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Abstract 
Our aim in this paper is to interest retinal eye specialists in preventing dry 
macula degeneration by a special flurry vector field through open or closed 
curved surfaces. The flux of vector fields through surfaces is based on vector 
element area and volume element. Therefore, we explain a few geometrical 
derivations of area and volume elements in curved orthogonal coordinate 
systems. We hope that by derivation of a spatial vector field flurry against 
drusen through open or closed surfaces due to the Gauss theorem might se-
lect drusen under eye retina cells without destroying the cells and prevent 
macula degeneration. A changed flurry of a magnetic or electric vector field 
through a closed line causes an electric or magnetic vector field on the surface 
closed by the line. We also hope that derivation by Stokes’ and Greens’ theo-
rems, with the help of iron, might help eye cells to get in life. 
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1. Introduction 

Macula degeneration is an eye disease that causes loss of central vision. There 
are two sorts of this disease, dry macula degeneration and wet macula degenera-
tion. There are some treatments for wet macular degeneration, but very little re-
search has been done on treatments for dry macular degeneration, which might 
also cause loss of vision. In dry disease, there are proteins called drusen under 
the eyes’ retina cells preventing light and blood vessels from entering the cell, 
which might also cause the growth of un-normal blood vessels on the retina cells, 
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causing the wet disease and the loss of central vision.  
To prevent the loss of central vision, an intraocular telescope lens implant was 

suggested [1]. This implant increases the central object’s image but hides the pe-
ripheral vision that might interrupt the central object’s image. In order to im-
prove it, we suggested an intraocular lens implant with two mirrors [2]. 

Also, we suggested Intraocular Lens Implant with Mirrors and Intraocular 
Three Lenses Implant with a Changed Curvature Radius [3].  

At last, Inhibitor Vaccinated Pegol for Geographic Atrophy [4] Inhibitor Peg-
cetacoplan for Geographic Atrophy [5].  

Low vision has been mainly extraocular [6]. Medical experiments have been 
done with implant mirror telescopic lenses [7] and also medical experiments 
with intraocular lenses, with an entire telescope in its center have been tested [8].  

More medical experiments have been done with telescopic implant lenses [9] 
[10] [11] that improved the vision of patients with AMD, but in all these teles-
copic plans only one eye sees near and hides the peripheral vision. For a lens im-
plant with two mirrors the macula needs light in the eyes. 

In this paper, we explain in details, a few geometrical derivations of vector 
area elements and volume elements in curved orthogonal coordinate systems 
that are used for the derivation of vector field flurry through open and closed 
area adding new graphical explanations and derivations.  

We hope that by derivation of a spatial vector field flurry against drusen 
through open or closed surfaces might select drusen under eye retina cells with-
out destroying the cells and prevent macula degeneration. We also hope that the 
derivation of electric or magnetic changed vector fields around a closed line by 
Stokes’ theorem, with the help of iron, might help eye cells to get in life. 

The whole paper is organized as follows: Four geometrical derivations of vec-
tor area elements and volume elements will be presented in the first section.  

The flux of vector fields through the outside of an open and a closed surface 
with a full geometrical Proof of Gauss theorem will be presented in the second 
section. 

Green and Gauss Theorems with full proofs will be presented in the third sec-
tion and the conclusions will be presented in the last section. 

2. Derivations of vector Area Element S


d  and Volume  
Element Vd  

2.1. Volume Element in Curved Orthogonal Coordinates by  
Jacobian Theorem 

Curved orthogonal coordinates are curved lines with the parameters , ,u v w  
(Figure 1).  

The coordinates of each point are ( ), ,x x u v w= , ( ), ,y y u v w= , ( ), ,z z u v w= , 
and the place vector of each point is a vector display, where ˆi x≡ , ˆj y≡ , ˆk z≡ ,  

( ) ( ) ( ) ( ) ( ), , , , , , , , , ,r x y z xi yj zk x u v w i y u v w j z u v w k r u v w= + + = + + =
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Figure 1. Curved orthogonal lines with the parameters , ,u v w . 

 

*

*

0
d lim lim d d d d d du v w v u wrT T

r TT r r u r v r w r r r
∆ →→

′ ′= = ∆ = + + = + +




         

Thus, the vector dr  is tangent to a line in space and consists of three vectors 
where each vector is tangent to one of the lines , ,u v w . 

Volume element by mixed multiplication of vectors:   

( ) ( )

( )

d d d d d d d

d d d d d d

v u w v u w

w w w

v u w v v v

u u u

V r r r r v r u r w

x y z
r r r v u w x y z v u w

x y z

′ ′ ′= × • = × •

′ ′ ′
′ ′ ′ ′ ′ ′= × • =

′ ′ ′

     

  

 

Volume element by cylindrical coordinates , , zρ ϕ  (Figure 2):  

( ) ( ) ( ), , cos sin
d d d d d d dz

r z i j zk
r r r r z r r k zρ ϕ ρ ϕ

ρ ϕ ρ ϕ ρ ϕ
ρ ϕ ρ ϕ
= + +

′ ′ ′ ′ ′⇒ = + + = + +



     

 

( ) ( ) ( )
( ) ( )

0 0 1
d d d d cos sin 0 d d d

sin cos 0

d d d d d d

z

C

V r r r z z

z J z

ρ ϕ ϕ ρ ϕ ϕ ϕ ρ
ρ ϕ ρ ϕ

ρ ϕ ρ ϕ ρ

′ ′ ′= × • ⋅ ⋅ = ⋅ ⋅
−

= =

  

 

Volume element by spherical coordinates , , rθ ϕ  (Figure 3):   

( ) ( ) ( ) ( ) ( ) ( ), , sin cos sin sin cos
d d d dr

r r r i r j r k
r r r r rθ ϕ

ϕ θ θ ϕ θ ϕ θ
θ ϕ
= + +

′ ′ ′⇒ = + +



   

 

( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

d d d d

sin cos( ) sin sin( ) cos
cos cos cos sin( ) sin d d d
sin sin sin cos( ) 0

rV r r r r

r r r r
r r

θ ϕ ϕ θ

θ ϕ θ ϕ θ
θ ϕ θ ϕ θ ϕ θ
θ ϕ θ ϕ

′ ′ ′= × • ⋅ ⋅

= − ⋅ ⋅
−

  

 

( )2d sin d d d d d dSV r r J rθ ϕ θ ϕ θ= ⋅ ⋅ = ⋅ ⋅ ⋅  

2.2. Area Element and Volume Element in Cylindrical and  
Spherical Coordinates by Drawings and by Vector  
Multiplications 

2.2.1. Horizontal Area Element and Volume Element by Orthogonal  
Cylindrical Coordinates z, ,ρ ϕ  by Drawings and by Vector  
Multiplications (Figure 4) 

Vector area element and volume element by vector multiplications: 

( )ˆ ˆ ˆ ˆd d d d d d dS kρρ ρ ϕϕ ρ ϕ ρ ρ ϕ ρ ϕ ρ= × = × = ⋅
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Figure 2. Curved orthogonal cylinder coordinates. 

 

 
Figure 3. Curved orthogonal spherical coordinates. 

 

 
Figure 4. Horizontal area and volume elements by cylindrical coordinates. 

 

d d d d d dS S kρ ϕ ρ ρ ϕ ρ= = ⋅ =


 

( ) ( )ˆ ˆ ˆ ˆd d d d d d d
d d d d d d

V zk z k
z k k z

ρρ ρ ϕϕ ρ ϕ ρ ρ ϕ
ρ ϕ ρ ρ ϕ ρ

= × • = × •

= ⋅ • =
            (1) 

2.2.2. Element of Space on the Surface of a Sphere and a Volume Element  
Inside a Sphere by Orthogonal Spherical Coordinates r, ,θ ϕ  by  
Drawings and by Vector Multiplications (Figure 5) 

Vector area element and volume element by vector multiplications: 

( ) ( ) ( ) ( )2 2ˆ ˆˆ ˆ ˆd d sin d d sin d sin d dS r r r r rθθ θ ϕϕ θ θ ϕ θ ϕ θ ϕ θ= × = × = ⋅


    (2) 

( ) ( )2 2ˆd d sin d d sin d dS S r r rθ ϕ θ θ ϕ θ= = =


              (3) 

( )( ) ( ) ( )
( )

2

2

ˆ ˆˆ ˆˆ ˆd d sin d d sin d d d

sin d d d

V r r rr r r r

r r

θθ θ ϕϕ θ ϕ θ θ ϕ

θ ϕ θ

= × • = × •

=
      (4) 

2.3. Vector and Scalar Area Elements According to Any Point  
Vector as Shown by the Vector: ( ) ( )r x y xi yj z x y k , ,= + +   
Where: ( )z z x y,=  

2.3.1. By Cartesian Coordinates 

( ) ( )
( )
( )

d d
, , d d d

d d
x x

x y
y y

r x i z k x
r x y xi yj z x y k r r x r y

r y j z k y

′ ′ = +′ ′= + + ⇒ = + ⇒ 
′ ′= +



   



 

( ) ( )d d d d d 1 0 d d d d
0 1

x y x y x x y

y

i j k
S r x r y r r x y z x y z i z j k x y

z
′ ′ ′ ′ ′ ′ ′= × = × = = − − +

′



      (5) 
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Figure 5. Element of space on the surface of a sphere and a volume element. 

 

( ) ( )22d d d d d d 1 d dx y x y x yS S r r x y z i z j k x y z z x y′ ′ ′ ′ ′ ′= = × = − − + = + + ⋅


   

2.3.2. By Cylindrical Coordinates 

( ) ( ) ( ) ( ), cos sin , d d dr i j z k r r rρ ϕρ ϕ ρ ϕ ρ ϕ ρ ϕ ρ ϕ′ ′= + + ⇒ = +
     

( ) ( ) ( ) ( )cos sin , sin cosr i j z k r i j z kρ ρ ϕ ϕϕ ϕ ρ ϕ ρ ϕ′ ′ ′ ′= + + = − + +
   

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )( )( )

d d d d d cos sin d d
sin cos

sin cos cos sin d d

i j k
S r r r r z

z

z z i z z j k

ρ ϕ ρ ϕ ρ

ϕ

ϕ ρ ϕ ρ

ρ ϕ ρ ϕ ϕ ϕ ρ ϕ
ρ ϕ ρ ϕ

ϕ ρ ϕ ϕ ρ ϕ ρ ρ ϕ

′ ′ ′ ′ ′= × = × =
′−

′ ′ ′ ′= − − + +



   

 

( ) ( )2 2 2 2d d d d d dS S r r z zρ ϕ ϕ ρρ ϕ ρ ρ ρ ϕ′ ′ ′ ′= = × = + + ⋅


          (6) 

2.3.3. By Spherical Coordinates  

( )
( ) ( )

2 2 2 2 2 2 2

2 2 2,

x y z R z R x y

r x y xi yj R x y k

+ + = ⇒ = ± − +

⇒ = + ± − + ⋅


 

( )

( )

d d d
d d d

d d d

x x

x y

y y

xr x i z k x i k x
z

r r x r y
yr y j z k y j k y
z

  ′ ′= + = −  
 ′ ′= + ⇒

  ′ ′= + = −  
 



  



 

( )d d d d d 1 0 d d

0 1

x y x y

i j k
xS r x r y r r x y x y
z
y
z

′ ′ ′ ′= × = × = −

−
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )( )

( ) ( )
( ) ( )

( ) ( )2

1 0 tan cos d d
0 1 tan sin

1 0 tan cos sin d sin d
0 1 tan sin

1 0 tan cos sin cos d d
0 1 tan sin

i j k

i j k
R R

i j k
R

θ ϕ ρ ρ ϕ
θ ϕ

θ ϕ θ θ ϕ
θ ϕ

θ ϕ θ θ θ ϕ
θ ϕ

= −
−

= − ⋅
−

= − ⋅
−

 

( ) ( )
( ) ( )

( )21d 1 0 tan cos sin 2 d d
2

0 1 tan sin

i j k
S Rθ ϕ θ θ ϕ

θ ϕ
= − ⋅

−



           (7) 

( ) ( ) ( ) ( )( ) ( ) ( )2d tan cos tan sin sin cos d dS i j k Rθ ϕ θ ϕ θ θ θ ϕ= + + ⋅


 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

d d tan 1 sin cos d d

1 sin cos d d sin d d
cos

S S R

R R

θ θ θ θ ϕ

θ θ θ ϕ θ θ ϕ
θ

= = + ⋅

= =



 

2.4. Area Element and Volume Element in Curved Coordinates by  
unit Vectors u v we e e  , ,  and Lame Coefficients u v wh h h, ,  

2.4.1. Curved Coordinates u v w, ,  (Figure 6) 

 
Figure 6. Curved coordinates with its unit vectors , ,u v we e e   . 

2.4.2. The Place Vector of Any Point in Space ( )r u v w , ,  and the Vector  
rd  Tangential to Some Line in Space 

( ) ( ) ( ) ( ), , , , , , , ,
d d d d

, ,
u v w

u u u u v v v v w w w w

r u v w xi yj zk x u v w i y u v w j z u v w k
r r u r v r w

r x i y j z k r x i y j z k r x i y j z k

= + + = + +

′ ′ ′⇒ = + +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + = + + = + +



   

  

 

The vector dr  consists of vectors: d , d , du v wr u r v r w′ ′ ′    that are tangential to the 
respective lines , ,u v w . 

2.4.3. u v we e e  , ,  Are Unit Vectors Tangential to the Lines u v w, ,  Where 

ˆ ,
ˆ ,
ˆ

u u u u u u u

v v v v v v v

w w w w w w w

e r r r e h e

e r r r e h e

e r r r e h e

′ ′ ′= ⇒ = =

′ ′ ′= ⇒ = =

′ ′ ′= ⇒ = =
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and 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2 2

,

,

u u u u u

v v v v v

w w w w w

h r x y z

h r x y z

h r x y z

′ ′ ′ ′= = + +

′ ′ ′ ′= = + +

′ ′ ′ ′= = + +







 

Are Lame coefficients. 
According to the unit vectors and to Lame coefficients:  

d d d d d d d
d d d

u v w u u v v w w

u u v v w w

r r u r v r w h e u h e v h e w
h ue h ve h we
′ ′ ′= + + = + +

= + +

      

  

 

2.4.4. Area Element and Volume Element in Curved and Orthogonal  
Coordinates u v w, ,  Where the Unit Vectors Are Perpendicular to  
Each Other 

, , ,u v w u u v w w u v v w ue e e e e e e e e e e e e⊥ ⊥ ⊥ × = × = × =
              

( ). d d d d d d d
d d d

u u v v u v u v u v w

u v

w const S h ue h ve e e h h u v h h u v e
S h h u v

= ⇒ = × = × = ⋅

⇒ =



    

 

( ). d d d d d d d
d d d

u u w w w u w u w u v

w u

v const S h ue h we e e h h w u h h w u e
S h h w u

= ⇒ = × = × = ⋅

⇒ =



    

 

( ). d d d d d d d
d d d

v v w w v w v w v w u

v w

u const S h ve h we e e h h v w h h v w e
S h h v w

= ⇒ = × = × = ⋅

⇒ =



    

 

( ) ( )( )d d d d d d d

d d d
u u v v w w u v w u v w

u v w

V h ue h ve h we e e e h h h u v w

h h h u v w

= × • = × •

=

     

 

2.4.5. Unit Vectors, Lame Coefficients, Vector Area Element, Scalar Area  
Element and Volume Element in Spherical and Cylinder  
Coordinates  

1) Vector and scalar area elements on the sphere surface and the volume ele-
ment by spherical coordinates , , , ,r u v wθ ϕ ≡  (Figure 7): 

( ) ( ) ( ) ( ) ( ) ( ), , sin cos sin sin cosr r xi yj zk r i r j r kθ ϕ θ ϕ θ ϕ θ= + + = + +
  

d d d d d d dr r rr r r r r h re h e h eθ ϕ θ θ ϕ ϕθ ϕ θ ϕ′ ′ ′= + + = + +
        

where:  

( ) ( ) ( ) ( ) ( )sin cos sin sin cos 1r r r r rh r r i j k h rθ ϕ θ ϕ θ′ ′ ′= ⇒ = + + ⇒ = =
    

( ) ( ) ( ) ( ) ( )cos cos cos sin sinh r r r i r j r k r h rθ θ θ θ θθ ϕ θ ϕ θ′ ′ ′= ⇒ = + − ⇒ = =
    

( ) ( ) ( ) ( ) ( )sin sin sin cos sinh r r r i r j h r rϕ ϕ ϕ ϕ ϕθ ϕ θ ϕ θ′ ′ ′= ⇒ = − + ⇒ = =
  

 
 

 
Figure 7. Vector area element in spherical coordinates. 
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( ) ( )( ) ( ), , 1, , sin d d d sin dr rh h h r r r re r e r eθ ϕ θ ϕθ θ θ ϕ= ⇒ = + + ⋅
     

, ,r r r r re e e e e e e e e e e e eθ ϕ θ ϕ θ ϕ ϕ θ⊥ ⊥ ⊥ ⇒ × = × = × =
              

( ) ( )2

. d 0

d d sin d sin d d d dr r

r const r

S r e r e r e h h eθ ϕ θ ϕθ θ ϕ θ θ ϕ θ ϕ

= ⇒ =

⇒ = × ⋅ = ⋅ = ⋅


   

 

( )2d d sin d d d dS S r h hθ ϕθ θ ϕ θ ϕ= = =


 

( )( )
( )2

. d d d sin d

sin d d d d d d
r

r

r const V re r e r e

r r h h h r
θ ϕ

θ ϕ

θ θ ϕ

θ θ ϕ θ ϕ

≠ ⇒ = • ×

= =

  

 

2) Vector and scalar area elements, on three kind surfaces due to the following 
Figure 8 and volume element for all surfaces by cylinder coordinates  

, , , ,p z u v wϕ ≡ .  

( ) ( ) ( ), , cos sinr z xi yj zk i j zkρ ϕ ρ ϕ ρ ϕ= + + = + +
  

d d d d d d dz z zr r r r z h e h e h zeρ ϕ ρ ρ ϕ ϕρ ϕ ρ ϕ′ ′ ′= + + = ⋅ + ⋅ +
        

( ) ( )cos sin 1h r r i j h rρ ρ ρ ρ ρϕ ϕ′ ′ ′= ⇒ = + ⇒ = =
    

( ) ( )sin cosh r r i j h rϕ ϕ ϕ ϕ ϕρ ϕ ρ ϕ ρ′ ′ ′= ⇒ = − + ⇒ = =
    

1z z z z zh r r k h r′ ′ ′= ⇒ = ⇒ = =
    

( ) ( ), , 1, ,1 d d d dz zh h h r e e zeρ ϕ ρ ϕρ ρ ρ ϕ= ⇒ = ⋅ + ⋅ +
               (8) 

, ,z z z ze e e e e e e e e e e e eρ ϕ ρ ρ ϕ ϕ ρ ρ ϕ⊥ ⊥ ⊥ ⇒ × = × = × =
              

1. . d 0

d d d d d d d
d d d

z z

z const z

S e e e h h e
S

ρ ϕ ρ ϕρ ρ ϕ ρ ρ ϕ ρ ϕ

ρ ρ ϕ

= ⇒ =

⇒ = ⋅ × ⋅ = ⋅ ⋅ ⋅ = ⋅

⇒ =



     

2. . d 0

d d d d d d d
d d d

z z

const

S e ze z e h h z e
S z

ϕ ρ ϕ ρ

ρ ρ

ρ ϕ ρ ϕ ϕ

ρ ϕ

= ⇒ =

⇒ = ⋅ × = ⋅ ⋅ = ⋅

⇒ =



    

( ) ( ) ( ) ( ) ( )3. , cos sin
d d d

z z r xi yj zk i j z k
r r rρ ϕ

ρ ρ ϕ ρ ϕ ρ ϕ ρ
ρ ϕ

= ⇒ = + + = + +

′ ′⇒ = +



  

 

( ) ( ) ( )2
cos sin 1h r r i j z k h r zρ ρ ρ ρ ρ ρ ρϕ ϕ′ ′ ′ ′ ′= ⇒ = + + ⇒ = = +

    

( ) ( )sin cosh r r i j h rϕ ϕ ϕ ϕ ϕρ ϕ ρ ϕ ρ′ ′ ′= ⇒ = − + ⇒ = =
    

( )2

d d d d d

d d 1 d d

r r r r e r e

h e h e z e e

ρ ϕ ρ ρ ϕ ϕ

ρ ρ ϕ ϕ ρ ρ ϕ

ρ ϕ ρ ϕ

ρ ϕ ρ ρ ϕ

′ ′ ′ ′= + = +

′= ⋅ + ⋅ = + ⋅ + ⋅

      

   

 
 

 
Figure 8. Vector and scalar area elements, on three kind surfaces. 

zdze=
d eϕρ ϕ= ⋅



d eρρ=


dρ ϕ⋅
dSr dρ ρ′

r dϕ ϕ′


zr dz′

dV d d dzρ ρ ϕ= ⋅ ⋅ ⋅

dρ ϕ⋅
dSdz

dS d dzρ ϕ=

eρ


eϕ


z ρ=
2z ρ=.constρ =

ze

.constρ = ( )z z ρ=

dS
dρ ϕ⋅

21 ( )z dρ ρ′+
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( ) ( )

( )2

d 1 d d 1 d d

d 1 d d d d

zS z e e z e

S z h h

ρ ρ ϕ ρ

ρ ρ ϕ

ρ ρ ϕ ρ ρ ϕ

ρ ρ ϕ ρ ϕ

′ ′= + ⋅ × ⋅ = + ⋅

′⇒ = + ⋅ = ⋅



  

 

For all surfaces according to (8): 

( )d d d d d d d

d d d d d d
z z z

z

V e e ze e ze

z h h h z
ρ ϕ

ρ ϕ

ρ ρ ϕ ρ ρ ϕ

ρ ρ ϕ ρ ϕ

= ⋅ × ⋅ • = ⋅ •

= ⋅ ⋅ ⋅ = ⋅ ⋅

    

 

3. The Flux of Vector Fields 

The flux of a vector field through a vector area element of the surface (Figure 9): 
The flux of the vector field all over the surface: 

 ( ) ( )d d cos cos d
S S S

F S S F F Sα α• = ⋅ =∫∫ ∫∫ ∫∫
   

 

The flux of the vector field: F Pi Qj Rk= + +


 in the vector display of a pallet 
according to the lines with the parameters ,u v  where: ( ) ( ) ( ), , , , ,P u v Q u v R u v  

( ) ( ) ( ) ( )
( )

, , , ,

d d d d d d d dv u v u v u

r u v x u v i y u v j z u v k

r r v r u S r v r u r r v u

= + +

′ ′ ′ ′ ′ ′⇒ = + ⇒ = × = ×





      

 

( )d d d d d

v v v v

u u u u

v u v v v
S S S

u u u

r x i y j z k
r x i y j z k

P Q R
F S F r r v u x y z v u

x y z

′ ′ ′ ′= + +
 ′ ′ ′ ′= + +

′ ′ ′ ′ ′⇒ • = • × = ⋅
′ ′ ′

∫∫ ∫∫ ∫∫





 

 

 

The flux of the vector field: F Pi Qj Rk= + +


 in the vector display of a pallet 
where: ( ) ( ) ( ) ( ), , , , , ,z x y P x y Q x y R x y⇒  according to Equation (5).  

( ) ( ), , d d d x x
x y

y y

r i z k
r x y xi yj z x y k r r x r y

r j z k
′ ′= +′ ′= + + ⇒ = + ⇒  ′ ′= +



   



 

( ) ( ) ( )( )d d d d d d dx y x y x yS r x r y r r x y i z k j z k x y′ ′ ′ ′ ′ ′= × = × = + × +


     

( )d d d 1 0 d d 1 0 d
0 1 0 1

x y x x
S S S S

y y

P Q R P Q R
F S F r r x y z x y z S

z z
′ ′ ′ ′• = • × = ⋅ = ⋅

′ ′
∫∫ ∫∫ ∫∫ ∫∫

 

   

The flux of vector field F Pi Qj Rk= + +


 through the outside of a part of an 
open parabolic surface by cylinder coordinates. 

( ) ( ) ( ) ( ) ( )

2 2

2 2 2, cos sin ,

z x y

r x y xi yj x y k i j k rρ ϕ ρ ϕ ρ ρ ϕ

= +

⇒ = + + + = + + =


 
 

 
Figure 9. The flux of a vector field through a vector area element. 

ˆdS ndS=


dSF


α

ˆdS ndS=


cos( )F dS dS F α• = ⋅
 

cos( )F α
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( ) ( )
( ) ( )

( )

d d d , cos sin 2 ,

sin cos
or : d d d , 2 , 2 ,

d d d d d
x y x y

x y x y

r r r r i j k

r i j
r r x r y r i xk r j yk

S r x r y r r x y

ρ ϕ ρ

ϕ

ρ ϕ ϕ ϕ ρ

ρ ϕ ρ ϕ

′ ′ ′= + = + +

′ = − +

′ ′ ′ ′= + = + = +

′ ′ ′ ′= × = ×

   



    



   

 

( )

( ) ( )
( ) ( )

or

d d d d d

cos sin 2 d d 1 0 2 d d
sin cos 0 0 1 2

S r r r r

i j k i j k
x x y
y

ρ ϕ ρ ϕρ ϕ ρ ϕ

ϕ ϕ ρ ρ ϕ
ρ ϕ ρ ϕ

′ ′ ′ ′= × = ×

= =
−



   

 

( )

( ) ( ) ( )
( ) ( )
( ) ( )

or

d d d

, , ,
cos sin 2 d d 1 0 2 d d

sin cos 0 0 1 2

S S

S S

F S F r r

P Q R P Q R
x x y
y

ρ ϕ ρ ϕ

ρ ϕ ρ ϕ ρ ϕ
ϕ ϕ ρ ρ ϕ

ρ ϕ ρ ϕ

′ ′• = • ×

= =
−

∫∫ ∫∫

∫∫ ∫∫

 

 

 

The flux of vector field F Pi Qj Rk= + +


 through the outside of a part of an 
open sphere surface according to Equation (7). 

( )

2 2 2 2 2 2 2

2 2 2,

x y z R z R x y

r x y xi yj R x y k

+ + = ⇒ = ± − −

⇒ = + ± − − ⋅


 

( )d d d d d d d d ,

,

x y x y x y

x y

r r x r y S r x r y r r x y

x yr i k r j k
z z

′ ′ ′ ′ ′ ′= + ⇒ = × = ×

′ ′= − = −



      

 

 

( ) ( )
( ) ( )

( )21d 1 0 d d 1 0 tan cos sin 2 d d
2

0 1 0 1 tan sin

i j k i j k
S x z x y R

y z
θ ϕ θ θ ϕ
θ ϕ

= − = − ⋅
− −



 

( ) ( ) ( )
( ) ( )
( ) ( )

( )2

d 1 0
0 1

, , ,
1 1 0 tan cos sin 2 d d
2

0 1 tan sin

S

S

P Q R
F S x z

y z

P Q R
R

θ ϕ θ ϕ θ ϕ
θ ϕ θ θ ϕ
θ ϕ

• = −
−

= − ⋅
−

∫∫

∫∫



    (9) 

An additional way for calculating the flux of a vector field F Pi Qj Rk= + +


. 
The element vector area ˆd dS n S=



 where: ( ) ( ) ( )ˆ cos cos cosn i j kα β γ= + +  
= A unit vector that creates angles , ,α β γ  with the axes (Figure 10). 

 

 
Figure 10. A unit vector that creates angles , ,α β γ  with the axes. 
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Thus: 

( ) ( ) ( )( )

( ) ( )

( )

ˆd d d cos d cos d cos

d d d d d d

d d d d d d

S S S

S

S

F S F n S F S i S j S k

Pi Qj Rk y zi x zj x yk

P y z Q x z R x y

α β γ• = • = • + +

= + + • + +

= + +

∫∫ ∫∫ ∫∫

∫∫

∫∫

  

 (10) 

where: ( )d cos d dS y z iα = ⊥ , ( )d cos d dS x z jβ = ⊥ , ( )d cos d dS x y kγ = ⊥ . 
According to Figure 11. 
Gauss theorem d d

S V

F S F V• = ∇• ⋅∫∫ ∫∫∫
  



. 

The flux of a vector field: F Pi Qj Rk= + +


 through the outside of a closed 
surface is equals to the field’s action F divF∇• =

  

 on the entire volume closed 
by the surface, provided that components , ,P Q R  of the vector field F



 are 
continuous functions.  

Full Proof of Gauss theorem by Equation (10) and by drawings in Figures 
12-14 where: S is the outside of a closed surface and V is the volume closed by 
the surface. 

Figure 12 explains the flux vector field through z-axis in cartesian system. 
Figure 13 explains the flux vector field through y-axis in cartesian system.  

( )

( ) ( )

( )

ˆd d

d d d d d d

d d d d d d

d d d d d d

3 2 1

S S

S

S

S S S

F S Pi Qj Rk Sn

Pi Qj Rk y zi x zj x yk

P y z Q x z R x y

Pi y zi Qj x z j Rk x yk

• = + + •

= + + • + +

= + +

= • + • + •

= + +

∫∫ ∫∫

∫∫

∫∫

∫∫ ∫∫ ∫∫



 





  

 

( )

( )( )
( )

( )( ) ( )
( )

( )( ) ( )( )( ) ( ) ( )
( )

( )

( )

2 1

2

1

2

1

2 1
, ,

,
2 1 ,

,

,

1. , , d d

, , , d d , , , d d

d d , , , , , , d d , ,

d d d d d d d

S

z f x y z f x y

z f x y

z f x y
S S

f x y

S f x y V V

R x y z k x yk

R x y f x y k x yk R x y f x y k x y k

x y R x y f x y R x y f x y x y R x y z

R R Rx y z x y z V
z z z

= =

=

=

•

= • + • −

= − =   

∂ ∂ ∂
= = =

∂ ∂ ∂

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫ ∫∫∫ ∫∫∫



 

(Figure 12) 

 

 
Figure 11. Projections of area element dS  by the angles , ,α β γ  on the axis planes. 
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Figure 12. Vector field flux through z-axis. 

 

 
Figure 13. Vector field flux through y-axis. 

 

 
Figure 14. Vector field flux through x-axis. 

 

( )

( )( )
( )

( )( ) ( )
( )

( )( ) ( )( )( ) ( ) ( )
( )

( )

( )

2 1

2

1

2

1

2 1
, ,

,
2 1 ,

,

,

2. , , d d

, , , d d , , , d d

d d , , , , , , d d , ,

d d d d d d d

S

y g x z y g x z

y g x z

y g x z
S S

g x z

S g x z V V

Q x y z j x zj

Q x g x z z j x zj Q x g x z z j x z j

x z Q x g x z z Q x g x z z x z Q x y z

Q Q Qx z y x y z V
y y y

= =

=

=

•

= • + • −

= − =   

∂ ∂ ∂
= = =

∂ ∂ ∂

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫ ∫∫∫ ∫∫∫



 

(Figure 13) 

( )

( )( )
( )

( )( ) ( )
( )

( )( ) ( )( )( ) ( ) ( )
( )

( )

( )

2 1

2

1

2

1

2 1
, ,

,
2 1 ,

,

,

3. , , d d

, , , d d , , , d d

d d , , , , , , d d , ,

d d d d d d d

S

x h y z x h y z

x h y z

x h y z
S S

h y z

S h y z V V

P x y z i y zi

P h y z y z i y zi P h y z y z i y z i

y z P h y z y z P h y z y z y z P x y z

P P Py z x x y z V
x x x

= =

=

=

•

= • + • −

= − =   

∂ ∂ ∂
= = =

∂ ∂ ∂

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫ ∫∫∫ ∫∫∫



 

(Figure 14) 

( )

( )

d 3 2 1 d d d

d

d

d d

S V V V

V

V

V V

P Q RF S V V V
x y z

P Q R V
x y z

i j k Pi Qj Rk V
x y z

F V div F V

∂ ∂ ∂
• = + + = + +

∂ ∂ ∂

 ∂ ∂ ∂
= + + ⋅ ∂ ∂ ∂ 

 ∂ ∂ ∂
= + + • + + ⋅ ∂ ∂ ∂ 

= ∇• ⋅ = ⋅

∫∫ ∫∫∫ ∫∫∫ ∫∫∫

∫∫∫

∫∫∫

∫∫∫ ∫∫∫
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( )d d d
S V V

F S F V div F V• = ∇• ⋅ = ⋅∫∫ ∫∫∫ ∫∫∫
   



 

Gauss Theorem according to the Orthogonal Curve Coordinates system that 
is represented by Figure 6. 

Divergent F∇•
 

 of the field u u v v w wF F e F e F e= + +


    in orthogonal curve 

coordinates: 
( ) ( ) ( )1 u v w v u w w u v

u v w

F h h F h h F h h
DivF F

h h h u v w
 ∂ ∂ ∂

= ∇• = + +  ∂ ∂ ∂ 

  

 

By cylindrical coordinates: , , , ,z u v wρ ϕ ≡  

, 1, , d d d dz z zF F e F e F e h h h V zρ ρ ϕ ϕ ρ ϕ ρ ρ ρ ϕ= + + = = = =


    

( ) ( )1 zF F F
DivF F

z
ρ ϕρ ρ

ρ ρ ϕ

 ∂ ∂ ∂
 = ∇• = + +
 ∂ ∂ ∂ 

  

 

( ) ( )
d d d d dz

S V V

F F F
F S F V z

z
ρ ϕρ ρ

ρ ϕ
ρ ϕ

 ∂ ∂ ∂
 • = ∇• ⋅ = + +
 ∂ ∂ ∂ 

∫∫ ∫∫∫ ∫∫∫
  



 

By spherical coordinates: , , , ,r u v wθ ϕ ≡  

( )
( )2

,

1, , sin ,

d sin d d d

r r

r

F F e F e F e

h h r h r

V r r

θ θ ϕ ϕ

θ ϕ θ

θ θ ϕ

= + +

= = =

=



  

 

( )
( )( ) ( )( ) ( )2

2

sin sin1
sin

rF r F rF r
DivF F

rr
ϕθθ θ

θ ϕθ

 ∂ ∂∂
 = ∇• = + +
 ∂ ∂ ∂
 

  

 

( )( ) ( )( ) ( )2

d d

sin sin
d d d

S V

r

V

F S F V

F r F rF r
r

r
ϕθθ θ

θ ϕ
θ ϕ

• = ∇• ⋅

 ∂ ∂∂
 = + +
 ∂ ∂ ∂
 

∫∫ ∫∫∫

∫∫∫

  



  

Example: If r rF F e=


  then the vector flux throw closed and open spherical 
areas in spherical coordinates are: 

( )( ) ( )
( )

2 2sin
d d d d sin d d dr r

S V V

F r F r
F S r r

r r

θ
θ ϕ θ θ ϕ

   ∂ ∂
   • = =
   ∂ ∂
   

∫∫ ∫∫∫ ∫∫∫




 

( ) ( )2 2d sin d d sin d dr r r r
S S S

F S F e r e r Fθ θ ϕ θ θ ϕ• = • ⋅ =∫∫ ∫∫ ∫∫


 

 

4. Green theorem and Gauss Theorem 

Green theorem: the work of a vector field F


 along a closed line L on a hori-
zontal plane is equal to the work of a vector field that is perpendicular to the 
plane on all elements of the vector area closed by the line. 

4.1. Full Mathematical Proof of Green Theorem According to  
Figure 15 

( ) ( )d d , d , d
L L L

W W F r P x y x Q x y y= = • = +∫ ∫ ∫
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Figure 15. The surface S closed by the line L on a horizontal plane. 

 

( ) ( ), d , d 1 2
L L

P x y x Q x y y= + = +∫ ∫ 

 

( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )

( ) ( )
( ) ( )

( )

( )2
2

1
1

1 2

1 2

1 2

2 1

1. , d , d , d

, d , d

, d , d

, , d

, , d

,
d , d d

b a

L a b
b a

a b
b b

a a
b

a
b

a

y f xb b
y f x

y f x
a a y f x

P x y x P x y x P x y x

P x f x x P x f x x

P x f x x P x f x x

P x f x P x f x x

P x f x P x f x x

P x y
x P x y x y

y

=
=

=
=

= +

= +

= −

= −

= − −

∂
= − = −   ∂

∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫

∫ ∫ ∫



 

( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )( )

( ) ( )
( ) ( )

( )

( )2
2

1
1

2 1

2 1

2 1

2. , d , d , d

, d , d

, d , d

, , d

,
d , d d

e c

L c e
e c

c e
e e

c c
e

c

x g ye e
x g y

x g y
c c x g y

Q x y y Q x y y Q x y y

Q g y y y Q g y y y

Q g y y y Q g y y y

Q g y y Q g y y y

Q x y
y Q x y y x

x

=
=

=
=

= +

= +

= −

= −

∂
= =   ∂

∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫ ∫ ∫



 

( ) ( )

( )
( )

( ) ( )
( )

( )

( ) ( )

( ) ( )

2 2

1 1

2 1 , d , d

, ,
d d d d

, ,
d d d d

, ,
d d

L L

x g y y f xe b

c x g y a y f x

S S

S

Q x y y P x y x

Q x y P x y
y x x y

x y

Q x y P x y
x y x y

x y

Q x y P x y
x y

x y

= =

= =

+ = +

∂ ∂
= −

∂ ∂

∂ ∂
= ⋅ − ⋅

∂ ∂

∂ ∂ 
= − ⋅ 

∂ ∂ 

∫ ∫

∫ ∫ ∫ ∫

∫∫ ∫∫

∫∫

 

 

( ) ( ) ( )d , d , d d dx y
L L S

F r P x y x Q x y y Q P x y′ ′• = + = −∫ ∫ ∫∫




 

 

)(1 xfy =

)(2 xfy =

)(1 ygx = )(2 ygx =

x

y

ax = bx =

cy =

ey =

( )x y
L D

F dr Q P dS′ ′• = −∫ ∫∫






S
L

dr dxi dyj= +


F Pi Qj= +
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( ) ( )d d dx y x y
S S

Q P S Q P ρ ϕ ρ′ ′ ′ ′= − = − ⋅ ⋅∫∫ ∫∫  

4.2. Proof by Vector Action Due to Hamilton Operator on a Vector  
Field (Figure 16) 

( ) ( )( )

( ) ( )

( )

, ,

, , 0

x y

F i j k P x y i Q x y j
x y z

i j k

Q P k
x y z

P x y Q x y

 ∂ ∂ ∂
∇× = + + × + ∂ ∂ ∂ 

∂ ∂ ∂ ′ ′= = −
∂ ∂ ∂

 

 

( ) ( ) ( )

( ) ( )

d d d

d d d d

x y x y
S S S

x y x y
S S

F S Q P k Sk Q P S

Q P x y Q P ρ ϕ ρ

′ ′ ′ ′∇× • = − • = − ⋅

′ ′ ′ ′= − ⋅ = − ⋅ ⋅ ⋅

∫∫ ∫∫ ∫∫

∫∫ ∫∫

 

  

4.3. Stokes’ Theorem Expanding Green’s Theorem to 3D Space  
(Figure 17) 

( ) ( ) ( ) ˆd d d d d
L L S S S

W W F r F S rot F S F n S= = • = ∇× • = • = ∇× •∫ ∫ ∫∫ ∫∫ ∫∫
      



 

 

where: ( )F i j k Pi Qj Rk F F
x y z

 ∂ ∂ ∂
∇× = + + × + + ⇒∇× ⊥ ∂ ∂ ∂ 

    

. 

4.4. Stokes Trial Main Proof 

,

d d d d d d d d
L L

F Pi Qj Rk r xi yj zk

r xi yj zk W F r P x Q y R z

= + + = + +

⇒ = + + ⇒ = • = + +∫ ∫







 

 

 ( ) ( ) ( ), , ,
d d d , ,x y x x y y

z z x y r x y xi yj z x y k
r r x r y r i z k r j z k

= ⇒ = + +

′ ′ ′ ′ ′ ′⇒ = + = + = +



    

 

( ) ( ) ( )d d d d d d d

1 0 d d 1 0 d
0 1 0 1

x y x y x y

x x

y y

S r x r y r r x y i z k j z k x y

i j k i j k
z x y z S
z z

′ ′ ′ ′ ′ ′= × = × = + × +

′ ′= =
′ ′



   

 
 

 
Figure 16. A vector field around a closed line in 2D space turns into a vector field on the 
area closed by the line perpendicular to the first vector field.  

 

 
Figure 17. A vector field around a closed line in 3D space turns into a vector field on the 
area closed by the line perpendicular to the first vector field. 

dxi dyj
dS k⋅ ( )x yQ P k′ ′−

L

F dr• =∫






( )x y
S

Q P k dSk′ ′− •∫∫L
S
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( ) ( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

Green

d d d d d

d d

d d

d d

x y x y
L L L

y x

S

y x

S

y z x x z y x y
S

y z x z x y x

F r F r x r y F r x F r y

F r F r
x y

x y

Q Rz P Rz
x y

x y

R Q z R P z Q P x y

R Q i R P j Q P k z

′ ′ ′ ′• = • + = • + •

 ′ ′∂ • ∂ •
 = − ⋅
 ∂ ∂
 

 ′∂ + ′∂ +
 = − ⋅
 ∂ ∂ 

′ ′ ′ ′ ′ ′ ′ ′= − − − − − + −

′ ′ ′ ′ ′ ′ ′= − − − + − • −

∫ ∫ ∫

∫∫

∫∫

∫∫

   

   

 



  

( )d d

d

y
S

S

i z j k x y

F S

′− +

= ∇× •

∫∫

∫∫
 

 

d 1 0 d d d
0 1

x
L S S

y

i j k i j k
F r z x y F S

x y z
z

P Q R

∂ ∂ ∂ ′• = • = ∇× •
∂ ∂ ∂

′
∫ ∫∫ ∫∫

  





 

5. Conclusions 

Vector area elements and volume elements in curved coordinates are very im-
portant for calculating the flux of vector field through an open surface and a 
closed surface according to the Gauss theorem and around a closed line accord-
ing to Stokes’ and Greens’ theorems. 

The flux of spatial vector field through an open surface or a closed surface 
might select drusen under eyes retina cells, clean the sells from drusen without 
destroying the retina cells, and prevent macula degeneration in eyes or even 
brain cells degeneration.  

Stokes’ and Greens’ theorems explain the magnetic field on a close flat area by 
the change in time of the electric field around a closed line or the electric field on 
a close flat area by the change in time of the magnetic field around a closed line. 
Therefore, we hope with the help of iron, to help dead retina cells and brain cells 
get to life. 
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