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Abstract

Our aim in this paper is to interest retinal eye specialists in preventing dry
macula degeneration by a special flurry vector field through open or closed
curved surfaces. The flux of vector fields through surfaces is based on vector
element area and volume element. Therefore, we explain a few geometrical
derivations of area and volume elements in curved orthogonal coordinate
systems. We hope that by derivation of a spatial vector field flurry against
drusen through open or closed surfaces due to the Gauss theorem might se-
lect drusen under eye retina cells without destroying the cells and prevent
macula degeneration. A changed flurry of a magnetic or electric vector field
through a closed line causes an electric or magnetic vector field on the surface
closed by the line. We also hope that derivation by Stokes” and Greens’ theo-
rems, with the help of iron, might help eye cells to get in life.

Keywords

Vector Area Element, Volume Element, Curved Coordinates, Vector Flux,
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1. Introduction

Macula degeneration is an eye disease that causes loss of central vision. There
are two sorts of this disease, dry macula degeneration and wet macula degenera-
tion. There are some treatments for wet macular degeneration, but very little re-
search has been done on treatments for dry macular degeneration, which might
also cause loss of vision. In dry disease, there are proteins called drusen under
the eyes’ retina cells preventing light and blood vessels from entering the cell,

which might also cause the growth of un-normal blood vessels on the retina cells,
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causing the wet disease and the loss of central vision.

To prevent the loss of central vision, an intraocular telescope lens implant was
suggested [1]. This implant increases the central object’s image but hides the pe-
ripheral vision that might interrupt the central object’s image. In order to im-
prove it, we suggested an intraocular lens implant with two mirrors [2].

Also, we suggested Intraocular Lens Implant with Mirrors and Intraocular
Three Lenses Implant with a Changed Curvature Radius [3].

At last, Inhibitor Vaccinated Pegol for Geographic Atrophy [4] Inhibitor Peg-
cetacoplan for Geographic Atrophy [5].

Low vision has been mainly extraocular [6]. Medical experiments have been
done with implant mirror telescopic lenses [7] and also medical experiments
with intraocular lenses, with an entire telescope in its center have been tested [8].

More medical experiments have been done with telescopic implant lenses [9]
[10] [11] that improved the vision of patients with AMD, but in all these teles-
copic plans only one eye sees near and hides the peripheral vision. For a lens im-
plant with two mirrors the macula needs light in the eyes.

In this paper, we explain in details, a few geometrical derivations of vector
area elements and volume elements in curved orthogonal coordinate systems
that are used for the derivation of vector field flurry through open and closed
area adding new graphical explanations and derivations.

We hope that by derivation of a spatial vector field flurry against drusen
through open or closed surfaces might select drusen under eye retina cells with-
out destroying the cells and prevent macula degeneration. We also hope that the
derivation of electric or magnetic changed vector fields around a closed line by
Stokes’ theorem, with the help of iron, might help eye cells to get in life.

The whole paper is organized as follows: Four geometrical derivations of vec-
tor area elements and volume elements will be presented in the first section.

The flux of vector fields through the outside of an open and a closed surface
with a full geometrical Proof of Gauss theorem will be presented in the second
section.

Green and Gauss Theorems with full proofs will be presented in the third sec-

tion and the conclusions will be presented in the last section.

2. Derivations of vector Area Element dS and Volume
Element dV

2.1. Volume Element in Curved Orthogonal Coordinates by
Jacobian Theorem

Curved orthogonal coordinates are curved lines with the parameters u,v,w
(Figure 1).

The coordinates of each point are x = x(u,v,w), y=y(u,v,w), z=2z(u,v,w),
and the place vector of each point is a vector display, where i=X, j=§, k=12,

F(Xy,2)=xXi+yj+zk =x(u,v,w)i+y(u,v,w)j+z(uv,w)k =F(u,v,w)
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dr
b T
— /7‘
r(u, v, r(u,v, w)

\

Figure 1. Curved orthogonal lines with the parameters u,v,w.

df = lim TT" = lim AF =F,du + F/dv + F/dw = dF, +dr, +dF,
T 5T AF >0

Thus, the vector dr is tangent to a line in space and consists of three vectors
where each vector is tangent to one of the lines u,v,w.
Volume element by mixed multiplication of vectors:
dV = (dF, xdF, ) edF, = (F/dvxF/du)eF, dw

’

X Yoo Zy
=(F/xF)eF dvdudw=|x, vy, z,|dvdudw
X YeoZ

Volume element by cylindrical coordinates p,p,z (Figure 2):
F(p,(p, Z) = pCOS(q))i +psin(¢) j+zk
=>dr=rdp+rdp+1dz=7dp+T dp+kdz

0 0 1
dV =(7/ xF’)eridp-dp-dz=| cos(p) sin(p) 0/dg-dp-dz
-psin(p) pcos(p) 0
= pdedpdz = J.dedpdz
Volume element by spherical coordinates &,¢,r (Figure 3):
F(@,0,r)=rsin(@)cos(p)i+rsin(d)sin(¢) j+rcos()k
= dr =1,d0+ 7 dp+rdr
dV =(; x7) ) e F/dp-do-dr
sin(@)cos(p)  sin(@)sin(p)  cos(0)
=|rcos(@)cos(g) rcos(@)sin(p) —rsin(8)de-do-dr
—rsin(@)sin(¢) rsin(@)cos(p) 0

dV =r?sin(0)de-do-dr = Jg -de-dg-dr

2.2. Area Element and Volume Element in Cylindrical and
Spherical Coordinates by Drawings and by Vector
Multiplications

2.2.1. Horizontal Area Element and Volume Element by Orthogonal
Cylindrical Coordinates p,¢,z by Drawings and by Vector
Multiplications (Figure 4)

Vector area element and volume element by vector multiplications:

dS =dppx pded = pdedp(pxp) = pdepdp-k
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ZP p.0,2) P y=psin( )
A ty X 2 2 2

+ =
xy/ﬂ x = pcos( p) RS

Figure 2. Curved orthogonal cylinder coordinates.

2 Z/Np =rpin( ) x=pcos( @)= rsin( 8)cos( ¢)
0 (9.0,7) o sl O)si
z = rcos( 6 % y=psin( p)=rsn 0)sin( )
X ,(/) y' z=rcos( 0)

Figure 3. Curved orthogonal spherical coordinates.

lim Ap =dg

o p-do >4p k = -k
lim Ap =dp =
Ap—0 # dz p-do-¢
plo LkLlp Q .
P dp - p

dS = p-do-dp , dV =dS -dz = p-de¢  -dp -dz
Figure 4. Horizontal area and volume elements by cylindrical coordinates.

ds =|d§| = pdedp-|K| = pdedp

dV = (dppx pdpp)edzk = pdpdpdz (pxp) ek "

= pdpdpdz -k ek = pdpdpdz

2.2.2. Element of Space on the Surface of a Sphere and a Volume Element
Inside a Sphere by Orthogonal Spherical Coordinates 8,p,r by

Drawings and by Vector Multiplications (Figure 5)
Vector area element and volume element by vector multiplications:

dS = rd6oxrsin(0)dpd = rzdesin(e)dgo(éx g?)) =r’sin(0)dedd-f (2)

ds = dS| = r*sin(0)dedo|f| = rsin (0)dpdo (3)

dv = (rdeéx rsin(H)d¢¢3)odrf =r? sin(a)dq)dadr(éxg?))o f
=r?sin(6)dedodr

(4)

2.3. Vector and Scalar Area Elements According to Any Point
Vector as Shown by the Vector: F(x,y)=xi+ yj+z(x,y)k
Where: z=z(X,Y)

2.3.1. By Cartesian Coordinates

(xy) (xy) Fidx = (i + zyk ) dx
r(xy)=xi+yj+z(x,y)k=>dr=rdx+rdy =< o
g rydy:(J+zyk)dy
i j k
dS = Fdxx fydy = (7 xF )dxdy =|1 0 zj|dxdy =(-zji—z)j+k)dxdy (5)

Olz;
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r-sin( 0)-do

r-dgm

p-de

as =p-do-r-do =r"-sin(0)-do-do

av =dS -dr =r’-sin(0)-do -dé -dr

dr -7 lim A@ =do
. A AO—>0

r-sin( @)-deo ¢

lim Ar =dr

Ar—0

r-do -6 ?

¢ ) LpLile
dv =dS -dr :rl-sin( 0)-do-do-dr Z% oL Lr

14
Figure 5. Element of space on the surface of a sphere and a volume element

= =

ds =|d§|

7 |dxdy = |-zi 2} j + k|dxdy = (z)" +(z} ) +1-dxdy
2.3.2. By Cylindrical Coordinates
F(p.@)=pcos(p)i+psin(p)j+z(p.p)k =dF =Fdp+T.dp
r,=cos(p)i+sin(e)j+z,k, F =—psin(gp)i+pcos(p)j+zk
i j k
dS = dpxTde = (" 7, )dpdp =| cos(p)  sin(p) z' dpdg
-psin(p) pcos(p) z
:((z;sin((p)—z;pcos(qy))i—(z;cos( )+12, psm(go))j+pk)dpd(p

ds :|d§| |r xT |dpd¢7 \/ )2 p>+p?-dpde (6)

2.3.3. By Spherical Coordinates

X +y*+72=R*=>z=%/R’

:f(x,y):xi+yjiJR2—(x2+y2)-k

rdx = (i+2z:k) dx=(|

|
—_
>
N
+
<
[N}
SN—

dr = rdx +rydy =

N|><

‘o

iy = (j+2/k)dy =[j —%kjdy

dS = Py = (7 )dxdy =1 0 —=|dxdy
z
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i k

=|1 0 —tan(@)cos(p) pdpde
0 1 -—tan(@)sin(p)
i k

=1 0 -tan(6)cos(p)|-Rsin(#)d(Rsin(8))de
0 1 —tan(@)sin(p)
i k

=|1 0 -—tan(@)cos(p)-R?sin(#)cos(6)dbde
0 1 —tan(@)sin(gp)

i k
dS :% 1 0 -tan(0)cos(p)-R*sin(20)dode (7)
0 1 —tan(@)sin(p)

dS = (tan(0)cos(p)i+tan(8)sin(p) j+k)-R*sin(0)cos(0)dode

ds :|d§| = Jtan? (8)+1-R*sin(6)cos(0)dode

__ 1 R?sin(@)cos(0)d@dde = R%sin(0)dode

cos(6)

2.4. Area Element and Volume Element in Curved Coordinates by
unit Vectors ¢€,,€,,€, and Lame Coefficients h  h, h,

u’rEviFw

2.4.1. Curved Coordinates u,v,w (Figure 6)

w Fldw=h,dwe,

Vv = const.

u =const.
- g -
r'du = h,due,

u = const.

w=const. €,

Figure 6. Curved coordinates with its unit vectors €& €, .

2.4.2. The Place Vector of Any Point in Space r (u,v, W) and the Vector
dr Tangential to Some Line in Space
F(u,v,wW)=Xi+Yyj+zk = x(u,v,w)i+y(u,v,w)j+z(u,v,w)k
= dr =1/du +rdv+r,dw

= s !y ’ M r g ! ! 3 r o ’
I =xi+y,j+z.k, T/ =xi+y j+z,k, T, =x,i+Vy,j+z,k

The vector df consists of vectors: f/du,Tdv,F,dw that are tangential to the
respective lines Uu,v,w.

2.4.3. €,,6,,6, AreUnitVectors Tangential to the Lines u,v,w Where

ur¥viFw
§ =0 =1 =[r|§, =hg,
g =f =T =[7g =hg,
&, = =T, =|f[&, =hg,
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and

Are Lame coefficients.
According to the unit vectors and to Lame coefficients:

dr =r/du+rdv+r,dw=h§&du+hgadv+h,g,dw
=h,dug, + h,dve, + h,dwe,

2.4.4. Area Element and Volume Element in Curved and Orthogonal

Coordinates u,v,w Where the Unit Vectors Are Perpendicular to
Each Other

g 16 L& L&, &x& =6, & 6x6 =6, &xE =¢

w = const. = dS = h,dug, xh,dve, = (&, x&, ) h,h,dudv = h,h,dudv &,
= dS = h,h,dudv

v = const. = dS = h,dug, xh,dwg,, = (&, x&, )h,h,dwdu = h,h,dwdu &,
= dS = h,h,dwdu

u = const. = dS = h,dve, x h,dwg, = (&, x&, ) h,h,dvdw = h h,dvdw €,
= dS = h,h, dvdw

dV =(h,dug, xh,dvé, ) e h,dwe, =((&, x€, )&, )h,h h,dudvdw
= h,h,h,dudvdw

2.4.5. Unit Vectors, Lame Coefficients, Vector Area Element, Scalar Area
Element and Volume Element in Spherical and Cylinder
Coordinates

1) Vector and scalar area elements on the sphere surface and the volume ele-
ment by spherical coordinates r,6,¢=u,v,w (Figure 7):

F(r,0,9)=xi+yj+zk =rsin(8)cos(p)i+rsin(8)sin(p) j+rcos(6)k
dr =r/dr +1,d0+7,dp = h dre, +h,do€, +h deE,
where:
h, =|F|= F =sin(8)cos(p)i+sin(8)sin(p) j+cos(6)k = h, =|/|=1
h, =|F;| = T, = rcos(8)cos(¢)i+rcos(d)sin(p) j—rsin()k =|5|=h, =r

h, :|:;| =T =-rsin(6)sin(p)i+rsin(d)cos(p) j=h, = |qu| =rsin(6)

_' rdr = d.ré;‘ . o p =rsin(0) ds = ds- ,
rdp =rsin(@)dpe, €,

z=rcos(OYYr

7d6 =rd0e, é

Figure 7. Vector area element in spherical coordinates.
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(h..hy.h, ) =(Lr,rsin(0))= dr =dre, +rdoe, +rsin(0)de-§,
§ 18 L& L& =88, =6,,8x8,=6,8, x5 =5,
r=const.=dr=0
= dS =rdo&, xrsin(0)de-€, = r’sin(0)dode-€, =hyh dode-&,
ds =|d§| =r?sin(0)dode = h,h,dode
r #const. = dV =dre, o(rdeég xrsin(@)d(pé(p)
=r?sin(@)drdéde = h.h,h drdode

2) Vector and scalar area elements, on three kind surfaces due to the following
Figure 8 and volume element for all surfaces by cylinder coordinates
P, @, Z=U,V,W.

=l

(prp.2)=xi+Yj+zk = pcos(g)i+ psin(p) j+zk

dF =F/dp+Fdp+Fdz=h dp-&, +h dp-€, +h,dz,

h, =|r| =T =cos(p)i+sin(p) j=h, =|F/|=1
h, =|i7| =} =—psin(p)i+pcos(p) j=h, =|77| = p

h, =|rf|= % =k=h, =|r|=1

(h,.h,.h)=(1p1)=dF =dp-€, + pdp-E, +dzE, (8)
6,16, L6 LE =6, xE =6, 6 %6 =6, 6x6, =6,
l.z=const. =>dz=0
=dS=dp-€,xpdp-6,=p-dp-dp-€ =h h dodp-§,
=dS = pdpde

2.p=const. = dp=0

=dS = pde-&, xdze, = p-depdz-€, =h h,dedz €,

= dS = pdedz

3.2=12(p)=F(p.p)=xi+Yyj+zk = pcos(p)i+ psin(e) j+z(p)k
=dr=rdp+1dp

h, =|F| =¥ =cos(p)i+sin(p) j+ 2,k = h, =|r|= Y1+ (2,)

hw:|F;|:>F¢;:—psin(¢)i+pcos( )i=h, _| |

df =F/dp+Fdp =|7’|&,dp+|T7|€,do
=h,dp-8, +h,dp-&, = \1+(z,) dp-&, + pdo-&,

dS = pdedz rdz=dze,

€, 8
P
r,de = pdp-E, “Er dz|ds SIVI+(Z )iy
@F;ﬁd/hdp@ﬁ e &) 5 205/
2

pde  5.dg d
p=const. z=p" z=p dV =p-dp-dp-dz p = const. z=1(p) g

Figure 8. Vector and scalar area elements, on three kind surfaces.
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ds = 1+(Z'p)dp~é'p xpde-€, =,[1+<Z;)dp~pd(p§2
= dS =,[1+(2,) dp- pdp =h,h,dp-dg

For all surfaces according to (8):
dav :(dp-ép xpd(p'éq,)OdzéZ = pdpde-€, e dzE,
=p-dp-dp-dz=h h hdp-de-dz

3. The Flux of Vector Fields

The flux of a vector field through a vector area element of the surface (Figure 9):

The flux of the vector field all over the surface:
_” FedS = jﬂdﬂ-‘ﬂcos(a) = mlf‘cos(a)ds
S S S

The flux of the vector field: F = Pi+Qj+Rk in the vector display of a pallet
according to the lines with the parameters u,v where: P(u,v),Q(u,v),R(u,v)
F(u,v)=x(u,v)i+y(uv)j+z(uv)k
= dF = F/dv+F/du = dS = jdvx F/du = (F/ x T} ) dvdu

=xi+yj+zk
{fﬁ Xi+y,j+zk
P Q R
= [[FedS=[[Fe(i/xi)dvdu =[x v

S S S ’
Xu

-dvdu

<~

’
v
’
u

<
e

The flux of the vector field: F = Pi+Qj+Rk in the vector display of a pallet
where: z(x,y)=P(X,¥),Q(x,¥),R(x,y) according to Equation (5).
r=i+zk
F(Xy)=xi+yj+z(x y)k=drF = Fdx+Fdy =

y—J+zk

dS = Fichox Fydy = (77 x Py )dxdy = ((i+ 23k ) x( ] + 2k ) dxdy

P Q R P Q R
ij.ds HF (Fxry)axdy=[f{1 0 z|-dxdy=([[|1 0 z|-dS
o1z o1z

The flux of vector field F = Pi+Qj+Rk through the outside of a part of an

open parabolic surface by cylinder coordinates.
z=x"+y?
= r(xy)=xi+yj+(xX* +y* )k = pcos(p)i+ psin(p) j + p’k =T (p.0)

ds = ndS

ds = no‘ls/}ﬂ E COS(a) FedS=dS -‘F‘cos(a)

Figure 9. The flux of a vector field through a vector area element.
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dr =Fdp+7dp, [, =cos(p)i+sin(p)j+2pk,
I =—psin(p)i+pcos(p) j

or: dr=rdx+rdy, T/ =i+2xk, 1= j+2yk,
dS = F/dxx fydy = (T x T, ) dxdy

dS =7/ dpxTde =(F, xF! )dpde

i i K ik
=| cos(p)  sin(p) 2p|dpde=|1 0 2x|dxdy
—psin(q)) pcos(go) 0 0 1 2y
[[FedS =[[Fe(r xr)dode
S S
P(p.¢) Q(p.¢) R(p.o) . |[P QR
:” cos(p)  sin(p) 2p dpd(pzﬂl 0 2x|dxdy
*|-psin(p) pcos(p) 0 10 1 2y

The flux of vector field F = Pi+Qj+ Rk through the outside of a part of an

open sphere surface according to Equation (7).

X¥+y' +22=R*=z=%/R* - x*-y°
=T(Xy)=xi+YyjtyR*=x* -y -k

dr = F/dx+Fydy = dS = F/dxxTdy = (; x; ) dxdy,

f;'=|—£k, F),'zj—lk
z z
ik i K
dS=|1 0 —-x/z dxdy:% 1 0 —tan(@)cos(p)-R*sin(260)dode
01 -y/z 0 1 —tan(@)sin(p)
P Q R
[[FedS=|1 0 -x/z
s 0 1 -y/z
©)
L [P(@e) Q) R(Gw
:EH 1 0 —tan(0)cos(¢)|-R?sin(20)dode
I o 1 —tan(6)sin(¢p)

An additional way for calculating the flux of a vector field F = Pi+Qj+Rk.
The element vector area dS =AdS where: fi= cos(a)i+cos(f3) j+cos(y)k

= A unit vector that creates angles «, 5,y with the axes (Figure 10).

y A

L

Figure 10. A unit vector that creates angles «, 3,y with the axes.
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Thus:
[[FedS =[[Fefids = [[F e(dScos(a)i+dS cos(/) j+dS cos(y)k)

(Pi+Qj + Rk) e (dydzi + dxdzj + dxdyk ) (10)

Il
v v

(Pdydz + Qdxdz + Rdxdy)

where: dScos(a)=dydz Li, dScos(B)=dxdz L j, dScos(y)=dxdy Lk.
According to Figure 11.
Gauss theorem <ﬁ> FedS = _mﬁ oF-dv.
S \

The flux of a vector field: F = Pi+Qj+Rk through the outside of a closed
surface is equals to the field’s action Ve F =divF on the entire volume closed
by the surface, provided that components P,Q,R of the vector field F are
continuous functions.

Full Proof of Gauss theorem by Equation (10) and by drawings in Figures
12-14 where: Sis the outside of a closed surface and V'is the volume closed by
the surface.

Figure 12 explains the flux vector field through z-axis in cartesian system.

Figure 13 explains the flux vector field through y-axis in cartesian system.

ﬁ)FodS cj:ﬁ (Pi+Qj+Rk)edsi

= SQS (Pi+Qj + Rk) e (dydzi + dxdzj + dxdyk)
S

= cﬁ>(dedz +Qdxdz + Rdxdy )
S

= §p Pi e dydzi+ §p Qj » dxdz j + ff Rk » dxdyk
S S S

=3+2+1

1.<_fj>R(x,y,z)kodxdyk

= IZ[ ) R(X,Y, f, (X y))k e dxdyk + ﬂ R(x, Y, f,(x,y))k edxdy (k)

z=fi(x,y)
_ ”dxdy(R(x, ¥ £ (03) =Ry, (x0y) = [y [R(x v )T

fa(x.y

-JJy | —d = m_d dydz - m%dv

(Figure 12)

n k A X A
n
dydz dxdz IB i
) s < > as / v
i i J
ds cos( y)=dxdy 1 k ds cos( a) = dvdz L i dS cos( B)=dxdz 1 j

Figure 11. Projections of area element dS by the angles «,f,7 on the axis planes.
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dS = —dxdyk 1
Figure 12. Vector field flux through z-axis.
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Figure 13. Vector field flux through y-axis.
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Figure 14. Vector field flux through x-axis.
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(Figure 13)
3. @P (x,y,z)iedydzi

“‘ p (y.2) yz)lodyd2|+ H P yZ)yZ) o dydz (i)

x=hy(y,z) x=hy(y,z)

- J;_[dydz( h,(v.2),y.2)-P(h(v.2)..2)) =ﬂdydz[P(x, Y, z)]ith(y'z)

=hi(y.z)
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(Figure 14)
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pF e §=jjv oF.dV = mduv( )-dv

Gauss Theorem according to the Orthogonal Curve Coordinates system that
is represented by Figure 6.

Divergent VeF of the field F=F@g, +F,§ +F,, in orthogonal curve

-1 [G(Fuhvhw)+a(thuhw)ﬁ(thuhv)]

coordinates: DiVF =V eF
hu hv hw ou ov oW

By cylindrical coordinates: p,¢,Z=U,V,W
F=Fg +Fg +F¢, h =h=Lh =p, dV=pdpdepdz

Lo~ - o\F oF
DIVE = Ve =L (_Pp)+_¢+ o(F.p)
Pl op Op Oz

<_ﬂ>lfod§ :J‘J.J‘@o F-dv =‘m[a(§—;ﬁ+%+@}pdwdz

By spherical coordinates: r,0,p=u,v,W
F=Fg +Fg +Fg,
h,=1h, =r,h, =rsin(9),

dV =r?sin(#)dodedr
o(F.r?sin(@ i o(F
N 1(0)( (Frsin(@) a(mrsin(@)) o mj

r’sin or 00 o

Feas =7+ F-av

(Fr? sm(H)) a(F,rsin(9)) o(F,r

_m{ R )Jdedwdr

Example: If F =F,€ then the vector flux throw closed and open spherical

areas in spherical coordinates are:

fiFeus - m[ (5 S'”(e))J g = m[ (Fir )Jsm 6)dadgar

[[FedS =[[F& er’sin(0)dode & =r '[.[F sin(6)déde
S S

4. Green theorem and Gauss Theorem

Green theorem: the work of a vector field F along a closed line Z on a hori-
zontal plane is equal to the work of a vector field that is perpendicular to the

plane on all elements of the vector area closed by the line.

4.1. Full Mathematical Proof of Green Theorem According to
Figure 15
= ngW =

L L

T
[ ]

dr =P (x,y)dx+Q(x y)dy
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Figure 15. The surface Sclosed by the line L on a horizontal plane.
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- [[(Q=P)as = [[(Q:=Fi)o-do-dp

S

4.2. Proof by Vector Action Due to Hamilton Operator on a Vector
Field (Figure 16)

.- 0. 0. 0 . ;
VxF:[&HEJ+EKJX(P(X’V)'+Q(X’V)J)
i j k
0 0 0 Y
= & 5 E_(QX_Py)k
P(xy) Q(xy) O

4.3. Stokes’ Theorem Expanding Green’s Theorem to 3D Space
(Figure 17)

w :<jL§dW :cJLSﬁ.dr:jsj(ﬁxﬁ).d§=jsjrot(ﬁ).d§:jsj(ﬁxﬁ).ﬁds

where: VxF = ii+ij+£k x(Pi+Qj+Rk)=VxF LF.
ox oy oz
4.4. Stokes Trial Main Proof
F=Pi+Qj+Rk, F=xi+Vj+zk
= dF = dxi +dyj + dzk =W = § F edF = § Pdx+Qdy + Rdz
L L
z=z(xy)=>F(xy)=xi+yi+z(xy)k
:szfx’dx+Fy'dy, r=i+zk, Fy’=j+z;k

dS = Fydxx Fydy = (7 x Ty )dxdy = (i + z;k) x( j + ;K ) dxdy

i j ok i j k
=1 0 z|dxdy=[1 0 z|dS
01 z 01 z

fFedr= [[(Q-P)kedsk
L S

TdS-k & ‘QL—PY’)k

Figure 16. A vector field around a closed line in 2D space turns into a vector field on the
area closed by the line perpendicular to the first vector field.

ds dr ds F(x,y)=xi+yj+z(x, )k
7 L vdr = dbxi+dyj +dzk = Fldx + F,dy
w ds = Fldxx7dy = (7 x ¥ )dxdy = (i + z,k) x (j + 2}, )dxdy

Figure 17. A vector field around a closed line in 3D space turns into a vector field on the
area closed by the line perpendicular to the first vector field.
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$F odr = § F o(Fdx+ dy) = §(F o )dx-+(F o1y )dy
L L L
E

= ) 0 5 ) -dxdy

= [1((R Q) -2~ (Ri=Po) (=23 + (@~ Py) by
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~ [[9xFeds
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5. Conclusions

Vector area elements and volume elements in curved coordinates are very im-
portant for calculating the flux of vector field through an open surface and a
closed surface according to the Gauss theorem and around a closed line accord-
ing to Stokes’ and Greens’ theorems.

The flux of spatial vector field through an open surface or a closed surface
might select drusen under eyes retina cells, clean the sells from drusen without
destroying the retina cells, and prevent macula degeneration in eyes or even
brain cells degeneration.

Stokes’ and Greens’ theorems explain the magnetic field on a close flat area by
the change in time of the electric field around a closed line or the electric field on
a close flat area by the change in time of the magnetic field around a closed line.
Therefore, we hope with the help of iron, to help dead retina cells and brain cells

get to life.
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