10 , 10x t− ≤ ≤ ). By Figure 6, we know that the solution 1u  have multiple valley 
 

 

Figure 4. The solution ( )1 ,u u x t=  in (24) with a = −1, b = 1, 1
2

ω = − , 5 , 5x t− ≤ ≤ : (a) the 2D plot 

for t = 1; (b) the 3D plot. 
 

 
Figure 5. The solution ( )3 ,u u x t=  in (25) with a = −1, b = 1, 1ω = , 20 , 20x t− ≤ ≤ : (a) the 2D plot 

for t = 1; (b) the 3D plot. 
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and multiple peaks and varies in height. The solution (33) is the periodic travel-
ing wave solution. Figure 7 shows the shape of the exact singular solution 3u  of 
Equation (2) (only shows the shape of solution (33) with wave speed a =  

−1, b = −2, 
1
3

ω = −  into the interval 10 , 10x t− ≤ ≤ ). By Figure 7, we know  

that the solution 3u  have multiple valley and multiple peaks and varies in 
height. The solution (34) is the periodic traveling wave solution. Figure 8 shows 
the shape of the exact singular solution 5u  of Equation (2) (only shows  

the shape of solution (34) with wave speed a = 1, b = 1, 
2
3

ω = −  into the interval  

4 4x− ≤ ≤ , 5 5t− ≤ ≤ ). By Figure 8, we know that the solution 5u  have mul-
tiple valley and multiple peaks and varies in height. 

 

 

Figure 6. The solution ( )1 ,u u x t=  in (32) with a = 3, b = 2, 1
5

ω = − , 10 , 10x t− ≤ ≤ : (a) the 2D plot 

for t = 1; (b) the 3D plot. 
 

 

Figure 7. The solution ( )3 ,u u x t=  in (33) with a = −1, b = −2, 1
3

ω = − , 10 , 10x t− ≤ ≤ : (a) the 2D plot 

for t = 1;(b) the 3D plot. 
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Figure 8. The solution ( )5 ,u u x t=  in (34) with a = 1, b = 1, 2
3

ω = − , 4 4x− ≤ ≤ , 5 5t− ≤ ≤ : (a) the 2D 

plot for t = 1; (b) the 3D plot. 

4. Conclusion  

In this paper, we apply the ansatze method to find the exact solutions of the 
mBBM equation. Including the singular-shape traveling wave solution, the 
Bell-shape traveling wave solution, the kink-shape traveling wave solution and 
the periodic traveling wave solution, the dynamic behaviors of solutions are 
given. 
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